Mesures des forces à petite distance: L'effet Casimir

Astrid Lambrecht Laboratoire Kastler Brossel (Univ. Paris 6, ENS, CNRS)

avec Francesco Intravaia & Serge Reynaud (LKB), Guillaume Jourdan (LKB-LEPES), Marc-Thierry Jaekel (LPT-ENS), Paulo Maia Neto (Univ. Rio de Janeiro)

Discussions avec Gabriel Barton (Sussex Univ.), Federico Capasso (Harvard), Joël Chevrier & Gauthier Torricelli (LEPES-Grenoble), Ephraim Fischbach (Purdue Univ.), Umar Mohideen (Univ. of Riverside), Valery Nezvizhevsky (ILL-Grenoble), Roberto Onofrio (Dartmouth College), Clive Speake (Univ. of Birmingham)

http://www.spectro.jussieu.fr/Vacuum

Une motivation pour les mesures de l'effet Casimir : tester la loi de Newton

Nouvelles forces hypothétiques

Représentation générique : potentiel de Yukawa + potentiel de Newton

$$M_1M_2$$

 $V(r) = V_{N}(r) + V_{V}(r)$

$$V_N(r) = -G_N \frac{M_1 M_2}{r}$$

$$V_{Y}(r) = V_{N}(r)\alpha \exp(-r/\lambda)$$

$$F(r) = F_N(r) + F_Y(r)$$

$$F_N(r) = -G_N \frac{M_1 M_2}{r^2}$$

$$F_Y(r) = F_N(r)\alpha \left(1 + \frac{r}{\lambda}\right) \exp(-r/\lambda)$$

Modification de la loi de Newton entre deux masses ponctuelles

Comment tester la loi de Newton?

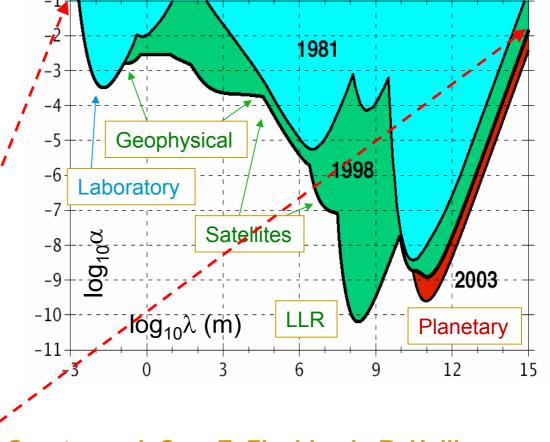
Mesures donnent des contraintes dans le plan (λ, α)

Fenêtres ouvertes à courte distance...

$$\lambda < 10^{-3} \text{ m}$$

et à longue distance

$$\lambda > 10^{16} \,\mathrm{m}$$



Courtesy: J. Coy, E. Fischbach, R. Hellings, C. Talmadge, and E. M. Standish (2003)

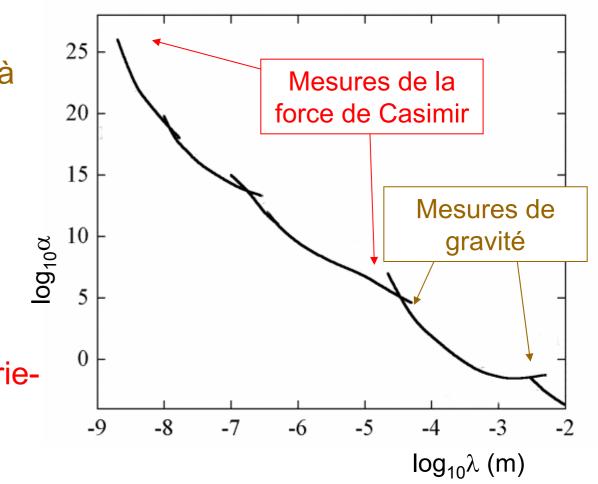
The Search for Non-Newtonian Gravity, E. Fischbach & C. Talmadge (1998)

Tests à courte distance

Mesures de gravité à courte distance

 $\lambda > qq 10 \mu m$

 Distances plus courtes:
 Comparaisons théorieexpériences pour la force de Casimir

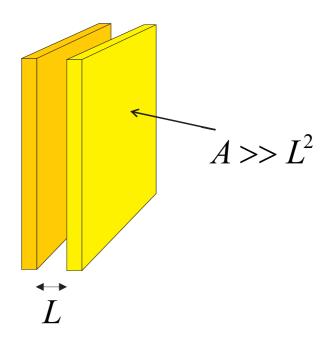


Casimir 1948

$$F_{\text{Cas}} = \frac{\hbar c \pi^2}{240 L^4} A$$

$$E_{\text{Cas}} = -\frac{\hbar c \pi^2}{720 L^3} A$$

- miroirs plans parallèles
- ☐ réflexion parfaite
- température nulle
- surfaces parfaitement planes



 Ordre de grandeur de la pression de Casimir

$$L = 1 \mu \text{m} \rightarrow \frac{F_{Cas}}{A} \approx 10^{-3} \,\text{Pa}$$

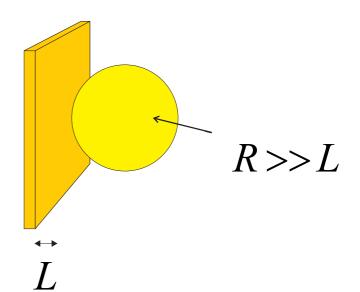
La géométrie plan-sphère

Les forces de Newton et de Yukawa sont additives, mais pas la force de Casimir

Proximity force approximation

 les contributions des éléments de surface sont additionnées comme si elles étaient indépendantes

$$F_{PS} = \int d^2x \frac{F_{PP}(x)}{A}$$



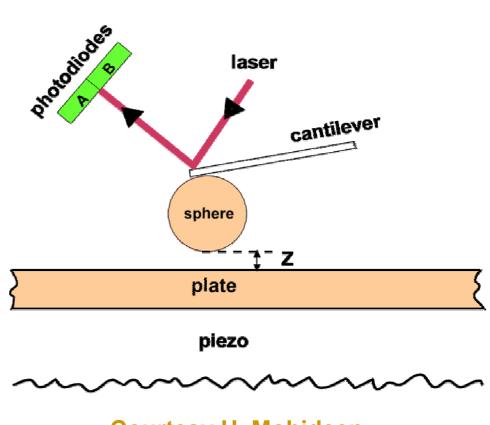
pour la géométrie plan-sphère (si R>>L)

$$F_{PS} = 2\pi R \frac{E_{PP}}{A}$$

Mohideen et al (Riverside)

Microscope à force atomique (AFM)

- Géométrie plan-sphère
- Sphère (100µm) et plaque recouvertes d'or
- □ Distances 60-900nm
- Lecture optique
- Précision expérimentale mieux que 2% aux plus courtes distances

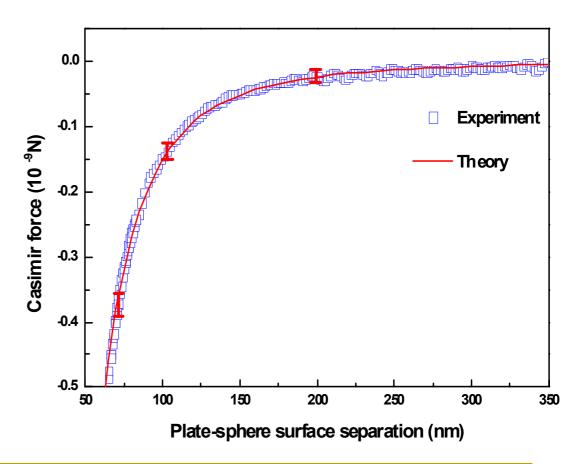


Courtesy U. Mohideen

Comparaison entre théorie et expériences

Accord satisfaisant si on tient compte des effets suivants

- Géométrie plan-sphère
- Réflexion imparfaite
- Température ambiante (correction < 1%)
- Rugosité des surfaces (correction < 1%)



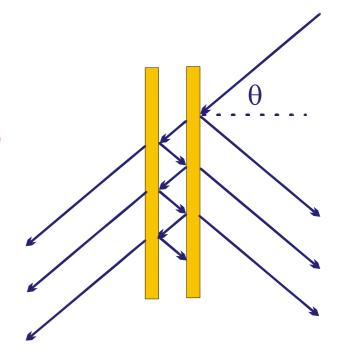
Réflexion imparfaite

La pression de radiation du vide

- en dehors de la cavité : $\frac{\hbar\omega}{2}\cos^2\theta$
- dans la cavité : $\frac{\hbar\omega}{2}\cos^2\theta \times g(\omega)$

Fonction d'Airy:

$$g_{k}^{p}(\omega) = \frac{1 - \left| r_{1}^{p}(\omega) r_{2}^{p}(\omega) e^{2ikzL} \right|^{2}}{\left| 1 - r_{1}^{p}(\omega) r_{2}^{p}(\omega) e^{2ikzL} \right|^{2}}$$



$$k_z = \frac{\omega}{c} \cos \theta$$

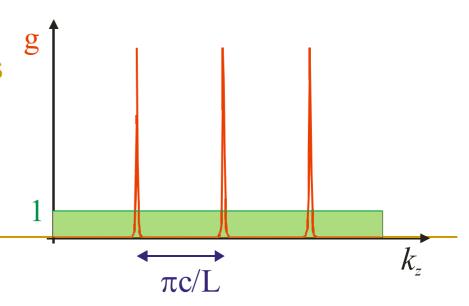
vecteur d'onde

La fonction d'Airy et la force de Casimir

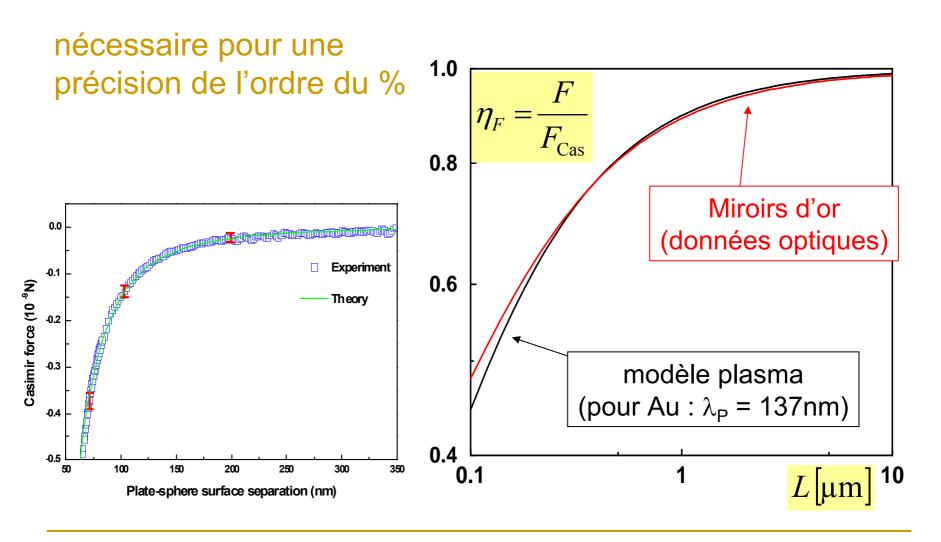
 Force de Casimir = intégrale sur tous les modes du champ

$$F = A \sum_{p} \int \frac{\mathrm{d}^{2}k}{4\pi^{2}} \int_{0}^{\infty} \frac{\mathrm{d}k_{z}}{2\pi} \hbar \omega \cos^{2}\Theta(1-g_{k}^{p}(\omega)); \quad p = \text{TE,TM}$$

 Bilan détaillé entre contributions attractives et répulsives déterminé par la fonction d'Airy



Intégration des données optiques



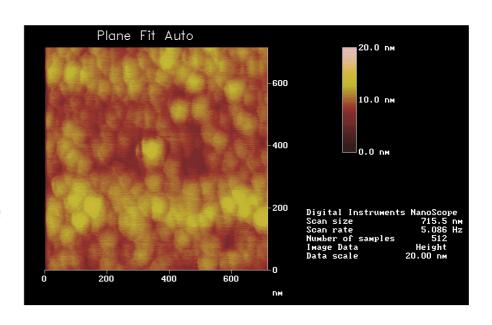
A. Lambrecht & S. Reynaud, Eur. Phys. J. D8 309 (2000)

Rugosité des surfaces

- Calcul approximatif par PFA
 Réflexion spéculaire : correction de 0.15%
- Longueur caractéristique >> distance

Spectre de rugosité

Calcul exact nécessaire



Réflexion non-spéculaire: Méthode

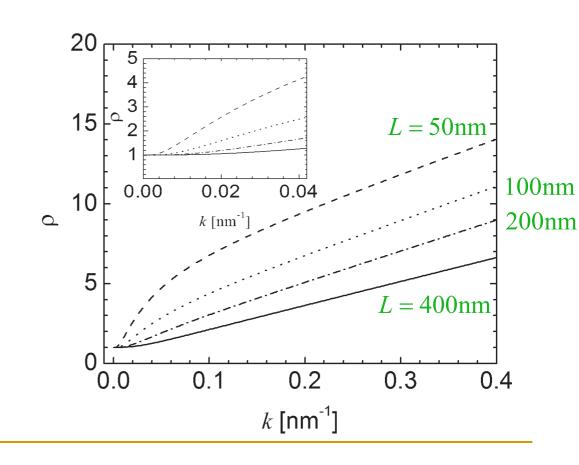
- Profils de rugosité des deux miroirs $h_i(\mathbf{r})$
- Spectre de rugosité $\sigma(k) = \sum_{i=1,2} \int d^2 r \exp(-ikr) \langle h_i(r) h_i(0) \rangle$
- Correction $\delta E = \int \frac{d^2k}{(2\pi)^2} G(k) \sigma(k)$
- G(k) contient les coefficients de réflexion qui mélangent les polarisations et les vecteurs d'onde
- Calcul de $\rho(k) = \frac{G(k)}{G(0)}$

Réflexion non-spéculaire : Résultats

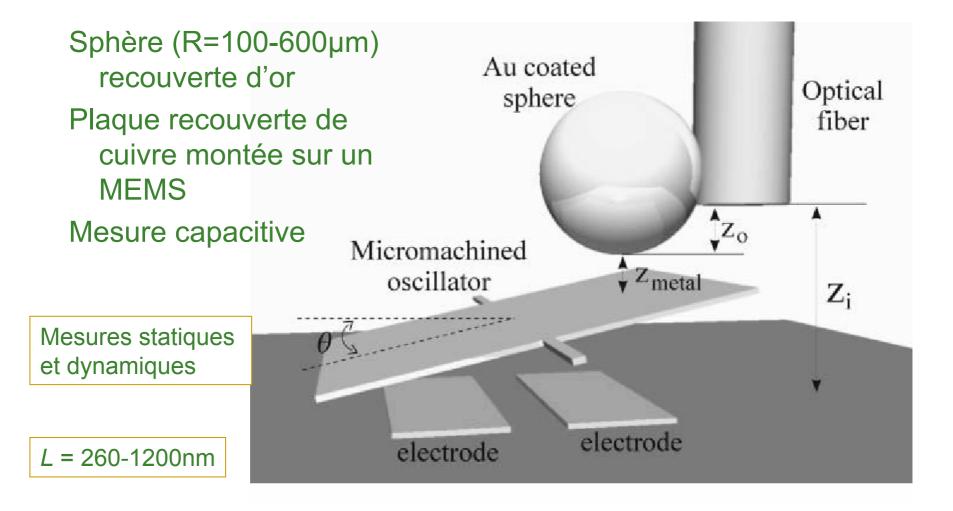
Correction est toujours plus grande que prévue par PFA

■ Miroirs de Mohideen $L \sim 200 \text{ nm}$ $k^{-1} \sim 50 \text{ nm}$

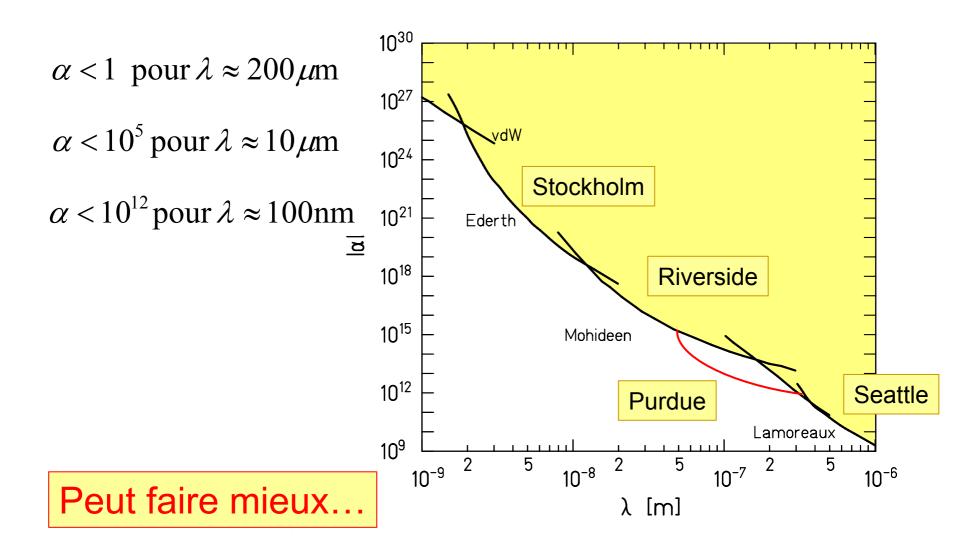
ρ ~ 4
 Correction ~ 0.6%
 (au lieu de ~ 0.15%)



Fischbach et al (Purdue)



Mesures de la force de Casimir : Résumé



E. Adelberger et al Annu. Rev. Nucl. Part. Sci. (2003) hep-ph/0307284