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Abstract. The Nekhoroshev theorem has become an important tool for explaining

the long–term stability of many quasi–integrable systems of interest in physics. The

action variables of systems that satisfy the hypotheses of Nekhoroshev theorem remain

close to their initial value up to very long times, that grow exponentially as an inverse

power of the perturbation’s norm. In this paper we study some of the simplest systems

that do not satisfy the hypotheses of Nekhoroshev theorem. These systems can be

represented by a perturbed Hamiltonian whose integrable part is a quadratic non–

convex function of the action variables. We study numerically the possibility of action

diffusion over short times for these systems (continuous or maps) and we compare

it with the so–called Arnold diffusion. More precisely we find that, except for very

special non–convex functions, for which the effect of non convexity concerns low order

resonances, the diffusion coefficient decreases faster than a power law (and possibly

exponentially) of the perturbation’s norm. According to the theory, we find that the

diffusion coefficient as a function of the perturbation’s norm decreases slower than in

the convex case.

1. Introduction

Many physical systems can be represented adding a perturbation to integrable systems

whose motions are completely known, and specifically are quasi–periodic. The

celebrated KAM ([1], [2], [3], [4]) and Nekhoroshev theorems ([5]) are the milestones in

the understanding of the long–term stability of quasi–integrable systems. In particular,

in recent years, the Nekhoroshev theorem has been largely used to investigate the long–

term stability of dynamical systems ([6], [7], [8], [9], [10], [11]). In the Hamiltonian case,

this theorem can be stated as follows. Let us consider hamiltonians of the form:

H(I, ϕ) = h(I) + εf(I, ϕ) , (1)
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where I ∈ D (D ⊆ Rn open), ϕ ∈ Tn, h and f are analytic and h satisfies a suitable

geometric condition called ’steepness’. Then, there exist positive constants a, b, c, d, ε0

such that for any |ε| < ε0 the actions remain near their initial value:

|I(t) − I(0)| ≤ cεa (2)

up to the exponentially long–times:

|t| ≤ d exp
(ε0

ε

)b

. (3)

The values of the constants a and b depend on the steepness properties of h ([5], [12],

[13]). The constant b is particularly important to characterize stability times.

The simplest example of steep functions is provided by convex functions, i.e. by

functions h such that at any point I ∈ D satisfy:

(∂2h

∂I2
(I)u · u = 0 , u ∈ Rn

)

⇒ u = 0 ,

and by quasi–convex functions, which satisfy the weaker condition:

(∂2h

∂I2
(I)u · u = 0 , ∇h(I) · u = 0 , u ∈ Rn

)

⇒ u = 0 .

In the convex and quasi–convex case the value of the constant b is the bigger one among

all steep cases. Precisely, it is ([14], [15]):

b =
1

2n
. (4)

An exponential stability result have been proved also for quasi–integrable symplectic

maps ([16], [17], [18]), precisely for maps which can be written in the implicit form:

ϕj = ϕ′
j +

∂h

∂Ij

(I) + ε
∂f

∂Ij

(ϕ′, I) , I ′
j = Ij + ε

∂f

∂ϕj

(ϕ′, I) , j = 1, ..., n(5)

with f analytic and h convex. Kuksin, Pöschel and Guzzo treat the convex case, but

their results extend also to the larger class of the so–called P-steep functions (whose

definition is given by Nekhoroshev in his 1977 article; quasi–convex functions are not

P-steep).

However, most interesting systems (for example, the system describing the motion

of an asteroid in the Main Belt of our solar system, see [6], [7]) do not satisfy the

hypotheses of the Nekhoroshev theorem, in its standard formulation, because they are

represented by a non steep hamiltonian h. For example, this happens when h is properly

degenerate (such as the hamiltonian of the Kepler problem and of the Euler–Poinsot

rigid body), i.e. it does not depend on some action variables. For many of these systems

the degeneracy can be, in some sense, removed by perturbation techniques adapted to

the system ([3], [6], [19], [20]). However there are non steep functions even among the

non–degenerate functions h. We find the quadratic non–convex functions among the

simplest non–degenerate functions which are not steep (nor P–steep) in some points.

This paper is dedicated to the numerical investigation of the real possibility of diffusion

of the actions in times much smaller than (3) for these quasi–integrable systems.
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The paper is organized as follows. In section 2 we will give the mathematical

framework and explain the mechanism for fast diffusion. Section 3 provides the model

problem used for our numerical experiments. In section 4 we recall the method

for detecting the geography of resonances and we show examples of diffusion along

resonances in the non convex case. A measure of the variation of the diffusion coefficient

as a function of the perturbing parameter is provided in section 5. We discuss in Section

6 the diffusion properties for different values of α. The conclusion is provided in section

7. A review of the Fast Lyapunov Indicator method is given in the Appendix.

2. Mathematical framework

In this section we list the fundamental hypotheses and terminology that we will use

through the paper.

i) We strictly refer to quasi–integrable systems, i.e. to Hamiltonian systems with

Hamilton functions of the form (1) or to symplectic maps of the form (5).

ii) The functions h, f are such that the Hamiltonian system (1) and the map (5) satisfy

the hypotheses of KAM theorem (for quasi–integrable maps see [16],[17],[18]) for suitably

small ε. It is sufficient that h and f are analytic and h is non–degenerate or (only for

Hamiltonian systems) isoenergetically non–degenerate.

iii) We consider values of the perturbing parameter ε so small that KAM theorem applies.

This implies that the phase space is filled with a set K of large measure made of invariant

tori. Any motion with initial condition on K is perpetually stable, so that instability

can occur only on the complementary set of K, which we call the Arnold web. The

projection of the Arnold web on the action space D lies on a neighbourhood of the

manifolds: k · ∇h(I) = 0, with k ∈ Zn\0. Its complement is open and dense. With

an abuse of terminology, we will use the term ’resonance’ to indicate the manifold

k · ∇h(I) = 0, as well as its neighbourhood which is in the Arnold web.

iv) We say that a motion (I(t), ϕ(t)) is ’unstable’ if there exists a time t such that the

actions explore macroscopic regions of a given action domain B:

‖I(t) − I(0)‖ ≥ diamB

2
. (6)

Moreover, we say that the N motions (I (j)(t), ϕ(j)(t)), j = 1, ...N , diffuse in the action

space if the average evolution of the squared distance of the actions from their initial

value grows linearly with time; i.e. there exists a constant D > 0 such that:
∑N

j=1(I
(j)(t) − I (j)(0))2

N
∼ D t (7)

for all t.

v) If the system satisfies (i), (ii), (iii) and moreover h is steep (P–steep for maps) then

also the Nekhoroshev theorem applies and any eventual instability of the actions occurs
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only on times that grow exponentially with a positive power of 1/ε. Any motion diffusion

for a system satisfying (i), (ii), (iii) and the steepness hypothesis will be called Arnold

diffusion. Though Arnold diffusion occurs on these very long times, the techniques that

we introduced in [23],[25] allow its numerical detection. The first detection of global

Arnold diffusion in quasi–integrable systems has been described in [26].

vi) This paper concerns the real possibility of diffusion for systems that satisfy (i), (ii)

and (iii), but whose h is not steep (P–steep for maps), so that in principle instability is

possible already on times of order 1/ε.

We first review the mechanism producing instability for quasi-integrable systems

with non–convex quadratic functions h(I), for both hamiltonian systems and maps. We

will then investigate numerically the real possibility of diffusion using quasi–integrable

maps, for which numerical experiments are simpler than the hamiltonian case.

Nekhoroshev, in his 1977 article, provided as an example of fast diffusion in non

convex (and non steep) systems, the hamiltonian:

H =
I2
1

2
− I2

2

2
− ε sin(ϕ1 + ϕ2) , (8)

that has some special solutions with the actions moving at a speed of order ε:

I1(t) = εt , I2(t) = εt

ϕ1(t) =
1

2
εt2 , ϕ2(t) = −1

2
εt2 . (9)

To illustrate the mechanism producing this fast diffusion, it is instructive to consider

a generic perturbation of the non–convex function h =
I2

1

2
− I2

2

2
, such as:

H =
I2
1

2
− I2

2

2
+ εf(ϕ1, ϕ2) .

This system is quasi–integrable with non–degenerate integrable approximation h, and

therefore the KAM theorem applies to it. However, h is not isoenergetically non–

degenerate on the lines I1 = ±I2, and therefore action diffusion can occur only near

these lines (the systems has n = 2), that we call escape lines.

The escape lines correspond also to the resonances: ϕ̇1 ± ϕ̇2 = 0, and therefore,

near the line I1 = I2 (for simplicity we choose one escape line), by usual normal form

construction the hamiltonian is conjugate by means of a near–to–identity canonical

transformation to the resonant normal form:

H̃ = H0 + ε exp−
(ε0

ε

)b

r(I, ϕ)

with H0 of the form:

H0 =
I2
1

2
− I2

2

2
+ εu(I, ϕ1 + ϕ2) .

The dynamics of the normal form H0 is such that the actions can move only on the

line parallel to the vector: (1, 1), which is also parallel to the resonance related to the



Diffusion and stability in perturbed non convex integrable systems 5

harmonic ϕ1 + ϕ2. Therefore, with suitable perturbations (for example such that H0

has the form (8)), actions with initial conditions in the resonance I1 = I2 can move

indefinitely at a speed of order ε without leaving the resonance.

Such a diffusion mechanism is not possible in the convex case:

H =
I2
1

2
+

I2
2

2
− ε sin(ϕ1 + ϕ2) .

In fact, the hamiltonian is isoenergetically non degenerate and KAM theorem prevents

the diffusion of the actions (if n > 2 diffusion can exist, but only on exponentially long

times). Analyzing more closely the dynamics, the resonant normal form for a generic

resonance: k1ϕ̇1 + k2ϕ̇2 is defined near the line of the action plane:

k1I1 + k2I2 = 0 , (10)

and has the form:

H̃ = H0 + ε exp−
(ε0

ε

)b

r(I, ϕ)

with:

H0 =
I2
1

2
+

I2
2

2
+ εu(I, k1ϕ1 + k2ϕ2) .

The dynamics of H0 can move the actions only on the line parallel to the vector:

(k1, k2), usually called line of fast drift, which is perpendicular to the resonant line (10).

Therefore, there cannot be a diffusion along the resonance with speed of order 1/ε, and

only the exponentially small remainder can force an exponentially slow diffusion along

it (if n > 2).

This is the mechanism underlying the exponential stability predicted by the

Nekhoroshev theorem, and it is explained in several papers ([5], [21], [7]).

We now consider more generic quadratic integrable hamiltonians with 2 degrees of

freedom, i.e. functions h of the form:

h =
1

2
AI · I , (11)

where A is a 2–dimensional symmetric square matrix. The previous argument should

provide that a condition which is sufficient to prevent the fast diffusion along a given

resonance (as in the example by Nekhoroshev) is that the line of fast drift is not contained

in the resonance. To be definite, for any k ∈ Z2\0, the resonance k · ϕ̇ = 0 is defined by

the equation:

k · AI = 0 ,

while the line of fast drift, in the action plane, is parallel to the vector k. Therefore,

a fast diffusion should be possible only if this line is contained in the resonance, which

happens only if Ak · k = 0. In the rest of the paper we will call ’fast diffusion’ any

diffusion of orbits occurring for systems satisfying ((i), (ii) and (iii)) taking place on

resonances of the Arnold web characterized by the fact that a space of fast drift is

contained in the resonance.
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Fast diffusion in the resonance k · AI = 0 is prevented if k satisfies‡:

Ak · k 6= 0 .

Convex hamiltonians satisfy this condition for any vector u ∈ R2\0, and therefore also

for any integer vector k ∈ Z2\0.

Morbidelli and Guzzo ([7], see caption of figure 10) remarked that, also in the non–

convex quadratic case, fast diffusion can be prevented: for example, for the following

non–convex hamiltonian:

H =
I2
1

2
− I2

2 ,

the equation:

u · Au = 0 ⇐⇒ u2
1 − 2u2

2 = 0

has the only non trivial solutions u1 = ±
√

2 u2 and therefore the direction (u1, u2) =

u2(
√

2, 1) cannot be a direction of fast drift (which necessary requires u1/u2 ∈ Q).

Following the idea of Morbidelli and Guzzo, all the quadratic hamiltonians: h =
1
2
AI · I with A non–convex, but satisfying:

(Ak · k = 0 and k ∈ Z2) ⇒ k = 0 (12)

are not compatible with fast diffusion§. For example, the function:

h =
1

2
(I2

1 − αI2
2 ) , (13)

with α > 0, is non–convex (nor steep), but is compatible with fast diffusion only if√
α ∈ Q, i.e. for α of the form:

α =
n2

1

n2
2

(14)

with n1, n2 ∈ N.

We will call ’rationally convex’ a function h(I1, I2) such that its hessian matrix

satisfies condition (12) at any point of its domain. Function (13) is not convex if α ≥ 0,

but is rationally convex if
√

α ∈ R/Q,

For n > 2 the condition of rational convexity slightly complicates, because the

possibility of multiple resonance conditions forces us to take into consideration fast drift

planes of dimension ranging from 1 to n − 1. Precisely, we give the following:

Definition. We say that the n–dimensional square matrix A is rationally convex if for

any set of independent integer vectors k1, . . . , kd ∈ Zn, with d ∈ {1, . . . , n−1}, denoting

with K̃ the d × n matrix whose columns are the vectors ki, it is:

det(K̃T AK̃) 6= 0 . (15)

‡ More precisely in order to prove exponential stability one should require some algebraic condition

such as a diophantine–like condition: |k · Ak| ≥ γ/ |k|τ for any k ∈ Z2\0.
§ Again, to prevent diffusion on exponentially long times one should require an algebraic condition,

such as: |k · Ak| ≥ γ/ |k|τ for any k ∈ Z2\0.
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We say that the real function h : D → R, with D ⊆ R\ open set, is rationally convex at

I ∈ D if its hessian matrix h′′(I) is rationally convex.

We briefly explain (15) in the case n = 3. The resonances related to the lattices of

dimension 1 generated by k ∈ Z3\0 have equations: k ·AI = 0. The space of fast drift is

a line parallel to k, therefore a line of fast drift is contained in the resonance if and only

if k · Ak = 0, as in the case n = 2, d = 1. Instead, if n = 3, d = 2 the resonance related

to the integer vectors k1, k2 is the line in the intersection of the planes k1 · AI = 0 and

k2 · AI = 0. The space of fast drift of this resonance has dimension 2, and is generated

by k1, k2. Therefore, the resonance is transverse to the plane of fast drift if and only if

equation (15) is satisfied. This argument can be generalized to the higher dimensional

cases.

Remark. Condition (15) for any d = 1, .., n − 1 is indeed necessary, as it can be seen

considering the example h = (1/2)(I2
1 − αI2

2 − βI2
3 ), with α = 2 +

√
2 and β =

√
2.

Denoting A = h′′, it is: k ·Ak 6= 0 for any k ∈ Z3\0. In fact, for any integer vector k, it

is: k · Ak = k2
1 − (2 +

√
2)k2

2 −
√

2k2
3 = (k2

1 − 2k2
2) −

√
2(k2

2 + k2
3) which vanishes if and

only if k2
2 + k2

3 = 0 and k2
1 − 2k2

2 = 0, which in turn are solved only by k1 = k2 = k3 = 0.

However, h is not rationally convex because it fails condition (15) for the resonance

generated by k = (1, 0, 1) and k′ = (0, 1, 1). In fact, denoting by K̃ the matrix whose

columns are the vectors k, k′, it is :

K̃T AK̃ =

(

k · Ak k · Ak′

k′ · Ak k′ · k′

)

=

(

1 − β −β

−β −α − β

)

(16)

whose determinant is −(1 − β)(α + β) − β2 = 0.

In the rationally convex case, it should be possible to prove exponential stability

even if the proof is quite long because it reproduces the well known proof of the

Nekhoroshev theorem for the convex case (see [21]). More precisely in order to prevent

diffusion over times slower than exponentials of 1/ε one needs some algebraic condition,

such as:
∣

∣

∣
det(K̃T AK̃)

∣

∣

∣
≥ γ
∥

∥

∥
K̃
∥

∥

∥

τ (17)

for any integer matrix K̃ (
∥

∥

∥
K̃
∥

∥

∥
denotes a matrix–norm). In the case n = 2 this condition

is:

|Ak · k| ≥ γ

‖k‖τ ∀ k ∈ Z2\0 . (18)

Recently, Niederman reconsidered the Morbidelli and Guzzo idea and generalized it to

the generic steepness case [22].

3. The model problem

In this article, we study numerically the effective impact of the rational convexity on

diffusion, and we compare it with the Arnold diffusion. We will use as model problem
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the quasi–integrable map:

ϕ′
1 = ϕ1 + I1 , ϕ′

2 = ϕ2 − αI2

I ′
1 = I1 + ε

∂f

∂ϕ1
(ϕ′

1, ϕ
′
2) , I ′

2 = I2 + ε
∂f

∂ϕ2
(ϕ′

1, ϕ
′
2) (19)

which is in the form (5), with n = 2, h equal to (13) and we use as perturbation the

function:

f =
1

cos(ϕ1) + cos(ϕ2) + 2 + c
, c > 0 .

This peculiar form of the perturbation is chosen because it has a full Fourier spectrum.

We study the diffusion properties of the system for (many) different values of the

parameter α, that determines if the integrable approximation is convex (α < 0) or

not (α > 0). In the non convex case we will consider separately the cases:
√

α ∈ R\Q

(rationally convex) and
√

α ∈ Q.

In order to adapt to symplectic maps the discussion done about the hamiltonian

case we recall that the geometry of resonances of a map of the form (5) is equivalent

to the geometry of resonances of the hamiltonian with n + 1 degrees of freedom (see

[16],[17],[18])

h(I1, ..., In) + 2πIn+1

which, in the specific case of the map (19), projects in the space of the actions I1, ..., In

on the web of lines:

k1I1 − αk2I2 + 2πk3 = 0

with k1, k2, k3 ∈ Z. Then, when ε 6= 0, one can construct the normal form adapted to a

resonance, such that the action dynamics is flattened near the line of fast drift that is

parallel to the vector (k1, k2) (see [18]).

As a result, the map (19) has a generic geometry of resonances. In fact, the

resonances of the unperturbed system related to all integer vectors (k1, k2, k3) constitute

a dense web in action plane (I1, I2), while the Arnold web is a dense set in phase space.

Repeating the argument given for the hamiltonian case, and recalling that the line of

fast drift is parallel to (k1, k2), the map (19) can have fast diffusion only if α satisfies

condition (14). In this case, there exists a family of resonances that potentially support

fast diffusion, precisely all resonances related to integer vectors (k1, k2, k3) with (k1, k2)

satisfying:
k1

k2
= ±n1

n2
= ±

√
α ,

and therefore all resonant lines with equation:

αI2 = ±
√

αI1 + 2π
k3

k2
. (20)

This family of resonances constitutes a web, that we call “fast web”, and is a subset of

the Arnold web.

Because the fast web is dense in the action plane, the phenomenon of fast diffusion

can bring the orbits near any point of phase space. In fact, diffusing orbits can in



Diffusion and stability in perturbed non convex integrable systems 9

principle change several resonances in short times of order 1/ε. As a consequence, the

orbits can indeed diffuse in the fast web, rather than simply drifting along a line like

the simpler n = 2 hamiltonian case. This justifies the use of the name ’fast diffusion’

for this phenomenon.

Although the steepness hypothesis is no more valid, it still exists a part of the

Arnold web that can support action diffusion with a speed that is at most exponentially

slow, as in the usual Arnold diffusion. This part is the complement of the “fast web”.

The size of the harmonics related to a given resonance is another relevant factor in

determining the rate of diffusion. It is related to the order |k| = |k1|+ |k2|. We remark

that the fast web contains resonances with minimum order n1 + n2, that gives a lower

bound to the speed of fast diffusion determined by n1, n2.

Therefore the diffusion on the resonances of the fast web of sufficiently high order

can be slower than the Arnold diffusion. The typical situation, in the non rational

convex case is therefore the presence of two competing mechanisms of diffusion, which

is analyzed in section 4.

In the rational convex case, fast diffusion cannot exist. Indeed we find numerically

that the diffusion coefficient decreases with ε faster than any power law (possibly

exponentially). Nevertheless, we find that the diffusion coefficient decreases slower than

the convex case. We expect such a behaviour: when matrix A satisfies a condition

like (18) (which is the case that we will consider) the constant b that characterizes the

stability times in (3) is smaller for large τ . The convex case corresponds to the smallest

possible value τ = −2, i.e. to the biggest constant b in (3).

From a technical point of view, we investigate the diffusion properties of the map

(19) with the techniques used in [23], [24], [25], [26], [27]. These techniques rely

essentially on the so–called Fast Lyapunov Indicator (FLI in the following, introduced

in [28] ), that allows a precise numerical detection of the Arnold web of a given system.

The theoretical motivations for the use of the FLI are reviewed in the Appendix.

4. Geometry of resonances and diffusion

The numerical study of the diffusion properties of a quasi–integrable system is greatly

simplified by the computation of its geometry of resonances. In fact, different kinds

of diffusion can be detected in a quasi–integrable system, such as the widely observed

Chirikov diffusion ([29]), the Arnold diffusion (occurring on much longer times and

therefore only recently numerically detected [25], [26]) and the fast diffusion.

All these diffusion mechanisms are strictly related to the geometry of resonances:

the first one is characterized by resonance overlapping, while in the second and third

case resonances are arranged as a regular web (the so–called Arnold web) and the phase

space is filled by a large number of invariant tori.

A precise numerical detection of the Arnold web is possible with the Fast Lyapunov

Indicator (hereafter called FLI). This method, introduced by Froeschlé et al. [28] is

reviewed in the Appendix. Figure 1 shows the Arnold web for the mapping (19) with
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Figure 1. Detection of the Arnold web for a rationally convex case: α = (
√

5− 1)2/4

and for α = 4. The perturbation parameter is ε = 0.1 and the integration time is

t = 1000 iterations. The FLI values close to log t = 3 correspond to invariant tori,

higher values show the presence of chaotic orbits and lower values correspond to the

regular part of resonances.

ε = 0.1. The FLI has been computed on a set of 500 × 500 initial conditions regularly

spaced in the intervals: 0 < I1 < π and 0 < αI2 < π for α = (
√

5−1)2/4 (Fig.1,left) and

for α = 4 (Fig.1,right). The initial angles are chosen equal to zero and the integration

time is t = 1000 iterations.

In Fig.1 the white lines (yellow in the electronic version) correspond to the chaotic

part of the resonances while the grey (red) background corresponds to the set of invariant

tori characterized by a FLI value of about log t = 3. Colors going from grey (red) to

black stay for regular resonant motions. The Arnold web, which is a neighbourhood of

all straight lines:

k1I1 − αk2I2 + 2πk3 = 0

with k1, k2, k3 ∈ Z, appears clearly. The set of all resonances is dense on the plane.

However, one can expect that resonant orbits surround each resonance line up to a

distance which decreases with the order |k| =
∑

|ki|. Both pictures represent a system

with no global overlapping of resonances, although for α = 4 larger chaotic regions

appear.

We recall that for α satisfying condition (14) there is a family of resonances

potentially supporting fast diffusion. More precisely there are the resonances related
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to integer vectors (k1, k2, k3) with (k1, k2) satisfying:

k1

k2
= ±n1

n2
= ±

√
α ,

and therefore all resonant lines with equation:

αI2 = ±
√

αI1 + 2π
k3

k2

. (21)

This family of resonances constitutes the “fast web”. Some of these lines appear clearly

on Fig.1,right.

In order to have the chance to observe fast diffusion, it is useful to select chaotic

initial conditions on the fast web. This task is made easy by the FLI chart of resonances.

Following the same procedure used in [25] we integrate such chaotic orbits and we

represent them on the FLI chart considering only those points of the orbits which

intersect the section

S = {(I1, I2) ∈ R2, ϕi = 0, i = 1, 2} . (22)

We recall that the FLI charts are obtained for initial conditions that belong to the

section S. Since computed orbits are discrete, we represented points on the double

section |ϕ1| ≤ 0.05, |ϕ2| ≤ 0.05. A smaller tolerance (lower than 0.05) reduces only the

number of points on the section, but does not change their diffusion properties. Fig.2

shows the successive intersections of a set of 100 orbits with section S up to a time

t = 5 108 for α = 4 and ε = 0.1. The initial conditions have been chosen along I2 = I1/2

with 0 < I1 < π. We have checked, on a small integration time of t = 1000 iterations

that such orbits are chaotic, i.e. they have FLI values 20% greater than the reference

value for the tori (which is ' log t). The initial angles are equal to zero.

Fig.2 shows a phenomenon of diffusion, involving a macroscopic region of the phase

space. Such global diffusion occurs mainly on the “fast web”. We remark that the initial

conditions were chosen on the fast web and a question may arise as to what happens

when choosing initial conditions along another resonance.

We recall that in [26] we performed a similar experiment with convex systems

(hamiltonian and maps) that satisfy the hypotheses of the Nekhoroshev theorem.

Indeed, by selecting chaotic initial conditions on low order resonances, we have observed

a phenomenon of global diffusion through all the resonances (at least of low order) of the

Arnold web on times longer than any power law, and compatible with the exponential

(3).

The Arnold diffusion is present also in the non–convex case, and could also play

an important role. For the non convex case with α = 4, we have selected a set of 100

chaotic initial conditions on the resonance I2 = I1/α (that is not in the fast web) and

represented their orbits on the FLI chart. Let us remark that the order of this resonance

is |k| = 2, while the order of the resonances of the fast web satisfies |k| ≥ n1 + n2 = 3.

We have observed that for ε = 0.1 the Arnold diffusion on a time of about 5 107

iterations moves some of the orbits through the Arnold web giving them the possibility
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Figure 2. Diffusion for ε = 0.1 of a set of 100 chaotic orbits for α = 4 The points

are the intersections of the orbits with the section S up to a time t < 5 108 iterations.

It appears clearly that diffusion occurs mainly on the on the “fast” web, i.e. the web

formed by the set of lines: I2 = ± 1
√

α
I1 + 2πk

α
, with k ∈ Z.

of reaching the “fast web” and then rapidly diffusing. Qualitatively we observe the same

pattern of Fig.2 up to t = 5 108 iterations.

In next sections we will study in more detail the interplay between Arnold diffusion

and fast diffusion. The strategy will consist of integrating orbits that have a great

probability of diffusing in both cases, i.e. chosen respectively on the low order resonance

I2 = I1/α and on the fast web.

For this purpose let us consider the rationally convex case of Fig.1,left corresponding

to αrc = (
√

5− 1)2/4. In this non–convex case, the lines of fast drift do not correspond

to resonances. The diffusion along the resonances is of Arnold type and needs very long

times to be observed according to the value of ε and to the order of the considered

resonances. We have chosen a set of 100 initial condition on the low order resonance

I2 = I1/α in the interval 0.7 < I1 < 0.8. For comparison with the convex case we have

integrated 100 chaotic orbits, chosen on the same resonance, but for αc = −αrc. Fig.3

shows the successive intersections of the set of orbits with section S up to t = 106 (left

panel) and t = 109 (right panel) for respectively αrc (top) and αc (bottom) for ε = 0.21.

In both cases, we observe a local phenomenon of Arnold diffusion along the resonant

line and qualitatively the only difference is the speed of diffusion, which is lower in the

convex case as we remarked in Section 3.
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Figure 3. Diffusion along the resonant line αI2 = I1 for ε = 0.21 of a set of 100 initial

conditions with I1 in the interval 0.7 < I1 < 0.8 for respectively αrc = ((
√

5 − 1)/2)2

(top) and and αc = −αrc (bottom). The black points are the intersections of the orbits

with the section S (defined in the text) up to time t = 106 (left panels) and t = 109

(right panels).
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5. Measure of the diffusion coefficient

Following the procedure of [25] we tried to measure a diffusion coefficient as if the

phenomenon was Brownian like. For a chosen fraction T of the integration time, for any

n ∈ N, denoting with I1,j(0) and I2,j(0), j = 1, ..., N the initial conditions of a set of N

orbits and with I1,j(t) and I2,j(t) the corresponding values at time t we considered the

quantity:

d(nT ) =
1

Mn

∑

j:(|ϕ1,j(t)|≤0.05,|ϕ2,j (t)|≤0.05

[(I1,j(t)−I1,j(0))2+(I2,j(t)−I2,j(0))2](23)

where Mn is the number of points on section S for t in the interval (n− 1)T ≤ t ≤ nT .

In our numerical experiences we have observed a linear increase with time of d. The

slope of the regression line is the diffusion coefficient D.

We have studied the dependence of the diffusion coefficient on the parameter ε for

the rationally convex case with αrc = ((
√

5− 1)/2)2 and, for comparison, for the convex

case with αc = −((
√

5 − 1)/2)2.

According to the experience shown in Fig.3 we have integrated, up to t = 109

iterations, a set of 100 chaotic orbits with initial conditions chosen on the low order

resonance I2 = I1/α and we have repeated the computation for different values of ε.

The estimates of D versus 1/ε are reported in Fig.4 in a logarithmic scale. Clearly,

data are not well fitted with a linear regression, which would correspond to a power

law D(ε) = C(1/ε)m. Indeed, if we define 3 different sets of data, and we perform local

regressions for each set, we find for αc, the three different slopes n1 = −1.9, n2 = −5 and

n3 = −15. This is sufficient to exclude a global power law and the changes of slope are

compatible with the expected exponential decrease of D. For the non convex case with

αrc, we have also found three different slopes m1 = −3, m2 = −4.8 and m3 = −9. Such

changes of slopes are in favor of an exponential decrease of D although, in agreement

with the theory, slower than in the convex case.

For the non–convex and non rational convex value αnc = 4 we have repeated the

experience considering two sets of initial conditions: set (A) on the resonance I2 = 1√
α
I1

(that is in the fast web) and set (B) on the resonance I2 = 1
α
I1 (that is not in the

fast web). Results on diffusion are presented in Fig.5. For the three larger values of ε

we have observed Chirikov diffusion. Its speed is independent on the set (A) or (B) of

initial conditions. For lower values of ε, when we have no resonance overlapping, we

still observe a global diffusion but of different nature. Such a diffusion occurs mainly

along the resonances of the “fast web” as explained in the previous Section (Fig.2).

We have observed the global diffusion on the “fast web” for all the values of ε

considered for set (A) and the diffusion coefficient is well fitted by a power law (with

slope m = −1.3).

For set (B) we observe the same kind of global fast diffusion only for 3 < 1/ε < 10.

We can fit the points corresponding to global diffusion (both Chirikov and fast ) with a

power law of slope m1 = −3.7 (Fig.5). For lower values of ε only local Arnold diffusion

along the resonance I2 = 1
α
I1 is observed up to t = 5 108 iterations. The corresponding
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Figure 4. Measure of the diffusion coefficient as a function of 1/ε for respectively the

rationally convex case with αrc (square) and the convex case with αc = −αrc. In both

cases data are well fitted by 3 power laws with slopes mi, i = 1, ..3 for αrc and ni,

i = 1, ..3 for αc.

diffusion coefficient suddenly drops being fitted by a power law of slope (m2 = −11).

For values of ε lower than 0.03 we did not observe any more diffusion up to t = 5 108.

Let us remark that the change of slope of set (B) is not of the same kind than the one

presented in Fig.4. Here, it corresponds to the change from global (Chirikov and fast )

diffusion to the local Arnold diffusion while in the previous experiment we had always

the same phenomenon of local diffusion.

6. About the influence of α on the speed of diffusion.

In order to study the influence of 1/
√

α on the speed of diffusion in the non convex case

we have measured the diffusion coefficient D for 300 values of α with 0.5 < 1/
√

α < 1.

For each value of α a set of 100 chaotic initial conditions has been selected along the

resonance I2 = I1/
√

α with 0 < I1 < π and the orbits are computed on 108 iterations.

The perturbing parameter is ε = 0.1.

Fig.6 shows the variation of the logarithm of D as a function of 1/
√

α. We observe

a drop of 4 orders of magnitude in D when passing from 1/
√

α = 0.5 to 1/
√

α ' 0.55.

The same occurs when going from 1/
√

α = 1 to 1/
√

α ' 0.9. Surprisingly, we do not

remark the effect of the low order rational 1/
√

α = 2/3. The values of the diffusion

coefficient around 2/3 are quasi constant around the value D ' 10−10.

We have explored with more detail the case α = 9/4. We considered a set of 100
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Figure 5. Measure of the diffusion coefficient D as a function of 1/ε for orbits of data

set (A) (circle) and of data set (B) (square). For data set (A) the function D(ε) is

fitted by a power law D(ε) = (1/ε)m with m = −1.3. For data set (B) the diffusion

coefficient is fitted by a power law with m1 = −3.7 up to ε = 10 (global diffusion),

then a change of slope is observed with m2 = −11 (local Arnold diffusion).

initial conditions along a resonance of fast diffusion I2 = 2/3I1 with 1 < I1 < 1.3 (data

set 1) and a set of 100 initial conditions along a resonance of low order: I2 = I1/α with

1 < I1 < 1.3 (data set 2) for different values of ε (from ε = 0.22 to ε = 0.0001). The

initial angles are ϕ1 = 0 and ϕ2 = 0.

Fig.7,top shows the resulting diffusion for respectively data set 1 (left) and 2 (right)

for ε = 0.18, and Fig.7,bottom for ε = 0.025. It appears clearly that, for ε = 0.18

we have a phenomenon of global diffusion for both data sets, and that the speed of

diffusion seems to be of the same order. More precisely, we observe that the speed of

Arnold diffusion on a low order resonance can be of the same order of magnitude, or even

greater than the speed of the diffusion along the fast drift line when such a line coincides

with an higher order resonance. Let’s recall that the order of the fast drift resonance

is |k| = 5 while the resonance I2 = I1/α has order |k| = 2. Such a result is a little

surprising since we are used to think to Arnold diffusion as a very slow phenomenon.

Actually, when ε approaches ε0 (3), as it is for ε = 0.18, and when the fast drift line is of

moderately high order (Fig.7,top), it turns out to be competitive with the fast diffusion.

When decreasing ε the speed of Arnold diffusion on orbits of data set 2 decreases

faster than the speed of diffusion of orbits of data set 1. We remark that for ε = 0.025,

on a time t = 108 iterations, the main contribution to the diffusion for data set 2 is that

in the directions parallel to the fast drift lines. A measure of the diffusion coefficient
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Figure 6. Variation of log D as a function of 1/
√

α for 300 values of α with

0.5 < 1/
√

α < 1. For each value of α a set of 100 chaotic initial conditions taken

along the fast drift line I2 = I1/
√

α with 0 < I1 < π has been integrated up to t = 108

iterations. The perturbing parameter is ε = 0.1

(Fig.8) as a function of ε for data set 1 and 2 allows to quantify the effect of fast and of

Arnold diffusion .

In particular, it appears clearly that for ε = 0.1 the speed of Arnold diffusion

is of the same order than the speed of fast diffusion. This is the reason why we

didn’t found any difference between the diffusion coefficient computed for 1/
√

α = 2/3

and for their irrational neighbouring values. In order to observe the influence of the

rational value 1/
√

α = 2/3 on diffusion it is necessary to decrease ε. We have therefore

repeated the computation of D as a function of 1/
√

α for 100 values in a neighbourhood

of 1/
√

α = 2/3 for ε = 0.05. Fig.9 shows the emergence of the rational value of

1/
√

α = 2/3 characterized by a diffusion coefficient 2.5 order of magnitude higher than

for 1/
√

α ' 2/3 ± 0.03.

7. Conclusion

We have studied the phenomenon of diffusion in a non convex symplectic map for

different values of the parameter α and of the perturbation parameter ε. For α2 ∈ Q

we observed a rapid global diffusion along the resonances forming the “fast web” only

when the order of the fast drift line is low. Otherwise, even if α2 ∈ Q the diffusion along

the fast drift line may not be the most rapid phenomenon. The order of the resonance
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Figure 7. The four panels correspond to the FLI chart of the action plane (I1, I2) for

the map, with initial conditions on the section S as explained in the text, with different

magnifications. The white (yellow in the electronic version) region corresponds to the

chaotic part of the Arnold web. Panel a,b are for ε = 0.18 while c,d are for ε = 0.025.

The black points are the intersection of the orbits with section S for data set 1 (left)

and 2 (right).
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Figure 8. α = 9/4. Variation of the diffusion coefficient as a function of 1/ε for a set

of 100 orbits initially chosen along the fast drift direction (square) and for a set of 100

orbits with initial conditions chosen along the low order resonance I2 = I1/α (circles).
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Figure 9. Variation of log D as a function of 1/
√

α for 100 values of α with

0.63 < 1/
√

α < 0.7. For each value of α a set of 100 chaotic initial conditions taken

along the fast drift line I2 = I1/
√

α with 0 < I1 < π has been integrated up to t = 108

iterations. The perturbing parameter is ε = 0.05
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associated to the fast drift line has to be taken into account. To be definite, we found,

for some values of the perturbation parameter, a similar diffusion coefficient for orbits

driven by the Arnold mechanism along a low order resonance and for orbits moving

along a fast drift line coinciding with an higher order resonance. However, whatever

the order of the fast drift resonance, when decreasing ε the speed of diffusion decreases

slower on the fast drift direction than on other lines.

Finally, when
√

α ∈ R/Q we recovered the diffusion properties of the convex case,

i.e. we measured a diffusion coefficient decreasing with 1/ε faster than a power law and

in agreement with the expected exponential decay.

Appendix: The FLI method and quasi–integrable dynamics

We review the FLI method showing why it allows the detection of the geometry

of resonances of a quasi–integrable system. For simplicity we refer to the hamiltonian

case:

Hε(I, ϕ) = h(I) + εf(I, ϕ) , (.1)

where I1, . . . , In ∈ R and ϕ1, . . . , ϕn ∈ S are action–angle variables and ε is a

small parameter. For any initial condition (I(0), ϕ(0)) and any initial tangent vector

(vI(0), vϕ(0)) the Fast Lyapunov Indicator at time t is the quantity:

log ‖(vI(t), vϕ(t))‖ ,

where (vI(t), vϕ(t)) is the solution of the variational equations of (.1):

dvIj

dt
= − ε

n
∑

i=1

∂2f

∂ϕj∂Ii

vIi
− ε

n
∑

i=1

∂2f

∂ϕi∂ϕj

vϕi

dvϕj

dt
=

n
∑

i=1

∂2h

∂Ii∂Ij

vIi
+ ε

n
∑

i=1

∂2f

∂Ii∂Ij

vIi
+ ε

n
∑

i=1

∂2f

∂Ij∂ϕi

vϕi
. (.2)

In the integrable case ε = 0 the above equations are immediately integrated and the

solution is

v0
I (t) = vI(0) , v0

ϕ(t) = vϕ(0) +
∂2h

∂2I
(I(0))vI(0)t .

Therefore, the norm of the tangent vector v0(t) grows at most linearly with time.

Instead, for any ε 6= 0 the system becomes non–integrable and one does not have an

explicit analytic expression for the solutions of both the Hamiltonian and variational

equations. However, if ε is small, one can use Hamiltonian perturbation theory to

estimate the evolution of the tangent vector. Assuming that Hamiltonian (.1) satisfies

the hypotheses of the KAM and Nekhoroshev theorems (in particular we assume that

h is convex and ε is suitably small) we proved that [24]:



Diffusion and stability in perturbed non convex integrable systems 21

(i) The initial condition is on a KAM torus; then the norm ||vε(t)|| of the tangent

vector vε(t) integrated for the Hamiltonian Hε satisfies:

||vε(t)|| =

∥

∥

∥

∥

∂2h

∂2I
(I(0))vI(0)

∥

∥

∥

∥

t + O(εαt) + O(1) , (.3)

with some α > 0. The reason is that the dynamics on a KAM torus corresponds

to the dynamics given by an integrable Hamiltonian which is ε-close to the

Hamiltonian h.

(ii) The initial condition is on a regular resonant motion. We recall that a d-dimensional

lattice Λ ⊆ Zn defines a resonance through the relation: k · ∂h
∂I

= 0 for any k ∈ Λ,

or equivalently: ΠΛ
∂h
∂I

= 0 where ΠΛ denotes the Euclidean projection of a vector

onto the linear space spanned by Λ. As is usual in the Nekhoroshev theorem, we

only consider resonances related to integer lattices Λ ⊆ Zn which are generated by

d ≤ n− 1 independent integer vectors k(i), i ≤ d, with order
∣

∣k(i)
∣

∣ =
∑n

j=1

∣

∣

∣
k

(i)
j

∣

∣

∣
up

to a threshold order K which grows as 1/ε
1

2n . According to the definitions given

in [15], the resonant domain associated to a lattice Λ is a neighborhood of the

resonance defined in the following way: first we require that the action is suitably

close to the resonance through the inequality:
∥

∥

∥

∥

ΠΛ
∂h

∂I
(I(0))

∥

∥

∥

∥

≤ a0

(a1K)n−d|Λ| (.4)

(a0, a1 are suitable constants, |Λ| is the Euclidean volume of the lattice Λ), second

we require that I(0) is suitably far from the other resonances; more precisely we

require:
∥

∥

∥

∥

ΠΛ′

∂h

∂I
(I(0))

∥

∥

∥

∥

>
a0

(a1K)n−d−1|Λ′| (.5)

for any lattice Λ′ generated by d + 1 independent integer vectors of order smaller

that K (we refer to the paper [15] for details). Among resonant motions it is typical

to find both regular and chaotic ones. In particular, the presence of regular motions

is typical in the resonances related to lattices Λ of dimension d = 1, because the

normal form in that case depends only on one angle, and in resonances of higher

multiplicity d > 1 they can be found near elliptic equilibrium points, whose presence

is also typical. It is also not very restrictive to assume that in the neighborhood

of these elliptic equilibrium points the system satisfies the hypotheses of the KAM

theorem, so that we can expect that the same neighborhood is filled with a large

volume of quasi–periodic motions.

For these motions, if I∗, ϕ∗ denotes the equilibrium point and one chooses an initial

condition (I, ϕ) in the resonance with |I − I∗| ≤
√

ε% and |ϕ − ϕ∗| ≤ %, then for

any initial vector vI(0), vϕ(0) it is [24]:

||vε(t)|| = ‖CΛΠΛortvI(0)‖ t+O(εβt)+ tO(%2)+O(
√

εt)+O(
1√
ε
)(.6)
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with some β > 0, Λort being the linear space orthogonal to Λ, and CΛ a linear

operator depending on the resonant lattice Λ and on the initial action I(0). It is:

CΛ =
∂2h

∂I2
(I(0)) − ∂2h

∂I2
(I(0))

(

ΠΛ
∂2h

∂I2
(I(0))ΠΛ

)∗
ΠΛ

∂2h

∂I2
(I(0)) , (.7)

where
(

ΠΛ
∂2h
∂I2 (I(0))ΠΛ

)∗
denotes the inverse of the restriction of ∂2h

∂I2 to the linear

space spanned by Λ (which is well defined for the convexity of h).

As a consequence of (.3) and (.6), the resonance structure of the phase space can

be detected computing the FLI, with the same given v(0) and the same time interval t

on a set of regularly spaced orbits: Eq. (.3) says that it takes approximately the value

of the unperturbed case on all KAM tori; Eq. (.6) says that for suitably small ε and

% it is different at order O(1) from the unperturbed case on regular resonant motions.

In fact, the linear operator CΛΠΛort is different from the Hessian matrix of h at order

O(1), i.e. CΛΠΛort does not approach ∂2h
∂I2 as ε approaches to zero. For initial conditions

on chaotic resonant motions the FLI is higher than the value characterizing KAM tori.

In this way, we detect the presence of the resonances because the value of the FLI is

different from the uniform value assumed on the KAM tori.
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[25] E. Lega, M. Guzzo, and C. Froeschlé (2003) Detection of Arnold diffusion in Hamiltonian systems.

Physica D, 182:179–187.
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