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Energy Dissipation at Zero Viscosity
Experiments
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Simulations

K. R. Sreenivasan, Phys. Fluids 10, 528 (1998)
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Energy dissipation rate in various turbulent flows seems to remain
positive as Reynolds number tends to infinity.



- Tt has been shown by v. Karman that if the surface stress in a pipe is
u«expressed in the form 7= gv,? then

U-U_; ) : s
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where U, is the maximum velocity in the middle of the pipe and U is the
velocity at radius 7. This relationship is associated with the conception
that the Reynolds’s stresses are proportional to the squares of the turbulent Geoffrey Ingram
components of velocity. It seems that the rate of dissipation of energy Taylor (1886-1975)
1n such a system must be proportional, so far as changes in linear dimen-
sions, velocity, and density are concerned, to cu'®/l, where [ is some linear
dimension defining the scale of the system.

Taylor, “Statistical Theory of Turbulence” (1935)

Non-vanishing of mean dissipation at infinite
Reynolds number was a fundamental hypothe- Andrei Nikolaevich

sis of the Kolmogorov similarity theory (1941). Kolmogorov (1903-1987)



High-Reynolds Asymptotics

As suggested by G. I. Taylor (1935),
turbulent energy dissipation ¢ scales as

e~U3/L,

where U is rms velocity and L is the
integral length, so that

D(Re) = —D,>0

U3/L
as Re — oo. E.g. the compilation of
DNS data of Y. Kaneda et al. (2003):

Phys. Fluids, Vol. 15, No. 2, February 2003
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FIG. 3. Normalized energy dissipation rate D versus R, from Ref. 5 (data
up to R, =250), Ref. 3 (A,®), and the present DNS databases (H.A).



Lars Onsager (1903-1976)

For an in-depth historical discussion,
see Eyink & Sreenivasan (2006).

“It is of some interest to note that
in principle, turbulent dissipation as
described could take place just as
readily without the final assistance
by viscosity. In the absence of vis-
cosity, the standard proof of the
conservation of energy does not ap-
ply, because the velocity field does
not remain differentiable! In fact it
is possible to show that the veloc-
ity field in such “ideal” turbulence
cannot obey any LIPSCHITZ con-
dition of the form

(26) |v(@'+r)—v(r")| < (const.)r"

for any order n greater than 1/3;
otherwise the energy is conserved.
Of course, under the circumstances,
the ordinary formulation of the laws
of motion in terms of differential
equations becomes inadequate and
must be replaced by a more general
description...

“Statistical Hydrodynamics” (1949)



Effective “Coarse-Grained” Equations
Starting with the incompressible Navier-Stokes equation
ou+ (u-V)(u=-Vp4+rvrAu, V-u=0
the proof of Onsager’s theorem (following Constantin, E & Titi (1994), Eyink
(1995)) considers a coarse-grained (low-pass filtered) velocity

w(x) = /dr Go(r)u(x +r).
This yields effective equations at a continuum of length-scales ¢ :
oy + V-[uu, + 1] =-Vpp+vAuw, Vua,=0
where 7, is the subscale stress tensor
= @U®u), -,

from the eliminated modes.

This is similar to what is called Wilson-Kadanoff renormalization group (RG).
The same approach is used in Large-Eddy Simulation (LES) of turbulent flow,
where a closure equation is employed for the stress tensor 7.



Inertial Range at High-Reynolds-Number

A simple estimate of the viscous diffusion term is

lv A @l|2 < (const.)(v/€2)]ull2

T
a2 = / dt / dx [u(x, 1)
0

is (twice) the time-average Kinetic energy. Thus, this term is negligible for
small v or large ¢ (irrelevant) and can be dropped.

where

Simpler effective equations result for the inertial-range of length-scales /4.
oy + V-[ua, + 1] = -Vpp, Vu, =0
retaining only the contributions from the nonlinearity.

E.g., these hold if the Navier-Stokes solution (u” for viscosity v) converges

u’ — u in L? norm as v — 0, i.e. the residual energy in u — u” vanishes.



Large-Scale Energy Balance

Large-scale energy density (per mass)

1—2
ey = —(Uu
¢ 2| ]

satisfies a local balance equation
oey+ VI, = —Iy
where
Je = (er + Pe)up + g7y
IS space transport of large-scale energy and
My = —Vuery

is the rate of work of the large-scale velocity-gradient against the small-scale
stress, or “deformation work” (Tennekes & Lumley, 1972).

Turbulent energy cascade is the dynamical transfer of kinetic energy from

large-scales to small-scales via the “energy flux” M, through the inertial-range.



Onsager’s Basic Estimate

Onsager realized that energy flux I, depends only upon velocity-increments

ou(x;r) =u(x+r) —u(x).
In particular,
T) = /dr Go(r)éu(r) ® du(r) — /dr Go(r)ou(r) ® /dr Gy(r)du(r)
and

Vu, = —(1/6)/dr (VG)(r)du(r)

Essentially,
N, = O(|ou(e)[>/0).

It is then easy to see, for example, that

Me(x,t) = O(£*7)

if u(t) € C*(x), i.e. if |du(x;r)| = O((r*), and MNy(x,t) — 0 for a > 1/3.



Inviscid Dissipation Requires Singularities

The converse: to explain the observed en-
ergy dissipation requires a < 1/3 in the infinite
Reynolds number limit. Onsager’s prediction
of such (near) singularities has been confirmed
by experiment and simulation:

J. F. Muzy et al. , Phys. Rev. Lett. 67, 3515
(1991)

A. Arneodo et al. , Physica A 213, 232 (1995)
P. Kestener and A. Arneodo, Phys. Rev. Lett.
93, 044501 (2004)

A great triumph of pure intellect!
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Singular Euler Solutions

All the above considerations apply to a non-smooth velocity field u that
satisfies the incompressible Euler equations

ou+ (u-V) u=-Vp, V-u=0

in the sense of distributions. That is, the equations are meaningful when
smeared with smooth test functions .

E.g. if u € L3, then energy balance holds in the form

OGP + V- | Gl + )| = ~D(w

where the distribution D(u) is defined by D(u) = lim,_q Ny, or, alternatively,

D) =1im - [ dr (V6),(): [Bu()ou)].

See Duchon & Robert (2000). This is Onsager’s dissipative anomaly.
If a smooth Navier-Stokes solution u¥ — u in L3 norm, then furthermore
D(u) = Iin?)u|Vu”|2 > 0.

This is the multifractal measure studied, e.g. by Meneveau & Sreenivasan.



PROOF: Using a smooth point-splitting regularization of the energy density

ey lu-ﬁg = l/allr Ge(r)u(x,t)-u(x+r,t)

2 2
gives a local energy balance identity

orci + - i+ S+ pu) + 5 (0~ uPr) | =~ i
with
Di(w) = o [ dr (VE)0)- [pu)|su(e)?]
Take the limit £ — O.

* This was Onsager’'s own proof! The above identity (in a space-integrated
form) was communicated by Onsager to C. C. Lin in a letter in 1945. See
Evink & Sreenivasan (2006).

* This is a local form of the Kolmogorov 4/5-law, derived with no assumptions
of homogeneity or isotropy, nor any statistical averaging. See Duchon &
Robert (2000), Eyink (2003).



Open PDE Questions on Dissipative Euler Solutions

Nearly everything! Existence, uniqueness & regularity are all essentially open.

Existence

Shnirelman (2000) has constructed an example of a u € L? in 3D which is a
distributional solution of the Euler equations for which

1
E(t) = 5/dx|u(x, )|
iIS monotone decreasing in time.

However, this solution is not obtained from a Leray solution u” of the Navier-
Stokes equation in the limit v — 0.

It also lacks the regularity expected of a turbulent solution (below).



Zero-Viscosity Limit

Zero-viscosity limits of Navier-Stokes solutions have only been shown to exist
and to give "Euler solutions” in some more generalized sense.

DiPerna & Majda (1987) show, roughly speaking, that u” converges weakly
(along a suitable subsequence) to a Young measure Py :(du) which is a measure-
valued Euler solution, i.e.

O(W)x, + V{uu)x: = —Vp(x,t)
for some distribution p, where (-)x: is average with respect to Px;:.

P.-L. Lions (1996) defines u € L?, V-u = 0 to be a dissipative Euler solution
if fdx%|u(t) — v(t)|? satisfies a suitable upper bound for all “nice” v with
Vv = 0. Lions proves that ‘dissipative solutions” coincide with classical
Euler solutions, when those exist, and can always be obtained as suitable

weak limits of Leray solutions u” as v — 0 (along a subsequence).



Uniqueness
Distributional Euler solutions are not unique!

Scheffer (1993) has constructed a 2D solution u € L? with compact support in
spacetime: with initial condition ug = 0 the solution u has nontrivial evolution
and then comes again to rest in finite time! A unique classical solution exists
for all time (u = 0) but many other pathological “Euler solutions” in the sense
of distributions exist as well.

See also Shnirelman (1997). de Lellis & Székelyhidi, Jr. (2007) show that
such weird solutions with compact spacetime support exist even with more
regularity, u,p € L*>, for any dimension d.

Question: Is there a natural selection criterion to guarantee uniqueness? A
notion of viscosity solution? An entropy principle? Physics suggests some
intriguing possibilities....



Regularity

Experimental measurements and simulations of high Reynolds-number turbu-
lence show that, for all p > 1 and r in the inertial-range n < r < L

(|5u(e)[P) /P ~ 7
for some 0 < oy, < 1, i.e. multifractal scaling.

This suggests that Euler solutions relevant to infinite-Reynolds turbulence
have u € B}?, where B; is the so-called Besov space consisting of u € LP with

ou(r)||7»
cup 1@l
r<n  |r|®

No PDE theory of such solutions exist.

Constantin, E, Titi (1994) generalized Onsager’s result to show that Euler
solutions with u € B} for p > 3 and s > 1/3 will conserve energy.

Turbulent solutions of Euler appear to have the least degree of singularity
consistent with positive dissipation. This suggests a generalized “energy
estimate” to prove regularity....



2D Enstrophy Cascade

Smooth solutions of 2D Euler conserve also the enstrophy:

Q(t) = %/dzxwz(x,t).

It was suggested by Kraichnan (1967) and Batchelor (1969) that there can
be a forward cascade of enstrophy in 2D (and an inverse cascade of energy!)

The “coarse-grained” 2D Euler equation in vorticity form is
Oy + V- [uo, + o] =0

where o, = (uw), — wsw, is the turbulent vorticity transport. The large-scale
vorticity does not move with the large-scale velocity, but has a relative “drift
velocity” Auy = O‘g/wg.

The large-scale enstrophy density n, = (1/2)|w,|? satisfies the balance:

ome + V-[niay + weoy) = — 2, Zy = —Vuwpoy

Enstrophy suffers “ideal dissipation” when the the enstrophy transport oy
tends to be down the vorticity-gradient V,, or oy o« —Vwy.



Anomalous Dissipation of Enstrophy?

Since the enstrophy flux satisfies an “Onsager-type” bound
Zy = O(|6u(£) /£]%) = O(J6w(O)?),

very modest smoothness of w implies limy,_oZ, = 0. E.g. if the vorticity is
Holder continuous, w € C? for any small s > 0, then enstrophy is conserved.

In fact, using the DiPerna & Lions (1989) theory of “renormalized solutions,”
it can be shown that any solution of 2D Euler equations with finite enstrophy
must conserve enstrophy! See Lions (1996), Eyink (2000), Lopes-Filho,
Mazzucato & Nussenzveig-Lopes (2006).

Note that the Kraichnan-Batchelor theory predicts an enstrophy spectrum
Q(k) ~ k~1 (with log-correction) having infinite total enstrophy as v — 0.

Much more is known in 2D about existence, zero-viscosity limit, uniqueness

and regularity of Euler solutions than in 3D.



3D Helicity Cascade

Smooth solutions of 3D Euler conserve also the helicity:

H(t) = /d3xw(x, t)-u(x,t),

as noted by J. J. Moreau (1961), H. K. Moffatt (1969). Brissaud et al.
(1973) proposed that in reflection-nonsymmetric turbulence there should be
a forward cascade of helicity, coexisting with the forward energy cascade.

Using the “coarse-grained” vorticity equation in 3D
Owy = Vx(uyXw, + f;)

where f, = —V.7r, is the turbulent (subscale) force, one derives a balance
equation for the large-scale helicity density hy = uy,-wy

Othe + V-[hiay + (pr — er)wy + ueXf)] = -/
with scale-to-scale helicity flux

Ny = —2w,-1,.



Mechanism of Helicity Cascade

The component of the turbulent force
f, parallel to w, accelerates fluid about
closed vortex loops L, generating cir-
culation around them. Vorticity-flux is
thus created through the vortex-loop.

According to a theorem of Arnold (1986), vorter loop L
helicity H is the average self-linking
number of the vortex-lines.



Anomalous Dissipation of Helicity?

The helicity flux can easily be shown to satisfy an “Onsager bound”
N = —2w-f, = O(|6u(0)|3/6?).
This suggests conservation if du(f) ~ £ with s > 2/3.

Cheskidov et al. (2007) have proved that helicity is conserved for any distri-
butional solution of 3D Euler with u € B§n H'Y/? for s > 2/3, improving an
earlier result of Chae (2003).

More regularity is required for conservation of helicity than of energy. These
results are consistent with constant helicity flux coexisting with constant
energy flux in a k—5/3-type inertial range.

Note that Cheskidov et al. (2007) in fact prove somewhat sharper results,
and also improve slightly upon earlier results for energy conservation in any

dimension and enstrophy conservation in 2D.



Cascade of Circulations?
Large-scale circulation:

r(C,t) =]{ ﬁe(t)'dx=/ w(t)-dS
Cu(t) Su(t)

where C,(t) and S,(t) are advected by u,, which generates a flow of diffeo-
morphisms with u € L?. Then the balance holds:

(d/dt)T,(C,t) =7{ f;(t) dx

C(t)
where

£, = (uXw), —uyxwy, =1, + Vk,

is the turbulent vortex-force and k, = (1/2)Tr 1, is the subgrid kinetic energy.

Define loop-torque K,(C) = — ¢, f;-dx (or with f; — f;). If velocity u € C* and
L(C) is the length of C

|K,(C)| < (const.)L(C)e2e1

See Eyink (2006). The key estimate on the vortex-force is that f, = O(|du(£)|?/£).
This allows violation of Kelvin Theorem in the inertial range, if a < 1/2.



Energy Dissipation and Kelvin Theorem

But conservation of circulations and the Helmholtz laws of vortex motion are
believed to be essential for turbulent energy dissipation in 3D! For example,

“Two-dimensional convection, which merely redistributes vorticity, cannot account
for the rapid dissipation which one observes. However, as pointed out by G.
I. TAYLOR [7], convection in three dimensions will tend to increase the total
vorticity. Since the circulation of a vortex tube is conserved, the vorticity will
increase whenever a vortex tube is stretched. Now it is very reasonable to expect
that a vortex line —or any line which is deformed by the motion of the liquid—
will tend to increase in length as a result of more or less haphazard motion. This
process tends to make the texture of the motion ever finer, and greatly accelerates
the viscous dissipation.” —L. Onsager, “Statistical Hydrodynamics” (1949)

See also Taylor & Green (1937), going back to Taylor (1917). Nevertheless,
the Kelvin Theorem is unlikely to hold in its usual form as v — 0O, since:

(1) The K41 exponent a = 1/3 is less than than the 1/2 required for vanishing
of the vortex force ff as £ — 0, and

(2) Loops C(t) advected by the rough velocity field should become fractal,
and thus L(Cy(t)) — oo as £ — 0.



Circulation-Cascade:
Numerical Results

(a) PDF and (b) RMS of the subscale
loop-torque K,(C) for square loops C
of edge-length 64 in 10243 DNS of

forced 3D hydrodynamic turbulence. ost (b)y R
(S Chen et al., PRL, 2006) 0.2F R=128 3
. = v,/v'—‘v’——v_v\v\y
S N 2;3; p—BE—A ]
PDF & RMS of subscale torque are & %' —— B=1® PO

A
nearly independent of k. = 27 /£ in the %
turbulent inertial-range: the cascade

of circulations is persistent in scalel
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Breakdown of the Helmholtz Laws

The turbulent vortex force may be decomposed into components longitudinal
and transverse to vortex lines:

fr = oy + (Auy) Xwy
where
o = wpfi/[we)?, Auy = wpxf/|w,)?
We have seen that the longitudinal force is responsible for helicity cascade

and is a hydrodynamic analogue of the MHD «-effect (cf. Frisch, She &
Sulem, 1987).

The transverse part corresponds to a ‘“drift” of the vortex-lines through the
background turbulence, with relative velocity Auy. The transverse force can
be interpreted as a turbulent Magnus force associated to this motion.

Note that, formally,
oy ~ Auy ~ du(f) — 0

as ¢ — 0. Is there any sense in which the Kelvin-Helmholtz results can be valid
in the infinite-Reynolds inertial range?



Spontaneous Stochasticity

Another complication: Lagrangian trajectories are expected to be non-unique
and stochastic for a fixed realization of a rough (H&lder) velocity field!

This was discovered by Bernard, Gawedzki & Kupiainen (1998) in the Kraich-
nan model of random advection and rigorously proved there by Ledan &
Raimond (2002). Physically, this corresponds to Richardson diffusion.

For a smooth ¢, with supp ¢, C B(0, p), bounded, continuous v, and ¢t > to :

limlim [ dro ¢p(r0) (€, (x0 + 10)) =/Pu(dx,t|xo,to)¢(x).

p—0 f—

Here £, is the smooth flow generated by u.



A “Martingale” Hypothesis

In the Kraichnan model of random advection,
0:0 + (uoV)6 = 0, V-u=20

the unique dissipative solution is represented by averaging over this random
ensemble of (backward) Lagrangian characteristics:

0(x,t) = /Px,t(dx’|u)6’(x’(t’),t’).

This implies that, for t > ¢/,

/dx|9(x,t)|2 < /dx|0(x, 2.

The analogous conjecture for circulations is that, for ¢t > ¢/,

r(C,t) = /P(;,t(dC’|u)I_(C’(t’),t’).

See Eyink (2006, 2007). The circulations may be conserved on average by a
generalized Euler flow (roughly in the sense of Brenier (1989)).



Classical Josephson-Anderson Relation: Pipe Flow

The vorticity transport of the azimuthal vorticity wy in the radial direction r
o0 = (UXw — vV Xw),
has constant (negative) mean

(8/8T)<O'7«9> = O,
which, multiplied by mean mass flux J, is energy dissipation per pipe length:

/L) [ av pe=Jlow)
pipe

a classical analogue of the Josephson-Anderson relation in superfluids, relating
cross-stream transport of vorticity and energy dissipation. See Anderson
(1966), Huggins (1970), and—also—Taylor (1932)!

Energy dissipation in realistic inhomogeneous turbulent flows often requires
organized motion of vorticity!



Conclusion

* If Onsager was correct, then the fundamental inertial-range dynamics of
turbulent flow is given by singular solutions of the Euler fluid equations.
Observational evidence and rigorous results are consistent with the idea.

* This subject is therefore of interest not only to mathematicians, but also to
experimentalists and simulators. The foundations of the subject are empirical,
and further laboratory and numerical investigations are necessary to shed light
on many difficult and basic questions, still beyond the scope of analysis.

* In particular, a major open problem is how to relate turbulent dissipation
of energy, precisely, to the inviscid motion of vortex lines.

* Leonhard Euler would doubtless be delighted to see that his equations are
of vital interest to the problem of turbulence and remain at the forefront of

engineering, physics and mathematics.



