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Energy Dissipation at Zero Viscosity

Experiments

H. L. Dryden, Q. Appl. Maths 1, 7 (1943)
K. R. Sreenivasan, Phys. Fluids 27, 1048 (1984)
O. Cadot et al. Phys. Rev. E 56, 427 (1997)
R. B. Pearson et al. Phys. Fluids 14, 1288 (2002)

Simulations

K. R. Sreenivasan, Phys. Fluids 10, 528 (1998)

Y. Kaneda et al., Phys. Fluids 15, L21 (2003)

Energy dissipation rate in various turbulent flows seems to remain

positive as Reynolds number tends to infinity.



Taylor, “Statistical Theory of Turbulence” (1935)

Non-vanishing of mean dissipation at infinite

Reynolds number was a fundamental hypothe-

sis of the Kolmogorov similarity theory (1941).

Geoffrey Ingram

Taylor (1886-1975)

Andrei Nikolaevich

Kolmogorov (1903-1987)



High-Reynolds Asymptotics

As suggested by G. I. Taylor (1935),
turbulent energy dissipation ε scales as

ε ∼ U3/L,

where U is rms velocity and L is the
integral length, so that

D(Re) =
ε

U3/L
→ D∗ > 0

as Re → ∞. E.g. the compilation of

DNS data of Y. Kaneda et al. (2003):

Run 2048-1. Figure 4 shows !(k) at various times in Run
2048-1. The range over which !(k) is nearly constant is
quite wide; it is wider than the flat range of the correspond-

ing compensated-energy-spectrum "see Fig. 5#. The station-
arity is also much better than that of lower resolution DNSs

"figures omitted#, and !(k)/$%& is close to 1. In the study of
the universal features of small-scale statistics of turbulence,

if there are any, it is desirable to simulate or realize an iner-

tial subrange exhibiting "i#–"iii# rather than "i#– "iii#. The
present results suggest that a resolution at the level of Run

2048-1 is required for such a simulation. Such DNSs are

expected to provide valuable data for the study of turbulence,

and in particular for improving our understanding of possible

universality characteristics in the inertial subrange.

These considerations motivate us to revisit another

simple but fundamental question of turbulence: ‘‘Does the

energy spectrum E(k) in the inertial subrange follow Kol-

mogorov’s k!5/3 power law at large Reynolds numbers?’’

Figure 5 shows the compensated energy spectrum for the

present DNSs "the data were plotted in a slightly different
manner in our preliminary report4#. From the simulations

with up to N"1024, one might think that the spectrum in the
range given by

E"k #"K0%
2/3k!5/3 "1#

with the Kolmogorov constant K0"1.6–1.7 is in good

agreement with experiments and numerical simulations "see,
for example, Refs. 1, 3, 9, and 10#. However, Fig. 5 also
shows that the flat region, i.e., the spectrum as described by

"1#, of the runs with N"2048 and 4096 is not much wider
than that of the lower resolution simulations. The higher

resolution spectra suggest that the compensated spectrum is

not flat, but rather tilted slightly, so that it is described by

E"k #'%2/3k!5/3!(k, "2#

with (k)0.
The detection of such a correction to the Kolmogorov

scaling, if it in fact exists, is difficult from low-resolution

DNS databases. The least square fitting of the data of the

40963 resolution simulation for (d/d log k)logE(k) to

(!5/3!(k)log k#b (b is a constant# in the range 0.008
$k*$0.03 gives (k"0.10. The slope with (k"0.10 is
shown in Fig. 5.

It may be of interest to observe the scaling of the second

order moment of velocity, both in wavenumber and physical

space. For this purpose, let us consider the structure function

S2"r#"$!v"x#r,t #!v"x,t #!2&,

where S2 may, in general, be expanded in terms of the

spherical harmonics as

S2"r#" +
n"0

,

+
m"!n

n

f nm"r #Pn
m"cos -#eim..

Here, r"!r! and -,. are the angular variables of r in spheri-
cal polar coordinates, Pn

m is the associated Legendre polyno-

mial of order n ,m , and f nm(" f n ,!m
* ) is a function of only r ,

where the asterisk denotes the complex conjugate. The time

argument is omitted. For S2 satisfying the symmetry S2(r)

"S2(!r), we have f km"0 for any odd integer k . In strictly
isotropic turbulence, f nm must be zero not only for odd n ,

but also for any n and m except n"m"0. However, our
preliminary analysis of the DNS data suggests that the an-

isotropy is small but nonzero. In such cases, f nm is also small

but nonzero, and S2 itself may not be a good approximation

for f 0" f 00 . To improve the approximation for f 0 , one

might, for example, take the average of S2 over r/r

FIG. 3. Normalized energy dissipation rate D versus R/ from Ref. 5 "data
up to R/"250), Ref. 3 "!,"#, and the present DNS databases "#,$#.

FIG. 4. !(k)/$%& obtained from Run 2048-1.

FIG. 5. Compensated energy spectra from DNSs with "A# 5123, 10243, and
"B# 20483, 40963 grid points. Scales on the right and left are for "A# and "B#,
respectively.
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Lars Onsager (1903-1976)

For an in-depth historical discussion,

see Eyink & Sreenivasan (2006).

“It is of some interest to note that
in principle, turbulent dissipation as
described could take place just as
readily without the final assistance
by viscosity. In the absence of vis-
cosity, the standard proof of the
conservation of energy does not ap-
ply, because the velocity field does
not remain differentiable! In fact it
is possible to show that the veloc-
ity field in such “ideal” turbulence
cannot obey any LIPSCHITZ con-
dition of the form

(26) |v(r′+r)−v(r′)| < (const.)rn

for any order n greater than 1/3;
otherwise the energy is conserved.
Of course, under the circumstances,
the ordinary formulation of the laws
of motion in terms of differential
equations becomes inadequate and
must be replaced by a more general
description...

“Statistical Hydrodynamics” (1949)



Effective “Coarse-Grained” Equations

Starting with the incompressible Navier-Stokes equation

∂tu + (u·∇)u = −∇p+ ν 4 u, ∇·u = 0

the proof of Onsager’s theorem (following Constantin, E & Titi (1994), Eyink
(1995)) considers a coarse-grained (low-pass filtered) velocity

u`(x) =

∫
dr G`(r)u(x + r).

This yields effective equations at a continuum of length-scales ` :

∂tu` + ∇·[u`u` + τ `] = −∇p` + ν 4 u`, ∇·u` = 0

where τ ` is the subscale stress tensor

τ ` = (u⊗ u)` − u` ⊗ u`,

from the eliminated modes.

This is similar to what is called Wilson-Kadanoff renormalization group (RG).

The same approach is used in Large-Eddy Simulation (LES) of turbulent flow,

where a closure equation is employed for the stress tensor τ `.



Inertial Range at High-Reynolds-Number

A simple estimate of the viscous diffusion term is

‖ν 4 u`‖2 ≤ (const.)(ν/`2)‖u‖2
where

‖u‖22 =

∫ T

0
dt

∫
dx |u(x, t)|2

is (twice) the time-average kinetic energy. Thus, this term is negligible for
small ν or large ` (irrelevant) and can be dropped.

Simpler effective equations result for the inertial-range of length-scales `:

∂tu` + ∇·[u`u` + τ `] = −∇p`, ∇·u` = 0

retaining only the contributions from the nonlinearity.

E.g., these hold if the Navier-Stokes solution (uν for viscosity ν) converges

uν → u in L2 norm as ν → 0, i.e. the residual energy in u− uν vanishes.



Large-Scale Energy Balance

Large-scale energy density (per mass)

e` =
1

2
|u`|2

satisfies a local balance equation

∂te` + ∇·J` = −Π`

where

J` = (e` + p`)u` + u`·τ `
is space transport of large-scale energy and

Π` = −∇u`:τ `

is the rate of work of the large-scale velocity-gradient against the small-scale
stress, or “deformation work” (Tennekes & Lumley, 1972).

Turbulent energy cascade is the dynamical transfer of kinetic energy from

large-scales to small-scales via the “energy flux” Π` through the inertial-range.



Onsager’s Basic Estimate

Onsager realized that energy flux Π` depends only upon velocity-increments

δu(x; r) ≡ u(x + r)− u(x).

In particular,

τ ` =

∫
dr G`(r)δu(r)⊗ δu(r)−

∫
dr G`(r)δu(r)⊗

∫
dr G`(r)δu(r)

and

∇u` = −(1/`)

∫
dr (∇G)`(r)δu(r)

Essentially,

Π` = O(|δu(`)|3/`).

It is then easy to see, for example, that

Π`(x, t) = O(`3α−1)

if u(t) ∈ Cα(x), i.e. if |δu(x; r)| = O(rα), and Π`(x, t) → 0 for α > 1/3.



Inviscid Dissipation Requires Singularities

The converse: to explain the observed en-
ergy dissipation requires α ≤ 1/3 in the infinite
Reynolds number limit. Onsager’s prediction
of such (near) singularities has been confirmed
by experiment and simulation:

J. F. Muzy et al. , Phys. Rev. Lett. 67, 3515
(1991)
A. Arneodo et al. , Physica A 213, 232 (1995)
P. Kestener and A. Arneodo, Phys. Rev. Lett.
93, 044501 (2004)

A great triumph of pure intellect!

!!q" # $C0 $ C1q$ C2q2=2;

D!h" # C0 $ !h% C1"2=2C2:
(7)

Both fields are found singular almost everywhere: Cv
0 #

$!v!q# 0" #Dv!q# 0" # 3:02& 0:02 and C!
0 # 3:01&

0:02. The most frequent Hölder exponent h!q # 0" #
$C1 [corresponding to the maximum of D!h"] takes the
value $Cv

1 ’ $C!
1 % 1 # 0:34& 0:02. Indeed, this esti-

mate is much closer to the K41 prediction h # 1=3 [1]
than previous experimental measurements (h #
0:39& 0:02) based on the analysis of longitudinal veloc-
ity fluctuations [19]. Consistent estimates are obtained for
C2 [which characterizes the width of D!h"]: Cv

2 #
0:049& 0:003 and C!

2 # 0:055& 0:004. Note that these
values are much larger than the experimental estimate
C2 # 0:025& 0:003 derived for 1D longitudinal velocity
increment statistics [19]. Actually they are comparable to
the value C2 # 0:040 extracted from experimental trans-
verse velocity increments [19(b)].

To conclude, we have generalized the WTMM method
to vector-valued random fields. Preliminary applications
to DNS turbulence data have revealed the existence of an
intimate relationship between the velocity and vorticity
3D statistics that turn out to be significantly more inter-
mittent than previously estimated from 1D longitudinal

velocity increments statistics. This new methodology
looks very promising to many extents. Thanks to the
SVD, one can focus on fluctuations that are locally con-
fined in 2D (mini"i # 0) or in 1D (the two smallest "i are
zero) and then simultaneously proceed to a multifractal
and structural analysis of turbulent flows. The investiga-
tion along this line of vorticity sheets and vorticity fila-
ments in DNS is in current progress.

We are very grateful to E. Lévêque for allowing us to
have access to his DNS data and to the CNRS under GDR
turbulence.
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FIG. 4. Multifractal analysis of Lévêque DNS velocity (!)
and vorticity (') fields (d # 3, 18 snapshots) using the ten-
sorial 3D WTMM method; the symbols (") correspond to a
similar analysis of vector-valued fractional Brownian motions,
BH#1=3. (a) log2Z!q; a" vs log2a; (b) h!!q; a" vs log2a and
hv!q; a" $ log2a vs log2a; the solid and dashed lines correspond
to linear regression fits over 21:5"W & a & 23:9"W . (c) !v!q",
!!!q", and !B1=3 !q" vs q; (d) Dv!h% 1", D!!h" vs h; the dashed
lines correspond to log-normal regression fits with the parame-
ter values Cv

2 # 0:049 and C!
2 # 0:055; the dotted line is the

experimental singularity spectrum (C$vk
2 # 0:025) for 1D lon-

gitudinal velocity increments [19].
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Singular Euler Solutions

All the above considerations apply to a non-smooth velocity field u that
satisfies the incompressible Euler equations

∂tu + (u·∇)u = −∇p, ∇·u = 0

in the sense of distributions. That is, the equations are meaningful when
smeared with smooth test functions ϕ.

E.g. if u ∈ L3, then energy balance holds in the form

∂t(
1

2
|u|2) + ∇·

[
(
1

2
|u|2 + p)

]
= −D(u)

where the distribution D(u) is defined by D(u) = lim`→0 Π`, or, alternatively,

D(u) = lim
`→0

1

4`

∫
dr (∇G)`(r)·

[
δu(r)|δu(r)|2

]
.

See Duchon & Robert (2000). This is Onsager’s dissipative anomaly.

If a smooth Navier-Stokes solution uν → u in L3 norm, then furthermore

D(u) = lim
ν→0

ν|∇uν|2 ≥ 0.

This is the multifractal measure studied, e.g. by Meneveau & Sreenivasan.



PROOF: Using a smooth point-splitting regularization of the energy density

e∗` ≡
1

2
u·u` =

1

2

∫
drG`(r)u(x, t)·u(x + r, t)

gives a local energy balance identity

∂te
∗
` + ∇·

[
e∗`u +

1

2
(p`u + pu`) +

1

2

(
(|u|2u)` − |u|2`u

)]
= −D`(u)

with

D`(u) =
1

4`

∫
dr (∇G)`(r)·

[
δu(r)|δu(r)|2

]
.

Take the limit `→ 0.

* This was Onsager’s own proof! The above identity (in a space-integrated
form) was communicated by Onsager to C. C. Lin in a letter in 1945. See
Eyink & Sreenivasan (2006).

* This is a local form of the Kolmogorov 4/5-law, derived with no assumptions

of homogeneity or isotropy, nor any statistical averaging. See Duchon &

Robert (2000), Eyink (2003).



Open PDE Questions on Dissipative Euler Solutions

Nearly everything! Existence, uniqueness & regularity are all essentially open.

Existence

Shnirelman (2000) has constructed an example of a u ∈ L2 in 3D which is a
distributional solution of the Euler equations for which

E(t) =
1

2

∫
dx |u(x, t)|2

is monotone decreasing in time.

However, this solution is not obtained from a Leray solution uν of the Navier-
Stokes equation in the limit ν → 0.

It also lacks the regularity expected of a turbulent solution (below).



Zero-Viscosity Limit

Zero-viscosity limits of Navier-Stokes solutions have only been shown to exist
and to give “Euler solutions” in some more generalized sense.

DiPerna & Majda (1987) show, roughly speaking, that uν converges weakly
(along a suitable subsequence) to a Young measure Px,t(du) which is a measure-
valued Euler solution, i.e.

∂t〈u〉x,t + ∇〈uu〉x,t = −∇p(x, t)

for some distribution p, where 〈·〉x,t is average with respect to Px,t.

P.-L. Lions (1996) defines u ∈ L2, ∇·u = 0 to be a dissipative Euler solution

if
∫
dx 1

2
|u(t) − v(t)|2 satisfies a suitable upper bound for all “nice” v with

∇·v = 0. Lions proves that “dissipative solutions” coincide with classical

Euler solutions, when those exist, and can always be obtained as suitable

weak limits of Leray solutions uν as ν → 0 (along a subsequence).



Uniqueness

Distributional Euler solutions are not unique!

Scheffer (1993) has constructed a 2D solution u ∈ L2 with compact support in
spacetime: with initial condition u0 ≡ 0 the solution u has nontrivial evolution
and then comes again to rest in finite time! A unique classical solution exists
for all time (u ≡ 0) but many other pathological “Euler solutions” in the sense
of distributions exist as well.

See also Shnirelman (1997). de Lellis & Székelyhidi, Jr. (2007) show that
such weird solutions with compact spacetime support exist even with more
regularity, u, p ∈ L∞, for any dimension d.

Question: Is there a natural selection criterion to guarantee uniqueness? A

notion of viscosity solution? An entropy principle? Physics suggests some

intriguing possibilities....



Regularity

Experimental measurements and simulations of high Reynolds-number turbu-
lence show that, for all p ≥ 1 and r in the inertial-range η � r � L

〈|δu(r)|p〉1/p ∼ rσp

for some 0 < σp < 1, i.e. multifractal scaling.

This suggests that Euler solutions relevant to infinite-Reynolds turbulence
have u ∈ Bσp

p , where Bs
p is the so-called Besov space consisting of u ∈ Lp with

sup
|r|<L

‖δu(r)‖Lp

|r|s
<∞.

No PDE theory of such solutions exist.

Constantin, E, Titi (1994) generalized Onsager’s result to show that Euler
solutions with u ∈ Bs

p for p ≥ 3 and s > 1/3 will conserve energy.

Turbulent solutions of Euler appear to have the least degree of singularity

consistent with positive dissipation. This suggests a generalized “energy

estimate” to prove regularity....



2D Enstrophy Cascade

Smooth solutions of 2D Euler conserve also the enstrophy:

Ω(t) =
1

2

∫
d2xω2(x, t).

It was suggested by Kraichnan (1967) and Batchelor (1969) that there can
be a forward cascade of enstrophy in 2D (and an inverse cascade of energy!)

The “coarse-grained” 2D Euler equation in vorticity form is

∂tω` + ∇·[u`ω` + σ`] = 0

where σ` = (uω)` − u`ω` is the turbulent vorticity transport. The large-scale
vorticity does not move with the large-scale velocity, but has a relative “drift
velocity” ∆u` = σ`/ω`.

The large-scale enstrophy density η` = (1/2)|ω`|2 satisfies the balance:

∂tη` + ∇·[η`u` + ω`σ`] = −Z`, Z` = −∇ω`·σ`

Enstrophy suffers “ideal dissipation” when the the enstrophy transport σ`

tends to be down the vorticity-gradient ∇ω`, or σ` ∝ −∇ω`.



Anomalous Dissipation of Enstrophy?

Since the enstrophy flux satisfies an “Onsager-type” bound

Z` = O(|δu(`)/`|3) = O(|δω(`)|3),
very modest smoothness of ω implies lim`→0Z` = 0. E.g. if the vorticity is
Hölder continuous, ω ∈ Cs for any small s > 0, then enstrophy is conserved.

In fact, using the DiPerna & Lions (1989) theory of “renormalized solutions,”
it can be shown that any solution of 2D Euler equations with finite enstrophy
must conserve enstrophy! See Lions (1996), Eyink (2000), Lopes-Filho,
Mazzucato & Nussenzveig-Lopes (2006).

Note that the Kraichnan-Batchelor theory predicts an enstrophy spectrum
Ω(k) ∼ k−1 (with log-correction) having infinite total enstrophy as ν → 0.

Much more is known in 2D about existence, zero-viscosity limit, uniqueness

and regularity of Euler solutions than in 3D.



3D Helicity Cascade

Smooth solutions of 3D Euler conserve also the helicity:

H(t) =

∫
d3xω(x, t)·u(x, t),

as noted by J. J. Moreau (1961), H. K. Moffatt (1969). Brissaud et al.
(1973) proposed that in reflection-nonsymmetric turbulence there should be
a forward cascade of helicity, coexisting with the forward energy cascade.

Using the “coarse-grained” vorticity equation in 3D

∂tω` = ∇×(u`×ω` + f`)

where f` = −∇·τ ` is the turbulent (subscale) force, one derives a balance
equation for the large-scale helicity density h` = u`·ω` :

∂th` + ∇·[h`u` + (p` − e`)ω` + u`×f`] = −Λ`

with scale-to-scale helicity flux

Λ` = −2ω`·f`.



Mechanism of Helicity Cascade

The component of the turbulent force
f` parallel to ω` accelerates fluid about
closed vortex loops L, generating cir-
culation around them. Vorticity-flux is
thus created through the vortex-loop.

According to a theorem of Arnold (1986),
helicity H is the average self-linking
number of the vortex-lines.

f ‖ ωf
f ‖ ω

ω

vortex loop L



Anomalous Dissipation of Helicity?

The helicity flux can easily be shown to satisfy an “Onsager bound”

Λ` = −2ω`·f` = O(|δu(`)|3/`2).
This suggests conservation if δu(`) ∼ `s with s > 2/3.

Cheskidov et al. (2007) have proved that helicity is conserved for any distri-
butional solution of 3D Euler with u ∈ Bs

3 ∩ H1/2 for s > 2/3, improving an
earlier result of Chae (2003).

More regularity is required for conservation of helicity than of energy. These
results are consistent with constant helicity flux coexisting with constant
energy flux in a k−5/3-type inertial range.

Note that Cheskidov et al. (2007) in fact prove somewhat sharper results,

and also improve slightly upon earlier results for energy conservation in any

dimension and enstrophy conservation in 2D.



Cascade of Circulations?

Large-scale circulation:

Γ`(C, t) =

∮
C`(t)

u`(t)·dx =

∫
S`(t)

ω`(t)·dS

where C`(t) and S`(t) are advected by u`, which generates a flow of diffeo-
morphisms with u ∈ L2. Then the balance holds:

(d/dt)Γ`(C, t) =

∮
C`(t)

f∗` (t)· dx

where

f∗` = (u×ω)` − u`×ω` = f` + ∇k`

is the turbulent vortex-force and k` = (1/2)Tr τ ` is the subgrid kinetic energy.

Define loop-torque K`(C) ≡ −
∮
C

f∗` ·dx (or with f∗` → f`). If velocity u ∈ Cα and
L(C) is the length of C

|K`(C)| ≤ (const.)L(C)`2α−1

See Eyink (2006). The key estimate on the vortex-force is that f` = O(|δu(`)|2/`).
This allows violation of Kelvin Theorem in the inertial range, if α ≤ 1/2.



Energy Dissipation and Kelvin Theorem

But conservation of circulations and the Helmholtz laws of vortex motion are
believed to be essential for turbulent energy dissipation in 3D! For example,

“Two-dimensional convection, which merely redistributes vorticity, cannot account
for the rapid dissipation which one observes. However, as pointed out by G.
I. TAYLOR [7], convection in three dimensions will tend to increase the total
vorticity. Since the circulation of a vortex tube is conserved, the vorticity will
increase whenever a vortex tube is stretched. Now it is very reasonable to expect
that a vortex line —or any line which is deformed by the motion of the liquid—
will tend to increase in length as a result of more or less haphazard motion. This
process tends to make the texture of the motion ever finer, and greatly accelerates
the viscous dissipation.” —L. Onsager, “Statistical Hydrodynamics” (1949)

See also Taylor & Green (1937), going back to Taylor (1917). Nevertheless,
the Kelvin Theorem is unlikely to hold in its usual form as ν → 0, since:

(1) The K41 exponent α = 1/3 is less than than the 1/2 required for vanishing
of the vortex force f∗` as `→ 0, and

(2) Loops C(t) advected by the rough velocity field should become fractal,

and thus L(C`(t)) →∞ as `→ 0.



Circulation-Cascade:

Numerical Results

(a) PDF and (b) RMS of the subscale
loop-torque K`(C) for square loops C
of edge-length 64 in 10243 DNS of
forced 3D hydrodynamic turbulence.
(S. Chen et al., PRL, 2006)

PDF & RMS of subscale torque are

nearly independent of kc = 2π/` in the

turbulent inertial-range: the cascade

of circulations is persistent in scale!



Breakdown of the Helmholtz Laws

The turbulent vortex force may be decomposed into components longitudinal
and transverse to vortex lines:

f` = α`ω` + (∆u`)×ω`

where

α` = ω`·f`/|ω`|2, ∆u` = ω`×f`/|ω`|2

We have seen that the longitudinal force is responsible for helicity cascade
and is a hydrodynamic analogue of the MHD α-effect (cf. Frisch, She &
Sulem, 1987).

The transverse part corresponds to a “drift” of the vortex-lines through the
background turbulence, with relative velocity ∆u`. The transverse force can
be interpreted as a turbulent Magnus force associated to this motion.

Note that, formally,

α` ∼ ∆u` ∼ δu(`) → 0

as `→ 0. Is there any sense in which the Kelvin-Helmholtz results can be valid

in the infinite-Reynolds inertial range?



Spontaneous Stochasticity

Another complication: Lagrangian trajectories are expected to be non-unique
and stochastic for a fixed realization of a rough (Hölder) velocity field!

time

space

X

This was discovered by Bernard, Gawȩdzki & Kupiainen (1998) in the Kraich-
nan model of random advection and rigorously proved there by LeJan &
Raimond (2002). Physically, this corresponds to Richardson diffusion.

For a smooth φρ with suppφρ ⊂ B(0, ρ), bounded, continuous ψ, and t > t0 :

lim
ρ→0

lim
`→0

∫
dr0 φρ(r0)ψ(ξt,t0` (x0 + r0)) =

∫
Pu(dx, t|x0, t0)ψ(x).

Here ξt,t0` is the smooth flow generated by u`.



A “Martingale” Hypothesis

In the Kraichnan model of random advection,

∂tθ+ (u ◦∇)θ = 0, ∇·u = 0

the unique dissipative solution is represented by averaging over this random
ensemble of (backward) Lagrangian characteristics:

θ(x, t) =

∫
Px,t(dx

′|u)θ(x′(t′), t′).

This implies that, for t > t′,∫
dx |θ(x, t)|2 <

∫
dx |θ(x, t′)|2.

The analogous conjecture for circulations is that, for t > t′,

Γ(C, t) =

∫
PC,t(dC

′|u)Γ(C ′(t′), t′).

See Eyink (2006, 2007). The circulations may be conserved on average by a
generalized Euler flow (roughly in the sense of Brenier (1989)).



Classical Josephson-Anderson Relation: Pipe Flow

The vorticity transport of the azimuthal vorticity ωθ in the radial direction r

σrθ = (u×ω − ν∇×ω)z

has constant (negative) mean

(∂/∂r)〈σrθ〉 = 0,

which, multiplied by mean mass flux J, is energy dissipation per pipe length:

(1/Lz)

∫
pipe

dV ρ ε = J |〈σrθ〉|,

a classical analogue of the Josephson-Anderson relation in superfluids, relating
cross-stream transport of vorticity and energy dissipation. See Anderson
(1966), Huggins (1970), and—also—Taylor (1932)!

Energy dissipation in realistic inhomogeneous turbulent flows often requires
organized motion of vorticity!



Conclusion

* If Onsager was correct, then the fundamental inertial-range dynamics of
turbulent flow is given by singular solutions of the Euler fluid equations.
Observational evidence and rigorous results are consistent with the idea.

* This subject is therefore of interest not only to mathematicians, but also to
experimentalists and simulators. The foundations of the subject are empirical,
and further laboratory and numerical investigations are necessary to shed light
on many difficult and basic questions, still beyond the scope of analysis.

* In particular, a major open problem is how to relate turbulent dissipation
of energy, precisely, to the inviscid motion of vortex lines.

* Leonhard Euler would doubtless be delighted to see that his equations are

of vital interest to the problem of turbulence and remain at the forefront of

engineering, physics and mathematics.


