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Part XIIA. Contents of the General prmczples of the mation of fluids (E 226,
pp. 54—91) (1755).

“‘Having established in my precedmg memoir the principles of the equilibrium of
fluids in full generality . . ., I propose here to treat the motion of fluids on the same foot-
ing... It is easy to see that this matter is much more difficult, and that it includes
researches which are incomparably deeper. Nevertheless I hope to succeed in so far that if
there remain any difficulties, they shall not be on the side of mechanics, but solely on the
side of analysis : for this science has not yet been carried to the degree of perfection which
would be necessary in order to develop analytic formulae including the principles of the
motion of fluids.”

The properties of fluids to be considered are those mentioned in the preceding memoir,
except that if the fluid ““is not susceptible of compression, one must distinguish two cases :
in the former, all the mass is composed of homogeneous parts whose density everywhere
is and remains the same ; in the latter, it is composed of heterogeneous parts, and one must
know the density of each kind, and the proportion of the mixture. .

“One must suppose also that the state of the fluid is known at a certain time ; and
that I shall call the primitive state of the fluid . . ., [in which] one must know the dispo-
sition of the particles . . . and the motion which has been impressed upon them . . . But
often one knows nothing of a primitive state . . . and then the researches are limited ordi-
narily to finding the permanent state into Whlch the fluid will come at last, without suffering
new changes. But neither this circumstance nor the primitive state change anything in the
researches we are going to undertake, and the calculation will remain always the same:
it is only in the integrations that one must take them into account in order to determine
the constants which each integration brings in.

“In the third place, one must count among the given quantities the external forces

- to whose action the fluid is subject. I call these forces external to distinguish them from
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the intestine forces with which the particles of the fluid act upon one another, since it is
these latter which furnish the principal object of the subsequent researches.”

Theideas [especially that of pressure]which I developed more carefully in the preceding
memoir are to be employed here, all quantltles being functions of time.

[Motion, acceleration, and change of volume are discussed as in the Principles,
except that the element of volume is taken as a parallelepiped and terms O (d#?) are
systematically neglected, as in the earlier work of D’ ALEMBERT (see above, p. LIII).] But
the density at the point Z' into which the element originally of density g at Z is transported
in time df is

(97) q—i—dt + dt —}—vdt —l—dta

“and thence, since the density is reciprocally proportional to the volume, this quantity

will be to ¢ as dadydz to dxdydz (1+dt +dt +dt ) >’ go that
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[Accelerations and accelerating forces are caloulated as in the Principles, except that 18—20
general extraneous forces P, @, R are employed.] “We have only to equate these accelerat- 21
ing forces to the actual accelerations . ..:
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If we add to these three equations first the one [(99)] which consideration of the continuity

of the fluid has furnished for us, and then that which gives the relation between the elas-

ticity p, the density ¢, and the other quality r which in addition to the density ¢ influences

the elasticity, we shall have five equations Whlch include all the theory of the motion of
fluids.” :

- ““Real” forces are always derivable from an “effort” [potential] function S, so that 22
dS = Pdx + Qdy + Rdz. We may express (100) as an equivalent differential formula 23—24

(101) Pdz -+ Qdy 3 Rdz — %lg = Xdx + Ydy + Zdz .

“Here then is a differential equation, where the time is taken as constant, and the problem
consists in finding the integral of it. . . But since so far there has been but little work on the 25
solution of such differential equations in three variables, we shall not be able to hope for

a complete solution of our equatlon until the boundaries of analysis have been extended
considerably further.

“The best method to follow will be then to Welgh well those particular solutions of 26
our differential equation which we are in a position to obtain, for from them we shall be
able to judge the route we shall have to take to arrive at a complete solution. But I have
already remarked [in the Principles] that in the case when the density ¢ is supposed
_constant one can give a very beautiful solution when the velocities u, v, and w are such
that the differential formula udz -+ vdy -+ wdz admits integration. Puttmg W for this 27
integral, we obtain [as in the Principles]

(102)  dp=gq (dS — d.a—azv— — udy — vdv — wdw)l.
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If g = const., then

oW

(103) p = 9[0 4+ 8 — e — %_.<uz 42 4w,
More generally, if we put
(104) V—0+8 -0 gt ot

where € = C(t), we get from (65)
(105) dp = qdV |

whence it is clear that the hypothesis [of existence of a velocity potential] “renders . . . our
differential equation possible when the elasticity p depends in any manner on the density
g,” or vice versa. “It becomes possible also when the fluid is not compressible, but the
density ¢ varies in such a way that it is a function of V. And in general, if the elasticity
p depends in part on the density ¢ and also on another quantity included in the letter r,
this hypothesis can be satisfactory also, provided r be a function of V. But in all these
cases, in order that the motion can subsist with this hypothesis,” it is necessary that (99)
be satisfied also.

“This hypothesis is so general that it appears that there would be no case not included
in it, and thus that the formula dp = ¢gdV, added to the other equations, which present
almost no difficulty, includes in general all the foundations of the theory of the movement
of fluids. Thus in my Latin memoir on the principles of the motion of fluids, where I
considered solely incompressible fluids, I adopted this case solely, ‘and T showed that all
cases treated up to the present, in which the fluid moves in arbitrary tubes, are included
in this assumption, and that the velocities %, v, and w are always such that the differential
formula udz - vdx + wdz becomes integrable. Nevertheless I have since noticed that
there are also cases, even when the fluid is incompressible and homogeneous throughout,
where this condition does not hold at all. That is enough to convince us that the solution
which I have just given is only a particular one.

“To give an example of a real motion which is perfectly in accord with all the for-
mule which the principles of mechanics have furnished, without nevertheless the formula
wdz -+ vdy + wdz being integrable, let the fluid be incompressible ... and P =0,
Q) =0, and BR= 0. Nextlet

(108) w=20, v=1Zz, u=—2y,

where Z stands for an arbitrary function of Vi + y—2 , and it is evident that the formula
udz + vdy + wdz, which becomes — Zydx + Zxdy , is integrable only in the case

1
107 S e
(107) I= g
Nevertheless these values satisfy all our formulae, so that one could not cast in doubt the
possibility of such a motion.” From (107) and (101) we get

(108) - %7‘1 = — Z*(zdz + ydy) .
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“Since Z is supposed a function of V 2% + 42, this equation without a doubt will be
possible and will give as its integral p =g §Z2 (zdx + ydy) . One sees that the differ-
ential equation would be possible even if the fluid were subjected to arbitrary forces
P, Q, R, provided that Pdz + Qdy + Rdz werea possible differential = d8, for then
one would have ‘

(109) p=q8 +qf Z2(xdz + ydy)

The condition (99) is satisfied also. “Thus the supposition of the possibility of the differential
formula wdwx -+ vdy + wdz furnishes only a particular solution of the formule which
we have found.” The motions just considered are vortices about the z-axis, in which, if
the speed of rotation at distance s from the axis is 8, we have p=g¢gs+¢ _f g2ds/s .

In general, either for a homogeneous incompressible fluid or for one inwhich ¢=¢(p),
it is evident that the differential equation (101) cannot hold unless there is a function 7,
possibly depending on ¢, such that

(110) iV = (P — X)dz + (@ — Y)dy + (R — B)dz .

Then our differential equation will furnish
dp

111 A=V .
(111) [

Tor an incompressible but inhomogeneous fluid, it is necessary that there exist functions
U and W such that

(112) U[P — X)dz + (@ — Y)dy + (R — Z)dz] = dW ,

whence (101) becomes dp = qdW/U , for the possibility of which it suffices that
W = Wi(q/U). In fact, in full generality there must be a function U such that (112)
holds, for otherwise the density ¢ cannot have a determinate value. If we take W as an
arbitrary function and set p = @(W), then U =g¢ j@'(W), and hence

(113) (P — X)dz + @ — Y)dy + (R — Z)dz = ﬂ%‘.w_)

«whence one will obtain the values X,Y,Z, from which at last we shall have to seek
the value of the velocities #, v, and w; and when these satisfy also the condition of
continuity, one will have a case of a possible motion-of a fluid.” In all cases the equation

(114) (P — X)dz + (Q — Y)dy + (B — Z)dz =0

must become possible, and also (99) must be satisfied. “These are the conditions by which
the functions which express the three velocities %, v, and w must be limited, and all
research on the motion of fluids reduces to determining the general nature of these funec-
tions . . . This research appears to be the deepest which is to be found in analysis. And if
it is not permitted to us to penetrate to a complete knowledge concerning the motion of
“fluids, it is not to mechanics, or to the insufficiency of the known principles of motion,

32

33

34—35

36

37
38

40



41

42

43

45—47

48
49

50—53

54—57

58

59

60—65

LXXXVIII RATIONAL FLUID MECHAN I’CS,‘

1687-1765

which we must attribute the cause. Tt is analysis itself Whiqh abandons us here, since all
the theory of the motion of fluids has just been reduced to the solution of analytic formulee,

“Since a general solution must be judged impossible from want of analysis, we must
be content with the knowledge of some special cases, and that all the more, since the
development of various [special] cases seems to be the only way of bringing us at last to
a more perfect knowledge.” A state of rest yields a particular solution. In my preceding
memoir I considered only the case of forces such that Pdzx + Qdy + Rdz is complete,
“since this case would appear to be the only one which can take place in nature.” But
equilibrium would be possible also if ¢ = f(U)g(p), where U is an integrating factor for
Pdx + Qdy 4 Rdz. “But since such cases are perhaps not possible, I do not pause to
develop them more fully.” :

The case of uniform motion is also included. But for compressible fluids, we are led
to “a very curious analytic question.” wiz., to find a function q such that

oq oq 0q oq
—E L g L 1 -1 =

where a, b, and ¢ are constants. Guided by the case of rest, we expect that
q=q(x—at, y—>bt, z—ct),

and we can easily assure ourselves that such a function is indeed a solution. In this case,
one can determine p also, as for example in the case when P=y, Q = — x .

In the case v=w =0, (99) reduces to the condition that dx — ud¢ shall be
exact. In the case ¢ = const., if (110) holds, it must follow that

(116) w=Z(y,2) + T, %: vV~ xa;—f—l— o) .

The particles move along parallel straight lines. In this example we can see how it is
possible that the velocity and pressure can change even if there are no forces P, ¢, R,
since the forces exerted by boundaries, such as a piston, enter the calculation only after
the integrations have been effected. Consider the special case u =a 4 ay — g1,
P

7 =y + 6t—pfx, where a,«, B,v,9d are constants. These constants can then be

interpreted in terms of the pressures on planes 2z = const., and the motion may be
regarded as produced by the action of appropriate flexible and movable pistons.

A simple example shows that solutions of the equations of motion can exist when
the forces are such that equilibrium is impossible.

In the case of variable density, notice that one can take u as a perfectly arbitrary
function of =z, y, 2, and ¢, since there always exists a function s such that $(dx — udt)
Is integrable, =dS, say. Then taking ¢ = sf(S) satisfies the condition of § 48.
The condition (101), in the case when P — @ = R =0, then requires that p and

q (%% + u Z%) shall be functions of z and ¢ only. While it is true that the direction of the
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z-axis is arbitrary, we can also verify directly that the foregoing analysis remains valid
for the case u =ay, v=p88, w =198, where «,f,y are constants.

“In the same fashion one could develop several other particular cases, some of

greater, some of lesser extent; but one will not find any which are more general than
“the one in which the formula udx -+ vdy + wdz becomes integrable.”

Having the three velocities %, v, w which satisfy our equations [(102) and (99)],

in order to determine the paths which the particles have travelled and are still to travel,

one must eliminate the time from

(117) de = udt, dy=wvdt, dz=wdl.

“The determination of these paths is of the highest importance and must serve to apply
the theory to each particular case proposed. For the shape of the vessel in which the fluid
moves is given ; the particles which touch the surface of the vessel must necessarily follow
its direction ; and thus the velocities %, », w must be such that the paths derived from
them fall upon the surface itself. But here we see well enough how far distant we yet are
from the complete knowledge of the motion of fluids, and that which I have just explained
contains only a feeble beginning. Nevertheless, all that the theory of fluids includes is
contained in the two equations presented above [(101) and (99)], so that it is not the
principles of mechanics which we lack in the pursuit of these researches, but solely analysis,
which is not yet sufficiently cultivated for this purpose. And thus we see clearly what
discoveries remain for us to make in this science before we can arrive at a more perfect
theory of the motion of fluids.”

Part XIIB. Comments on the paper summarized above.

In large part this paper consists in shorter and more lucid derivation and-discussion
of generalizations of some of the results in the Principles, to which it several times refers.
The description of R. Ducas?), “mémoire si parfait qu’il n’a pas vieilli d’une ligne,” is
almost literally correct. The main departures from the Principles are, first, that all the
work is carried out in three dimensions from the start, and, second, that the fluid is not
generally supposed incompressible. While EULER still measures pressure in units of
length, he has abandoned his earlier choice of the units of velocity : from this point onward
bis velocities are to have the accustomed modern meaning. Thus, for example, the factor
1 now appears in the “BERNOULLI equation” (103) (¢f., e. ¢., (63)).

EuLsr’s definitive formulation of fluid mechanics consists in the differential equa-
tions (99) and (100), along with the thermal equation of state p = p(q, 7). Thus the six
unknowns u, v, w, p, q, r are subject to only five conditions. When EvuLEer says that
they “include all the theory of the motion of fluids” he is nevertheless right, since the
' remaining condition, the energy equation, is extra-mechanical; it was not to be derived
in the appropriate generality for more than a century. The degenerate ‘“‘barotropic” case
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when r does not appear at all was to be almost the sole object of hydrodynamical re-

- 1) Histoire de la mécanique, Neuchatel and Paris (1950), see Ch. VIII, § 6.

LeoNEARDI EULERI Opera omnia IT 12 Commentationes mechanicae XIX
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searches for 150 years; in this case, EULER’s system becomes determinate. Tn treating com-
pressible fluids, however, Evrer usually supposed 7 to be a given function of position,
the “degree of heat” being maintained by appropriate sources.

The emphatic cries for new researches in pure-analysis which bracket and divide the
memoir (§§1, 40 and 68) are perhaps directed toward those who encouraged FREDERICOK 1T
in his contempt for pure mathematics and fear of the infinitesimal caleulus?). It is neither
the first nor the last of such fruitless defenses. Those for whom they are intended are
unlikely to notice, unable to comprehend them. Not content with having brought to his
court the greatest genius in Europe, for a salary far léss than he paid to the overblown
MavrerTUIS or offered to the philosophical p’ALEMBERT, the literary king expected EULER
to supervise the laying of aqueducts. Unfortunately Evier was willing and able to
undertake such tasks, thus giving FREDERICK occasion for the complaint that the work
was not well done.

In this paper Eurur has begun to get a grasp of what can be expected of the solution
of a partial differential equation. His remarks on the “‘constants” (§§ 3, 53, et passim)
are among the earliest to indicate the role of the initial or boundary conditions in deter-
mining the appropriate integral. In demonstrating the invariance of solutions representing
uniform motion (§§ 60—65) EvrErR does not merely transform all the former results
to a new co-ordinate system, but instead effects the entire integration anew, directly
by means of ingenious devices. The linear equation (115) is doubtless the first of its type
to appear. EULER’s solution is motivated by the hydrodynamical problem ; LAGRANGE’S
well known method of characteristics rests upon a straightforward extension of EvLER’s
idea?). The equations of the characteristics, or, in kinematical terms, the paths of the
particles, are EULER’s eq. (117). :

The argument leading to (97) is equally applicable to any flow quantity ¥, yielding

what is now called the “material derivative,” usually designated by Stox®s’s notation -DD—I? .

The emphasis on inverse methods of solution (§§ 26, 41) echoes § 66 of the Principles.
The particular solutions obtained, however, are almost entirely different. The velocity
potential W is mentioned, but the attempt to consider solutions of V2 W — 0 has been
abandoned - entirely. Instead, the emphasis is on motions in which a velocity potential
does mot exist, correcting the error of »’ArEMBERT which EvrEr had repeated in the
Principles. Indeed, the main original contribution made by this paper is its demonstration
that existence of a velocity-potential is quite a special circumstance. The proofis achieved
by exhibiting the counter examples of the simple vortex flows (§§ 30 —33) and the motions
which are now called “generalized Porsguinie flows” (§§ 48—58). In this paper the latter
occur for the first time altogether ; the former, for the first time in such generality. The
reaffirmation in § 66 of the existence of a velocity-potential, in direct contradiction to
the statements and the analysis just mentioned; is doubtless a relic of an earlier version
of the paper, allowed to stand by oversight. This suspicion is supported by the use of S

1) V.pp. 90, 172—173, 175—176 of Otro SprEss, Leonhard Fuler, Fravenfeld and Leipzig (1929).

2) §§ 10—11 of “Mémoire sur la théorie du mouvement des fluides,” N ouv. mém. acad, sci. Berlin
1781, 151—198 (1783) = Qouvres 4, 695748,
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for the velocity potential in this passage, as in the Principles, instead of W as in the
earlier parts of this paper.

The inverse method projected in §§ 37—39 leads to a heroic attempt ab general
solution. The result which EULER’s reasoning implies, but which he does not actually
state, is the following : given an acceleration field @, a necessary but not sufficient condition
that the velocity field which gives rise to it be a possible flow of an ideal fluid subject to
extraneous force f per unit mass is

(117 a) (f—a)-curl (f—ea) =0.

‘The special case curl @ = 0 leads to (87), the usual vorticity equation. It is EvLER’S
insistence on full generality which prevents him from deriving again his former result (61).
But in § 25 he appears to know less about what are now called “Prarpran forms” than
he did at the time of writing the earlier paper.

EvuLER’s opinion on whether or not the extraneous forces occuring in nature are
derivable from a potential varies from one section to another. The example in § 47
showing that equilibrium can be possible under non-conservative forces is rather artificial :
the lines of force are concentric circles, but nevertheless the density and pressure are so
adjusted that rest or uniform motion results. In the example treated in § 58 it is not
actually proved that equilibrium is impossible, since only a special class of flows is consid-
ered.

In § 22 EULER again compliments MAUPERTUIS, but the phrase “de la derniére im-
portance dans toute la Théorie” is an empty flourish, since EULER nowhere in any of his
papers on fluid mechanics makes the slightest use of the principle of least action or any
related idea.

The statements regarding dz — udt in §§ 48 and 49 are equivalent to the following:
in any unidirectional flow there exists a function y(z, y,2,t) such that

(118) g=—2, qu=22

This fact was later exploited by W. KIRcHHOFEL).

Pert XIITA. Contents of the Sequel to the researches.on the motions of fluids
(E 227, pp. 92—132) (1755).

“‘Since in my two preceding memoirs I reduced all the theory of fluids . .. to two
analytic equations, the consideration of these formule appears to be of the greatest
. importance, for they include not only all that has been discovered by methods very
different and for the most part slightly convincing . . . but also all that one could desire

- 1) “Reduktion simultaner partieller Dzﬁerentmlglewhungen bez hydrodynamischen Problemen,”
J. reine angew. Math. 164, 183—195 (1930).



