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LXIT RATIONAL FLUID MECHANICS, 1687-1765

Berlin Academy on 31 August 1752, and on this ground ExEsTROM assigned the work
published under the title “Principia motus fluidorum” to the same year.

We may conjecture that when in the paper we have just considered EuLeR after
congiderable manipulation reached the equation (37), he must have realized that a more
direct derivation in terms of the spatial co-ordinates x and y would be easy : he had only
to replace the intrinsic co-ordinates in the Gunmnery (above, p. XL) by a fixed system.
He may also have realized the econnection with p’ALEMBERT's equation (25), but this is
less likely, since the correct and important results of D’ ALEmMBERT could hardly be dis-
tinguished through his dense mist of caleulation, philosophy, and error. In any case, it
iz likely that EvTER then threw aside the manuscript on rivers and started afresh on the
new plan. The resulting memoir iz so important in the history of rational mechanies that
we shall now analyse it in detail, even though in some parts the work is very close both
to that in the earlier paper which was published later and to that which generalizes it
in later papers, published earlier.

Part XA. Contents of Principles of the motion of fluids (E 258, pp. 133—168)
(1752).

“Here are treated the elementz of the theory of the motion of fluids in general,
where ihe whole matter is reduced to this: given a mass of fluid, either free or confined
in vessels, when an arbitrary motion shall have been impressed upon it, and meanwhile
it is acted upon by arbitrary forces, the motion in which its several particles are to travel
shall be determined, and at the same time the pressure with which the several parts act, as
well mutually upon each other as also upon the sides of a vessel, shall be ascertained.”
The paper is divided into two parts. In the former, the case when the fluid breaks up into
drops being first excluded, “the motion must be restricted by this rule, that the several
ultimate portions must retain ever the same volume; and by thiz principle the general
expressions of motion for the several elements of the fluid are restricted . . . In the second
part the author proceeds to the determination of the motion of a fluid produced by
arbitrary forces, in which matter the whole investigation reduces to this, that the pressure
with which the parts of the fluid at the several points act upon one another shall be
ascertained, which pressure is indicated most conveniently, as is customary for water,
by a certain height; whieh is to be understood thus, that the separate elements of fluid
sustain a pressure the same as if they were pressed by a heavy column of the same fluid,
whose height iz equal to that amount.” This pressure varies from one point to another.
From it, together with the given forces acting on the whole mass, “‘the acceleration of the
several elements, or their retardation, can be assigned [for] the motion, all which deter-
minations are expressed by the author through differential formulae, But indeed most
frequently the full development of these formulae is involved in the greatest difficulties.
But nevertheless this whole theory has been reduced to pure analysis, and what remains
to be completed in it depends solely upon subsequent progress in analysis. Thus it is far
from true that purely analytic researches are of no use in applied mathematics ; rather,
important additions to pure analysis are now required.”
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First part, Fluids are extremely different from eolids, because the motion of a few
particles by no means determines that of the rest. In flexible solids there are at least
gertain laws governing the bending. But in fluid bodies, “whose particles are united among
themselves by no bond, the motion of the various particles iz much less restricted . . .
Nevertheless it cannot happen that the motion of all the particles of a fluid is governed
by nolaws whatever,” or that any arbitrary motion is possible. The particles ave impenetrable,
and thus “an infinite number of motions must be excluded.” Those motions which are
not impossible I shall call possible. “We must then find what characteristic is appropriate
to possible motions, separating them from impossible ones. When this is done, we shall
have to determine which one of all possible motions in a certain case ought actually to
occur, Plaimly we must then turn to the forces which act upon the water, so that the
motion appropriate to them may be determined from the principles of mechanies.”

To find this characteristic [of possible motions] *T shall assume the fluid to be such
as never to permit itself to be forced into a lesser space, nor can its continnity be inter-
rupted. Onee the theory of fluids has been adjusted to fluids of this nature, it will not be
very difficult to extend it also to those fluids whose density is variable and which do not
necessarily require continuity.” Incompressibility is to be required of each portion of
the fluid. When this eondition is satisfied, the quantity of space oceupied by a fluid
element does not change during motion through “the least little time.”

First let the motion of the several points take place in a plane, and let their velocities
resolved along two rectangular directions a2,y be u, v, so that the true speed is

Vut + ¢*, while the angle at which the direction of the veloeity is inclined to the z-axis
ig Arctan % . We shall wish to use du/dz , du/dy, 0%/ da*, ..., but we must take care

not to regard them as ratios of exact differentials ; these notations, first introduced by
Fowraivg, facilitate calculation. A particle infinitely near to that whose twin velovities
are w, v will have velocities u + (8u/dx) dz + (Pu/dy) dy , v+ (2v/dx) dx - (Bv/dy)dy,
and in an infinitely short time df it moves through distances

dv

; o i 4
e 1 e ity
di lw, o = dx 4 3 dy_l, di % dy| .

: g
.ﬂ |- %dm + -

“Having noted these things, let us consider a triangular clement Imn of water, and
let us seek the location into which it . . . iz carried by the motion in the time dt.” Two of
the sides are taken parallel to the directions z, y . Since no particular relation between
dr and dy is assumed, it is plain . . . that in thought the whole mass of fluid may be
divided into elements of this sort, so that what we determine for one in general thus
extends equally to all.” The distances travelled by the vertices are caleulated as in § 13.
Since the triangle is infinitely small, “its sides cannot receive any curvature from the
motion,” and it is carried into a new triangle pgr . The motion must be such that the
area of the triangle por is equal to the area of the triangle Imn . The area of pygr is
expressed by means of the arveas of three trapezoids. Equating the two areas yields

dhit i d(u, 1)
41 st o [ Ll g
(41) - e + e, 1) =l
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Sinee the term in df in (41) vanishes when the coefficient is finite, we obtain

du | o
(42) =tH=0
“In this consists the eriterion of possible motions . . ., and unless this condition holds,
the motion of the fluid cannot take place.”

In the general case, when the motion is not confined to a single plane, completely
analogous statements are to be made. The components of velocity along three perpendicular
directions z,y,2 are w,v,w, and the true speed will be called ¥ = Vu? = o* + w2,
Let us consider the motion of a right triangular pyramid Auvo, three of whose sides are
normal to the directions of x, ¥, z. The caleulation of the volume of the pyramid =g pé
into which it is carried in the time d¢ is accomplished by dividing it into four prisms, the
base area of each of which is obtained through subdivision into three trapezoids. Equating
the two volumes yields

dlu,v) | v, w) ._ﬂj_vi,_w)] PRI
1 R T

du  dr  Bw
i R R TR T e e

“Rejecting the infinitely small terms, we get this equation :

ou B dw
(44) Eﬁ‘—a@ 4."—3?;0 :
It is obtained simply by this condition, that in the motion no part of the fluid is carried
into a greater or lesser space, but perpetually the continuity of the fluid as well as the
same density is conserved.” This condition must be satisfied at every instant, since
“up to now I have considered the time simply as a constant quantity.” Tf we wish to regard
time as variable, we obtain the same condition to be satisfied at any given instant.
Second part. Out of all possible motions, the working of forces produces the actual
motion. Considering again first the case when the motion ocenrs in a single plane, we must
take account of changes in time:
g i du
e g du v
v | =T
dv "_de-l_ﬂ_yd'r"_! 5 dt .
“Since therefore during the passage of time df the point . . . travels a distance ud¢ parallel
to the z-axis, a distance vdt parallel to the y-axis, in order to obtain the increments in
the velocities u and v of the point . . . for dz and dy we must write the distance ndf and
vidi, whence will arise these true increments of the velocities :

1 -
dit = A 2t L Eﬁiﬂ 5 BT tﬂ[ Fj_sl'i#l 7
o v 0 ov . ;
i
dy = E wdt -+ a‘-g}“ v it e ﬁ i | = ﬂ'a.,.l'u- '
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Hence the accelerating forces which have the power to produce these accelerations will be:

Accel. force parallel to z-axis = 2 (—g% %+ E ¥4 )[= Eﬂ-;‘ )

(47)

o v 0
Accel, force parallel to y-axis = 2 ("32;“ -+ a—yv -+ ﬁ) [_ Ea,J 7

to which therefore the forces in fact acting upon the particle of water ought to be equal.

“Among the forces, moreover, which in fact work upon the particles of water, the 42
first to be considered comes gravity ; whose effect, however, if the plane of motion is
horizontal, is to be taken as nothing. But if however the plane is inclined, . . . by gravity
arises a constant accelerating force, of magnitude, say «. Then we must not neglect
friction, which often hinders the motion of water not a little. Although its laws have not
yet been explored sufficiently, nevertheless, following the friction of solid bodies, probably
we shall not wander too far astray if we set the friction everywhere proportional to the
pressure with which the particles of water press upon one another.

“First, however, must be brought into the calculation the pressure with which the 43
particles of water everywhere mutually act upon each other, by means of which every
particle is pressed together on all sides by its neighbors ; and in so far as this pressure
is not everywhere equal, to that extent motion is communicated to that particle. The
water simply will be put everywhere into a certain state of compression similar to that
in which quiet water at a certain height finds itself, Therefore this height, at which in
quiet water the water is found to be in a like state to compression, will most conveniently
be employed for representing the pressure at an arbitrary point [ of the fluid. Therefore
let that height, or depth, expressing the state of compression at [, be p, a certain function
of the co-ordinates = and y, and if the pressure at [ varies also with the time, the time also
will enter into the function p.

“Let us consider a rectangular element of water, Imno, whose sides are Im=no=dr 4«
and In =mo = dy, whose area = dudy. Now when the pressure at [=p, the

pressure at m=p + pd:t: at ?;—p+apdy, and at o =p+ dx-{-ap

Thus the side Im is pressed by a force = da (y:» + f}-—— d:t!) while the opposite side no
will be pressed by a force =dx ( p+3 ap dae + —- % g ) therefore b_'_l," these two forces the

ay
element Imno will be impelled in the direction In by a force = — —yaf:-:dy Moreover,

in & gimilar manner from the forces dy (p +43 ai dy) and dy (p 4 & de + } a‘n fly)

0
which act on the sides In and mo will result a foree = —:i: dz dy impelling the element
in the direction Im .” Thus calculating the accelerating forces [and equating them to 45

(47)], we shall have these equations:
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ap du ou . duy[
{43} R—E—E(EH+'3‘F~‘U‘T‘E)[— ﬂﬁm] ,
ip v g ar
— == 2 — e —|l=
ay (3a=“+ T 3!)[ 2“'] :
which we eollect in the form
{49) dp = adz — 2a,dz — 2a,dy +%d£ ;

“which differential must be eomplete, or integrable.”
“From the nature of complete differentials” it is thus necessary that (24) holds,
whence follows [by rearrangement]
3-2
dy 9
ou

e
ar
e dv

LA o
2 dy ox
, it appears finally that this differential formula, udz 4~ vdy ,

v d d d
*+ ay‘|‘ ﬂa'{' bﬁ-l_ﬁ

(50)

“which plainly satisfies: so that- . Since therefore this condition

?
ay o

requires that

o
dy oz
must be complete, in which therefore the criterion of actual motions consists. . .. This
criterion is independent from the preceding, . . . and therefore even if the fluid in motion
changes its density, as happens in the motion of elastic fluids such as air, this property
will hold nonetheless, viz., that wdx 4 »dy shall be a complete differential. . .
“Hence now we shall be able to ascertain the pressure p itself, which is absolutely
necessary for perfectly determining the motion of the fluid. Since we have found that

du i
F P i [from (46) and (49) follows)

u

at

wdt - z%ms _ Pt w0

(51) dp=ndz — 2udu—2vdv | 2- o o

dp
d‘y 4‘Ed£.ll

But therefore if we wish to ascertain for the present time the pressure at the several
points of the fluid, taking no account of its variation arising with the time, we shall have
to consider this equation:

o1

rip:mia:—ﬂudu—ﬂvdﬂ—ﬂ-ag Lt

dx — 2 3

(52) dy .
Since also udz + vdy must be a complete differential at any fixed time, let its integral
be 8, so that

(63) d8 = wdz + vdy + %dt :
Then

B, 28 8 a8
513 : 2 B R e detbiioin A el
(54 R A el e v A
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Thus (52) becomes

(54) dp = ada — 2udu — 2vdy — Ed% :
whence appears on integrating
P=0ﬂnﬂt.+mz—ﬂ“—i}!—2%’§ ;
(56)
= Const. 4+ az — F* —EE:.;E ;

“If now we wish to take account of frietion also, let us set it proportional to the 53
pressure p. While the point [ traverses the element ds, then the retarding force arising
from friction = p/f,” so that in place of (55) we have

(57) dp=adw~-¥d@—2l’ﬂ’—2%,
whence arises on integrating ., . .

top
(58) p=nm:—l"“—-}-e_ffef(am—P“—E%)da.”

In summary, the two formulae udz + vdy and wdy —vdz must be complete 54
differentials at the time 1.

Turning now to the general case of motion in three dimensions, for the component 5—56
accelerations [i. e., aceelerating forees] we obtain

o du du dil
{59_] 2 ('E:E'M -I—a—y'i.?—i— EH«' "+‘ -‘&)[—- 2{3:] .o B,
Choosing the z-axis downward, set the accelerating force arising from gravity = —1. &

It would be superfluous to repeat the reasoning of §§ 44—54. We shall get

Z= G rrgetaeta)- -l
(60) g;i—_ —2(%1¢+g—;ﬂ+-g:—w+%)i= —3%: .
.gz?’.z —1—2(%u+§—;’v+ 'iwar%T) s 2“4 '

Sinee however the formula dp = %dm —gg dy + aaii dz must be a complete differ- 5850

ential, by forming - 3% (ap ) = % (-gg ) , ele. we obtain [after some manipulation]

o,
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(Breliodveilis
o Var "y V@) ey

(61)
du ov\ ou o ouw dw oy ow
o~ E(m ) e et
“It is now manifest that these three equations are satisfied by the following three values . . .

DA e Ty

oy dz’
But these conditions are the same as those which are required in order that the formula
udx + vdy + wdz be a complete differential.”

By analysis parallel to that of §§ 40—52 we obtain
a8
Eldaley e e s A
(63) p=0—2—T—2—,
where
a9
(64) 48 = udx + vdy + wdz +Ed£ j
In summary, wdx + vdy + wdz must be exact, and -g—: £+ g—; + gg = 0. “And

to these two conditions the whole motion of fluids endowed with invariable density is
subjected.” The height p expressing the pressure is to be obtained from (63).

“Much more difficult however would be the question, if, the forces acting being given,
along with the pressure in certain places, the motion of the fluid at the several points had
to be determined.” Then we should have to find functions %, v, w, and p satisfying both
our equations and the specified conditions, “which work would certainly require the
greatest force of caleulation. It is fitting therefore to inquire in general into the nature of
functions proper to satisfy both criteria. Most eonveniently therefore let us begin with
that integral quantity 5, whose differential udz 4 vdy 4 wds must be when the time
is held constant.” Since

a8 a8 o8
{65} ﬂ-:E, 'U—a—y, Hﬂ—""é:'a".
substitution in (44) yields

a8 8 8
40) T T 0

“Since it is not plain how this can be handled in general, T shall consider certain
rather general cases. Therefore let

(67) 8 = (Az+ By + Czp.”
Substitution in (66) yields

(68) win — 1) (dz + By + Cap2 (4 + B2+ OY) =0 .
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Thus & = const. and 8 = Az + By + Cz are solutions for arbitrary 4, B, . But
if ms£0,1, we must have

(68) A 4+ B*4- =0,

Then (67) yields a solution, whatever iz n, and moreover any sum of such solutions is
also a solution. By selecting such sums properly, we can get homogeneous polynomial
solutions [and the most general such solutions of degrees 0 through 4 are written out].
“Hence it is clear how these formulae are to be gotten for any order. First simply give
to the several terms the numerical coefficients which belong to them from the law of
permutation, or, equivalently, which arise when the trinomial x 4 y + 2 is raised to
the power of that same order. Let indefinite letters 4, B, €, ele., be adjoined to the
numerical coefficients. Then, casting aside the numbers, observe whenever there occur
three terms of the type LZz* + MZy* + NZz* having a common factor Z formed from
the variables, Whenever this occurs, set the sum of the literal coefficients L + M + N
equal to zero.” The case n = 5 is written down as an example of the method.

The case § = A is a state of rest. Since 4 may be an arbitrary funetion of time,
by (63) it follows that so also may be p. Thus, e. g., a fluid completely filling & closed
vessel remains in equilibrium even when subjected to arbitrary forces, since the pressure
varies accordingly with time. The case § = Az 4 By + C'z gives uniform motion. In
the case when § = a polynomial of degree two, the different parts of the finid are carried
in a varying motion. “Moreover a much greater variety can take place, if more elaborate
values are given to the function 8.” Now the uniform case is appropriate to the trans-
latory motion of a [rigid] solid body. It is possible to suspect that other rigid motions of
& fluid, such as a rotation, can occur. But such is not the case. For then the pyramid of

§ 26 would have to move so as to remain similar to itself. The condition of similarity yields
du g dhw du gv  dv dw  fuw du
1 STl e e ek S iy S i e ot

But these equations together with (62) show that the velocities u, v, w are constants,

“In order that the effect of the forces which act from the outside upon the fluid can
be ascertained, it is first necessary to determine those forces which are required for effecting
the motion which we have assumed to exist in the fluid. But indeed these are equivalent
to those forees which in fact work upon the fluid,” which we have found in § 56. For a
fluid element whose volume or mass is da dy dz, the “moving forees required for the
motion” will be

- ou ou du , Ou :

(71) 2dxdydz (ﬂ- M + va—y 1 W + 'n‘t) [— erd:udydz] s L EHy

“whenee by triple integration the components of the total forces which must act on the
whole mass of fluid may be obtained.” Using (62) and putting

(72) T=u“+v“-{—w¢+2%,
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we get

. = du du
(73) [2a, _]E[HE_Fva_y—l_w elc.,

gy du o7
® "35'] =% '
“and by triple integration these formulae are to be extended through the whole mass of
the fluid, so that thence forces equivalent to all [the pressure forces] and their mean
directions may be obtained. Truly this diseussion iz for a deeper investigation, on which
I do not pause here.”

But by means of (72) we get from (63) a simpler expression for the pressure:

(74) p=C—%—1.

“But if moreover an arbitrary particle is acted upon by an accelerating force whose
components are @, q, s, after a calculation like that above has been carried out the
pressure will be found by

(75) p=C+ |(Qds + qdy + pdz) — T,

whenece is plain that the differential Qdix 4 qdy 4 ¢dz must be complete, as besides
a state of equilibrium, or at least a possible one, could not exist. That this condition
must be imposed on the acting forces @, ¢, ¢ was shown very clearly by the famous
Mr. CLAmRAUT,

“Behold therefore the prineiples of the entire doctrine of the motion of flnids, which,
even if they at first sight may seem insufficiently fruitful, nevertheless embrace almost
everything yet treated both in hydrostatics and in hydraulics, so that these principles
must be regarded as having very broad extent. In order that this shall appear more clearly,
it is worthwhile to show how the precepts learned in hydrostaties and hydraulies follow . . .”

To consider equilibrium, put = v =w = 0. Then (75) yields

(76) p="C+ [(@dr + gdy + gdz)

where (' iz a function of time. Since p is a funetion of position enly, at any given time, the
differential @dx + gdy 4 pdz must be complete, say

(77) dP = Qdx + qdy + odz .
Then (76) becomes
(78) p=0+PF,

For the case of gravity, p = ' — 2. Both P and ' may depend on time, On a boundary
where the fluid is subjected to no force, p = 0. Hence the equation of this boundary is
P = const. = E, so that (78) becomes in general p = P —E .

“Next, everything which has hitherto heen brought out concerning the motion of
a fluid through tubes is easily derived from these principles. The tubes are usually regarded
a8 very narrow, or else assumed to be such that through any section normal to the tube the
fluid flows across with equal motion: whence originates this rule, that the speed of the



RATIONAL FLUID MECHANICS, 1687-1765 LXXI

fluid at any place in the tube is reciprocally proportional to the amplitude.” Let y = y(x),
2 =z(z) be equations for the tube. Let the amplitude be % so that if 4 and f? be the ss
speed and amplitude at a fixed point, then V = f*4 [r*. Henece

el e N 1
i SYTTTR Viean
Again use (64): 89
e
(80) i =L ayTryira=La,
so0 that
' fds
(81) 8= tif A
To ealculate the pressure, by (72) we obtain 90
=3 rlﬁﬂ Eiﬁ f!dg
(82) = pr -- E_ri‘t_ Pt
Then by (75) follows
| I&HE d)d 'f!da
(83 p=C+ [(Qda+aqdy+pae) - L —2 38 [L2

“which is that same formula which is commonly brought out for the motion of a fluid
through tubes; but now much more widely valid, sinee arbitrary forces acting on the
fluid are assumed here, while commonly this formula is restricted to gravity alone.”

Part XB. Comments on the paper snmmarized above.

This paper is famous for its derivations of the continuity equation (44) and the
dynamical equations (60) for ideal incompressible fluids. Here for the first time the kine-
matical and the dynamical aspects of the theory of continua are carefully separated. In
the wrifings of the Berwovinis and p'ArzmBERT no such separation is to be found,
although we have seen a hint of it in a lefter from Jorx Burxovrit to EULER (zee above,
p. XXXIV). While clear and eompelling in contrast to all that had been done before in hydro-
dynamics, this memoir does not attain the magnificent clarity of Evrur's best writing.
On the other hand, it is taut with important new ideas, many of which are to be worked
out in later papers.

The derivation of the continuity equation is similar to one of those used by p’Aruy-
BERT in special cases (above, pp. LIIT and LVT), but with an interesting difference. Evren
supposes (x, ¥, z) is carried into (xz + udt, ...), but in the calculation he retains terms
0({di*). The result eannot yield a formula for the volume change correct in general beyond
0(dt}). However, after giving in § 15 of his later paper E 226 (see below, p. LXXXIV),
a derivation in which all terms O(di?) are systematically neglected, Evrer wrote: “If
one still has any doubt about the justness of this conclusion, one has only to read my
Latin work, Principia motus fluidorum, where T have calculated this volume without
neglecting anything.” Now in fact the calculation here is correct if and only if the terms
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O(df*) in the displacement are actually zero ; equivalently, if the velocity field is linear,
The interesting invariant form of (43) suggests that it is worthwhile to follow out this idea.
Elsewhere I have done so'). Let 4 be any n X n matrix, and consider the one parameter
family of transformations of n-space whose matrices are At + I, I being the unit
matrix. Adopt the EvcLineax definition of volume of a paralleletope with one vertex at 0,
viz. V =det x,, x,, being the vectors to the remaining n vertices. Then it can be shown
that for any such paralleletope

4 _I G ; =
(84) ¥ (0) dct-|A.r-|—l'| Mkﬂ&"f, ;

where [, is the sum of the r-rowed principal minors of A. This formula gives a geometrieal
interpretation for the expansion of the secular determinant. EvLER's results (41) and (43)
are the epecial cases n = 2,3 of (84). Thus EvLER is the discoverer of the secular expansion.
Moreover, from (84) follows

1 drv Ir. T=1,2,...,'ﬂ-.

LV dr |
ft=o

(85)

0, r=n+1l,

yielding a geometrical interpretation for the invariant coefficients I,, for which I have
found no earlier oceurrence.

In the dynamical part the pressure p is introduced, as in the paper on rivers (above,
p. LXY), as mechanically equivalent to the forces of mutual action. The explanation in
§ 43 is not very illuminating, however ; a somewhat better one is contained in the sum-
mary ; and in later papers Euner improved it. When he writes in § 49 that it is absolutely
necessary to calculate the pressure, perhaps he is criticizing p’ALEMBERT.

EvLer’s entire viewpoint toward fluid dynamics is characterized and distinguished
from earlier attempts by careful uge of preliminary kinematical analysis. Evier’s formulae
(46) and (59) generalize p’ArEMBERT's (23), but for the first time it is stated that it is
indeed the acceleration components which are being found.

As soon as EULER establishes the dynamical equations, he derives the condition of
integrability for the pressure. The result, in the two forms (50) and (61), may be written
in vector notation as follows:

bw

{Bﬁ} W=‘—“dwv,
(87) %=W-gr&dv—l?divm

where W is the vorticity vector: W = curlv, The former, which generalizes p’ALEMBERT'S
result (25) for steady flow, is usually regarded as a discovery of StokEs, and the latter is
usnally called “HELmmorrz's vorticity equation.” Evier did not introduce a symbol for

1) “Generalization of a geometrical theorem of Evims,” Comm, mat. Helv. 27, 233—234 (1953),



RATIONAL FLUID MECHANICS, 1687-1765 LXXIII

the vorticity or eonstruct a kinematical interpretation for it. HELsuorTz's treatment is
greatly superior from the viewpoints of kinematics and mechanics, but D’ATEMBERT and
Evrer brought out more distinetly the purely analytical nature of these equations as
integrability conditions. Quite erroneously, however, both stated that these equations
require W =0, i.¢., in modern terms, that the motion shall be irrotational. Perhaps
Evrer was indeed influenced by p'ALEMEBERT, since it was D'ALEMBERT who originated
this error (see above, p. LIV) both in statement and in method of proof. In later papers,
as we shall see, EULER took pains to emphasize that on the contrary W = 0 yields only
a very special class of solutions.

With the aid of the foregoing false step EviEs is able in § 54 to repeat D' ALEMBERT's
summary of the whole theory in the plane case as a statement that udz + vdy and
udy —vdx be complete differentials. Another false conclusion results in § 81, where
EvLer apparently claims to prove that only force fields under whose action equilibrium
is possible can occur in nature, The analysis there is correct, however, and proves in fact
that a necessary condition for potential flow in a homogeneous incompressible fluid is the
completeness of the differential Qdz + gdy + gdz. [EvrEr's conclusion that a fluid
cannot flow irrotationally when subject to forces under which it could not remain aft rest
is not quite right: forces derivable from a many-valued potential may produce potential
flow in a multiply-connected region, although they are not compatible with rest, since
the eyclic term in the foree potential may cancel that in the acceleration-potential, thus
yielding a single-valued pressure field for the fluid in motion, but no possibility of equi-
librium. Tn fact, suppose [ (@dz + qdy + gdz) = v, where v is a particular determi-
nation of a eyelic function; in (72) put § = }te + 8’ 4 S', where &' is single-valued
and 8" is steady but possibly eyclic; then the velocity is single-valued, but the accelera-
tion-potential 7' is the sum of v and a single-valued function; so that p as given by (75) is
single-valued, whatever are 8’ and §". For steady potential fiow, however, it is obvious
that » must be single-valued, as for equilibrium.]

The condition of irrotational motion enables EvLER to introduce by (53) and (64)
the funetion §, which HEramoLTz was to call the velocity-potential. In terms of it EviER
quickly obtains the “BerxouLL equation” for unsteady potential flow in the forms (56)
and (63). The result (40) in the paper on rivers indeed contains (56) as a special case,
provided the flow is steady, but there is no indication there that the function [wdz will
reduce to a constant in a potential flow ; indeed, the whole matter is now confused badly
by the conclusion that potential flow is necessary.

In § 53 EuLEr generalizes his earlier theory of friction in tubes (see above, pp. XLVIII
—L). From (57), however, partial differential equations do not follow, since ds is a differ-
ential along the particle path, whose direction is not known a priori. Since & velocity
potential § has already been assumed to exist, however, the kinematics of the flow is
unchanged by friction. Once the motion is known, the result (58) then gives a method of
caleulating the loss of head due to friction on each trajectory. Eurur’s theory is thus both
consistent and simple for potential flows. Of course we know now that friction has a more
far reaching effect on the local flow quantities than EvLer here assumes.
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Turning to the consequences of the existence of a velocity-potential in three dimen-
sions, EULER sees at once that S must satisfy the potential equation (66) (“LarLace’s
equation”). Not perceiving a general solution, he seeks special ones of polynomial form.
The analysis in §§ 68—69 may be interpreted as showing that f(z 4 ix cos u +- iy sin u)
i# & harmonic function of =, y, 2. Starting from this observation and from a series of
the type given in § 69, E. T. WarrTaxer?) was to be able to construct the general solution
of the potential equation. In § 71 EVLER gives a rule for finding the most general homo-
geneous polynomial harmonic of degree n. A more compact statement of this same rule
has been obtained by WhiTTAKER.

Noting that the harmonic of degree 1 represents a state of uniform motion, Evrer
then asks if other rigid fluid motions are possible. To approach this problem, he secks a
criterion for locally and instantaneously rigid motion. The results (70), stating that the
symmetric part of the velocity gradient must vanish, are now generally called *“Kirrmve’s
equations.” EULER thence draws a conclusion (§ 77) which can be stated as follows:
the only rigid potential motion is a state of uniform translation?).

To determine the resultant force on a fluid mass, EULER introduces the acceleration-
potential T', given hy (73) and expressed kinematically through (72). In terms of the
acceleration vector @, we may write the result (in general units) as

(59) @ = grod| 5+ 47| gma| B+ e 5],

a formula which was to reappear in the work of Vessior?). The acceleration-potential is
then expressed dynamically by (74). If we carry out the integration of the expression (71),
as HuLER recommends, by use of GREEN's theorem we obtain for the resultant force (of
inertia only, and in general units),

(89) F=gj‘ar£u=@9§'i*d5= --.gﬁl[pngz]dS.

In (77) we see for the first time the differential equation of hydrostatics (for earlier
statements of the principles of hydrostatics, see Parts I and II of this introduction).

The theory of flow in narrow tubes given in §§ 87-90 is the first attempt at a really -
general treatment. The continuity condition V = 2 4 /r?, as in the older works, is set
down as a principle, not derived from (44). The dynamical equation (83), however, follows
from the general “BEr¥OULLI equation” (75), since the acceleration-potential T has first
been determined from the kinematics of the flow. These last brilliant paragraphs present
the hydraulic theory with a conciseness and elegance not only unattained by previous
writers but also not imitated by subsequent ones.

1) “On the partial differential equations of mathematicnl physics,” Math. Ann. 57, 333—355 (1003).

2) Professor KuerTt has remarked that sinee Evrer elaimed to prove in §§ 46—48, 58—60 that
all flnid motions are potential flows, it now must follow that a fluid cannot rotate as a rigid body!
It is strange that neither p’ArmvmErT nor Evier noticed that figures of relative equilibrinm furnish
counter-examples to their assertion that potential flow is necessary.

3) “Sur les transformations infinitdsimales ot In cindmatique des milienz continus,” Bull. sel. math,
(2) B5%, 233—244 (1911).
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The analytical complications of the subject prevented Eviik from attaining the
great aims set out in the summary. Of course, the program stated in the first sentence remains
to this day the program only, not the fruit of the theory. The formidable mathematical
difficulties, now all too well known, were first encountered by EviEr in this paper and
the preceding, in which and in »’ALempERTs Essay we find the first dim coneeption of
a field theory governed by partial differential equations, whose integrals are to be adjusted
in conformity to preseribed initial conditions and boundaries (§ 66). “But nevertheless
the whole theory has been reduced to pure analysis, and what remains to be completed
in it depends solely upon subsequent progress in analysis.”

We come next to a sequence of three papers, written in 17563—1755, which constitute
an clegant, organized, and complete treatise on the whole mathematical theory of fluid
mechanics as it stood after EvLER’s first researches.

Part XIA. Contents of the General principles of the state of equilibrium of fluids
(E 225, pp. 2—53) (1753)

(Part 1. General principles.) “1 propose here to develop the principles on which all 1
of hydrostatics, or the seience of the equilibrium of fluids, is founded. To give them the
greatest extent of which they are susceptible, I shall include in my researches not only
fluids such as water and the other liquids, which have everywhere the same degree of
density, and of which it is said that they suffer no compression ; but also those fluids
which are composed of particles of varying density, whether this difference befalls them in
virtue of their own nature, or results from the forces with which the particles mutually
press one another, It is plain that to this latter type must be relegated the air and other
fluid hodies which are called elastic. Beyond this I shall not limit my researches to the case
of gravity as the only force, but T shall extend them to arbitrary forees acting upon each
particle of the fluid.

“T'here is the program which I propose to execute, whence it is immediately clear 2
that the common prineiples of hydrostatics . . . are only a very particular case of those
which I am going to establish here.” Even though the equilibrium of elastic fluids has
been studied, “the principles which have been established for them seem so different from
[those for incompressible fluids] that one could hardly trace them back to a common
origin, founded in the general nature of fluids.

“Although 1 envisage here such a great generality, both in respect to the nature of 3
the fluid as well as the forces which act upon each of its particles, I fear not at all the
reproaches often justly directed at those who have undertaken to bring to a greater
generality the researches of others. T agree that too great a generality often obscures rather
than enlightens, leading sometimes to calculations so entangled that it is extremely dif-
fieult to deduce their consequences in the simplest cases . . . But in the subject I propose ¢
to explain, the very reverse occurs: the generality which I undertake, rather than dazzling
our lights, will the more discover to us the true laws of Nature in all their brilliance,
and we shall find therein even stronger reasons to admire her beauty and simplicity. It
will be an important lesson to learn that principles which had been thought connected to



