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Asteroid spectral types

Asteroids are assigned a type based on spectral shape. These types
are thought to correspond to an asteroid’s surface composition.

Bus and Binzel spectral types:

I C-group (carbonaceus) with a
featureless spectrum

I B-type (featureless and blue)

I S-group (stony) with silicate
absorption bands

I X-group of mostly metallic
objects including
enstatite-chondrite like spectra
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Modern CCD based asteroid spectroscopy

Bus and Binzel 2002
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FIG. 8. Examples of spectra contained in the S-, Sk-, Sq-, Sr, Sa, and
Sl-classes, presented in the same format as Fig. 3. Plotted are the spectra of
5 Astraea (S), 3 Juno (Sk), 33 Polyhymnia (Sq), 2956 Yeomans (Sr), 1667 Pels
(Sa), and 169 Zelia (Sl), showing the range of characteristics found within the
core of the S-complex. At the center of this core are the S-type asteroids, such
as 5 Astraea. The spectrum of Astraea contains a moderately steep UV slope
shortward of 0.7 µm (a), and a moderately deep 1-µm silicate absorption band
that exhibits a concave-up curvature, with a local minimum centered near 0.9 µm
(b). Trends in UV slope and 1-µm band depth noted in Fig. 5 are demonstrated
here, with the Sl-, Sa-, and Sr-class spectra containing steeper UV slopes than
the Sk- and Sq-type spectra. Similarly, the Sk- and Sl-class asteroids have the
shallowest 1-µm bands, while Sr-type asteroids exhibit the deepest 1-µm band
depth. Over the range of the UV slope shortward of 0.7 µm, the interval from
0.44 to 0.55 µm is often slightly steeper than the interval from 0.55 to 0.7 µm,

The case for the Sk- and Sl-classes, and their relationships
to the K- and L-classes in spectral component space is some-
what different. The UV slopes (and correspondingly, the average
spectral slopes) for asteroids in both the K- and L-classes are not
significantly different from those of the S-class asteroids. The
primary characteristic distinguishing the K- and L-types from
the S-class is the absence of any significant concave-up curva-
ture in the 1-µm band. Correspondingly, the magnitudes of the
dissimilarities separating the K- and L-types from the average
S-class asteroids are relatively small. As a result, the K- and
L-classes plot immediately adjacent to the S-types in spectral
component space, leaving the Sk- and Sl-types to plot on the
perimeter of the distribution shown in Fig. 5. The Sk-class rep-
resents a transition not only between the K- and S-classes, but
also to the Sq-class. Similarly, the Sl-class represents a transition
region between the L-, S-, and Sa-classes.

The C-Complex

Based on his analysis of the ECAS colors, Tholen (1984)
defined four classes to describe those asteroids whose spectra
are generally flat and featureless longward of 0.4 µm, and which
can have sharp ultraviolet drop-offs in reflectance shortward of
0.4 µm. These classes, denoted by the letters B, C, F, and G, are
often referred to as subclasses of a larger C-class or “C-group,”
reflecting the fact that the spectral differences separating these
classes are relatively small. The spectral properties exhibited by
asteroids in our C-complex are similar to those of the C-group
asteroids described by Tholen.

In spectral component space, the C-complex is not centrally
condensed, but rather a bifurcated cloud with two broad, rela-
tively distinct concentrations of points that are best separated
in the spectral component plane described by PC3′ and PC2′,
as seen in Fig. 9. This bifurcation results from two populations
within the C-complex that are differentiated based on the pres-
ence or absence of a broad absorption feature, centered near
0.7 µm. In addition to the 0.7-µm feature, the component plane
in Fig. 9 is sensitive to the strength of the UV absorption short-
ward of 0.55 µm. The order in which the C-complex was divided
into taxonomic classes was based on the dominance of these two
spectral features in component space. Spectra containing a deep
UV absorption feature were classified first, followed by objects
whose spectra include a 0.7-µm band. Finally, those spectra with
shallow to nonexistent UV features were subdivided, based pri-
marily on their spectral slope.

In separating his G-class asteroids from the B- and C-types,
Tholen had the advantage of colors derived from the ECAS s-,

as seen in the spectra of both 3 Juno and 2956 Yeomans (c). The spectra of
both 3 Juno and 169 Zelia contain 1-µm bands that show moderate concave-up
curvature (d), differentiating these Sk- and Sl-class asteroids from the K- and
L-classes, respectively. A subtle inflection in the UV slope of 33 Polyhymnia
is centered near 0.63 µm (e). This feature has been previously recognized as
the combination of two absorption bands, centered at roughly 0.60 and 0.67 µm
(Hiroi et al. 1996).

156 BUS AND BINZEL

FIG. 9. Plot of the spectral components PC2′ and PC3′ for asteroids in
the C-complex. For clarity, those asteroids classified as “C”-types (with no
subscript) are shown as dots. Arrows indicate distinct spectral trends that are
represented in this component plane. Most notably, asteroids whose spectra
contain a broad 0.7-µm feature (classified as Ch- and Cgh-types) cluster in
the upper-left half of this plot. The C-types (dots) do not show this absorption
feature, and asteroids plotting in the lower-right part of this distribution actually
contain a slight convex curvature in the middle of their spectrum. On the left-
hand side of the plot, spectra tend to have a deep UV absorption shortward of
0.55 µm (objects classified as Cg and Cgh), while spectra that are essentially
linear (featureless) plot to the upper right. Asteroids located in the middle of this
distribution will have spectra containing a moderate UV absorption shortward
of 0.55 µm, but which are approximately linear over the interval from 0.55 to
0.92 µm. Because both the UV and 0.7-µm absorption features dominate the
variance represented in this plane, the Cg-, Ch-, and Cgh-classes separate well.
However, the spectral classes that do not include these absorption features, but
rather are defined based primarily on the average spectral slope (the C-, B-, and
Cb-types), do not separate out well in this plane.

u-, and b-bandpasses (with band centers of 0.34, 0.36, and
0.44 µm, respectively) to determine the strength of the UV ab-
sorption. Much of this wavelength interval is not sampled in
the SMASSII spectra and therefore cannot be used to charac-
terize the UV feature to the same extent as was possible from
the ECAS observations. However, in the SMASSII spectra, the
subtle curvature associated with this UV absorption is found to
begin just shortward of 0.55 µm, so that over the interval from
0.44 to 0.55 µm, a diagnostic portion of the feature is measured,
as demonstrated in Fig. 10. The spectral component plane in
Fig. 9 was used as a guide in defining a boundary between those
C-type asteroids with moderate UV features, and those with deep
features. To denote those asteroids with deep UV features, the
letter “g” is appended to the class label of “C,” thus maintaining
a level of consistency with the Tholen G-class.

In Fig. 9, those asteroids that plot in the upper center and to
the left have spectra containing the 0.7-µm absorption feature.
This feature, first reported by Vilas and Gaffey (1989), has been
identified in the spectra of many low-albedo asteroids (Sawyer
1991, Vilas et al. 1993, and others). This absorption is thought
to be due to the presence of oxidized iron in phyllosilicates,

FIG. 10. Examples of spectra contained in the B-, Cb-, C-, Cg-, Ch-, and
Cgh-classes, presented in the same format as Fig. 3. Plotted are the spectra of
142 Polana (B), 191 Kolga (Cb), 1 Ceres (C), 175 Andromache (Cg), 19 Fortuna
(Ch), and 706 Hirundo (Cgh), showing the range of spectral characteristics
found in the C-complex. The spectra of both 142 Polana and 191 Kolga are
essentially featureless and are differentiated only on the basis of their slope.
C-type asteroids, such as 1 Ceres, have spectra containing a weak to moderately
strong UV absorption shortward of 0.55 µm (a). The UV absorption in the
spectrum of 175 Andromache is considerably stronger (b), accounting for its
classification as a Cg-type. The Ch-type spectrum of 19 Fortuna contains both
a moderate UV absorption, and a broad, fairly shallow absorption centered near
0.7 µm (c). This 0.7-µm feature has been well documented by Vilas and Gaffey
(1989), Sawyer (1991), Vilas et al. (1993), and others. The Cgh-type asteroid
706 Hirundo has a spectrum in which both the UV absorption (b) and 0.7-µm
feature (c) are particularly strong.

DeMeo et al., 2009
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Fig. 13. view of the C-complex in PC4′ versus PC1′ space. Here we see the C-types plotting in the bottom left of the figure and the Ch-types and Cgh-types having higher
PC4′ values plot further to the right.

Fig. 14. Prototype examples for C- and X-complex spectra.

ized by a pronounced UV dropoff similar to the Cgh, but does not
show the 0.7-µm feature that define Ch and Cgh. The classes Cg,
Cgh, Ch, Xk, Xc, and Xe do not all separate cleanly in component
space because their distinguishing features are weak and not well
detected by the first five principal components. These classes of-
ten must be distinguished by visually detecting features described
by Bus (1999). A summary of these features are described at the
end of the flowchart, Appendix B. Fig. 14 shows typical spectra for
classes within the C- and X-complexes.

4.6. A near-infrared-only classification method

For many objects, data exist in either the visible or near-
infrared wavelength ranges but not both. While taxonomies such
as the Bus system (Bus, 1999; Bus and Binzel, 2002b) are available
for visible data, no system has been widely accepted for assigning
classes to data existing only in the near-infrared. We have adapted
our present taxonomy to interpret spectral data available only in
the near-infrared range. This adaptive taxonomy is not meant to
determine a definite class, but instead is an intermediate tool to in-
dicate classes. We especially note that several classes in Section 4.5
are carried over unchanged from the Bus taxonomy and are based
exclusively on features present at visible wavelengths. Assignment
to these classes (Cg, Cgh, Xc, Xe, Xk) requires visible wavelength
data, therefore objects in these classes cannot be recognized by
near-infrared-only data.

To study the ability to classify objects having only near-infrared
spectral data we took the same 371 objects used in the original
taxonomy but included only data longward of 0.85 µm, again splin-
ing the data to smooth out noise. Our spline increments remained
0.05 µm covering the range of 0.85 to 2.45 µm resulting in 33
datapoints. We chose to normalize to unity at 1.2 µm, the clos-
est splinefit wavelength value to 1.215 µm which is the isophotal
wavelength for the J band based on the UKIRT filter set (Cohen et
al., 1992). Next, we removed the slope from the data. As in the case
with visible and near-infrared data we calculated the slope func-
tion without constraints, and then translate it in the y-direction to
a value of unity at 1.2 µm. We then divide each spectrum by the
slope function to remove the slope from the data set.

In Appendix C we provide a flowchart to define parameters
within PCAir space using slope and the first five principal com-
ponents from PCAir (see supplementary material for a table of IR
eigenvectors and channel means). These principal components are
denoted PCir1′ (to signify it is the first near-infrared principal com-
ponent after slope has been removed), PCir2′ , PCir3′ , PCir4′ , and
PCir5′ . Principal components greater than PCir5′ did not seem to
contribute significant information distinguishing classes and were
disregarded. In this case, we again start by separating end mem-
bers and other classes with the most extreme PCir values in step 1.
These classes include: A, Sa, V, Sv, O, R, D. Unfortunately the
L-type objects may be mixed in with our definition of Sv- and
R-types because they do not fully separate in all cases. In step
2 we address the S-complex, separating it into three groups. Be-
cause the entire 1-µm absorption band is not sampled some depth
versus slope information is lost, making it difficult to distinguish
between a steeply sloped spectrum with a shallow 1-µm feature
and a spectrum with a lower slope but a deep 1-µm feature. Step
three outlines the C- and X-complexes. The majority of C- and
X-complex objects are defined by visible wavelength features, so
as noted above, their relative classes are completely indistinguish-
able in an infrared-only spectrum. This is apparent in near-infrared
principal component space; most C- and X-complex objects occupy
the same region of space in all components. IR-only data therefore
do not yield a unique outcome in Principal Component Analysis
(PCA) and the data cannot formally be classified, however the pos-
sible types within each principal component space are ranked in
order of their prevalence within the data set defining this taxon-
omy. In such cases where a unique class cannot be determined,
visual inspection or quantitative comparison of residuals between
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Fig. 4. PC2′ versus PC1′ plotted for the C- and X-complexes plus D-, K-, L-, and T-types. This principal component space does not clearly separate the classes.

Fig. 5. Examples of S-, Sa-, and A-classes. There is a clear progression from S-types
with a shallow 1-µm band and low slope to A-types with a deep 1-µm band and
high slope. Sa- and A-types show similar 1-µm band absorptions, but Sa-types are
much less red than A-types. The class and the asteroid number are labeled next to
each spectrum.

a minimum near 1 µm and may or may not have shallow 2-µm
absorption band; it also tends to be steeply sloped. The Sa-class
has the same characteristic 1-µm absorption band as the A-class,
but is less red.

The current Sa-class was redefined from the Bus system be-
cause the two Sa objects (main belt object 984 Gretia and Mars
crosser 5261 Eureka) in this system were both Sr-types in the
Bus system. Since these objects prove to be intermediate between
S and A we change the classification of these two (Bus) Sr-types
to Sa in this taxonomy. Fig. 5 shows the spectral progression from
S to A.

Step two starts by separating all objects by the divide (line α)
in PC2′ versus PC1′ space, and creates boundaries for objects with
a 2-µm band. Step three addresses subtly featured objects (the C-
and X-complexes) as well as the K-class which has no significant
2-µm band and the L-class which may or may not have a 2-µm
absorption band but nonetheless lies to the left of line α.

4.2. The end members: O, Q, R, V

We started by looking at the end member classes in PCA space
since they separate most clearly, thereby making them the easiest

to define. In Fig. 3 one can see lines separating S-complex and end
member classes. Equations (3), (4), (5), (6), and (7) bound these
classes:

PC1′ = −3.0PC1′ + 1.5 (line δ), (4)

PC1′ = −3.0PC1′ + 1.0 (line γ ), (5)

PC1′ = 1
3
PC1′ − 0.5 (line η), (6)

PC1′ = −3.0PC1′ + 0.7 (line θ). (7)

The V-class, based on the asteroid 4 Vesta (Tholen, 1984), is
characterized by its strong and very narrow 1-µm absorption band,
as well as a strong and wider 2-µm absorption feature. Most
V-class asteroids that have been discovered are among the Vesta
family and are known as Vestoids, although a few other objects
have been identified throughout the main belt, such as 1459 Mag-
nya (Lazzaro et al., 2000) and objects from the basaltic asteroid
survey by Moskovitz et al. (2008). The R-class, created for its sole
member 349 Dembowska by Tholen (1984), is similar to the V-
class in that it displays deep 1- and 2-µm features, however the
1-µm feature is broader than the V-type feature and has a shape
more similar to an S-type except with deeper features. The R-class
region in principal component space is plotted in (Fig. 3). Bus (Bus
and Binzel, 2002b) included three other members in the R-class,
two of which are included in our sample. These two objects (1904
Massevitch and 5111 Jacliff) were reassigned to the V-class after
discovering that in the near-infrared their 1-µm bands remain very
narrow. Moskovitz et al. (2008) list 5111 Jacliff as an “R-type in-
terloper” within the Vesta family, but it appears to be an object
more confidently linked to Vesta. 1904 Massevitch, however, has a
semi-major axis of 2.74 AU. The unusual spectrum and outer belt
location for asteroid 1904 has been noted previously (e.g., Burbine
and Binzel, 2002). In the sample we present here, asteroids 1904
Massevitch and 1459 Magnya (Lazzaro et al., 2000) are the only
two V-types beyond 2.5 AU, a region where V-type asteroids are
rare (Binzel et al., 2006, 2007; Moskovitz et al., 2008).

The O-class also has only one member, 3628 Boznemcova, de-
fined by Binzel et al. (1993). Boznemcova is unique with a very
rounded and deep, bowl shape absorption feature at 1-µm as well
as a significant absorption feature at 2 µm. Even though the class

I However, all spectra do not go shortwards 450nm.

I Most available data in the blue region (340-550nm) are very
poor in quality.



Sloan Digital Sky Survey (SDSS); Parker et al. (08) colors

SDSS: color photometry of more than 100,000 asteroids.
Example from the SDSS Moving Object Catalog 4 (MOC4).
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Fig. 3. A plot of the color distribution in a∗ and i− z of 45,087 unique objects listed
in both the SDSS MOC 4 and ASTORB file, and that have Hcorr < 16. The approximate
boundaries of three spectral classes are marked, and used in labeling family type.
The color-coding scheme defined here is used in Figs. 4–6.

Fig. 4. A plot of the proper a vs. sin(i) for the same objects as shown in Fig. 3. The
color of each dot is representative of the object’s color measured by SDSS, according
to the color scheme defined in Fig. 3. The three main regions of the belt, defined by
strong Kirkwood gaps, are marked.

the technique developed by Ivezić et al. (2002b) to visualize this
correlation for ∼45,000 unique main-belt asteroids with Hcorr < 16
listed in SDSS MOC 4 (Figs. 3 and 4). The asteroid color distribution
in SDSS bands shown in Fig. 3, and its comparison to traditional
taxonomic classifications, is quantitatively discussed by Ivezić et
al. (2001) and Nesvorný et al. (2005).

A striking feature of Fig. 4 is the color homogeneity and dis-
tinctiveness displayed by asteroid families. In particular, the three
major asteroid families (Eos, Koronis, and Themis), together with
the Vesta family, correspond to taxonomic classes K, S, C, and V,
respectively (following Burbine et al., 2001, we assume that the

Eos family is associated with the K class). Their distinctive optical
colors indicate that the variations in surface chemical composition
within a family are much smaller than the compositional differ-
ences between families, and vividly demonstrate that asteroids be-
longing to a particular family have a common origin.

3.1. A method for defining families using orbits and colors

Traditionally, the asteroid families are defined as clusters of
objects in orbital element space. The most popular methods for
cluster definition are the hierarchical clustering and the wavelet
analysis (Zappalá et al., 1995; Nesvorný et al., 2005). Given the
strong color segregation of families, it is plausible that SDSS colors
can be used to improve the orbital family definitions and minimize
the mixing of candidate family members and background popula-
tion.

The SDSS colors used to construct Figs. 3 and 4 are the i − z
color and the so-called a∗ color, defined in Ivezić et al. (2001) as

a∗ ≡ 0.89(g − r) + 0.45(r − i) − 0.57. (3)

The a∗ color is the first principal component of the asteroid color
distribution in the SDSS r − i vs. g − r color–color diagram (for
transformations between the SDSS and Johnson system see Ivezić
et al., 2007). Similar principal component analysis was also per-
formed by Roig and Gil-Hutton (2006), who considered the distri-
bution of taxonomic classes (especially V-type asteroids) in SDSS
principle components by comparing directly to spectroscopic data,
and by Nesvorný et al. (2005), whose two principal components
are well correlated with the a∗ and i − z colors (we find that
a∗ = 0.49PC1 − 0.16 reproduces the measured a∗ values with an
rms of 0.026 mag for objects with r < 18). The principal colors de-
rived by Nesvorný et al. (2005) include the u band, which becomes
noisy at the faint end. Given that the completeness of the known
object catalog (ASTORB) reaches a faint limit where this noise be-
comes important, we use the a∗ and i − z colors to parametrize
the asteroid color distribution. Therefore, the family search is per-
formed in a five-dimensional space defined by these two colors
and the proper semi-major axis, sine of the inclination angle and
eccentricity.

There are numerous techniques that could be used to search for
clustering in a multi-dimensional space (e.g. Zappalá et al., 1995;
Nesvorný et al., 2005; Carruba and Michtchenko, 2007). They differ
in the level of supervision and assumptions about underlying data
distribution. Critical assumptions are the distribution shape for
each coordinate, their correlations, and the number of independent
components. We utilize three different methods, one supervised
and two fully automatic. The automatic unsupervised methods are
based on the publicly available code FASTMIX5 by A. Moore and
a custom-written code based on Bayesian non-parameteric tech-
niques (Ferguson, 1973; Antoniak, 1974).

In the supervised method (1) families are manually identified
and modeled as orthogonal (i.e. aligned with the coordinate axes)
Gaussian distributions in orbital and color space. The two unsu-
pervised methods (2 and 3) also assume Gaussian distributions,
but the orientation of individual Gaussians is arbitrary, and the
optimal number of families is determined by the code itself. All
three methods produce fairly similar results and here we describe
only the supervised method (1), and use its results in subsequent
analysis. The two unsupervised methods produce generally similar
results for the objects associated with families, but tend to over-
classify the background into numerous (50–60) small families, and
their details and results are not presented thoroughly in this paper.

5 See http://www.cs.cmu.edu/~psand.

bands: u’:354, g’:477, r’:623, i’:763, z’:913 (mn)
with a∗ = 0.89(g ′ − r ′) + 0.45(r ′ − i ′)− 0.57.



Asteroid spectral classes and mineralogy of the main belt

I Investigation of the
mineralogy of families.

I Comparison of spectra of
NEAs with those of families
near the NEA source
regions...
with the help of dynamical

models; see e.g. De Leon et al.

2010; Campins et al. 2010;

Jenniskens et al. 2010; Walsh et

al. 2011; Gayon-Markt et al.

2011; etc..)
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pervised methods (2 and 3) also assume Gaussian distributions,
but the orientation of individual Gaussians is arbitrary, and the
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results for the objects associated with families, but tend to over-
classify the background into numerous (50–60) small families, and
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The photometers on the focal plane of GaiaFocal plane
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disclaimer: in the Gaia community, BP-RP data is called color phometry;

it is low resolution (R ∼ 20− 90) slit-less spectroscopy, though.



The photometers: resolving power (R = λ
∆λ)A job for Rosario 

Gaia will take low 
resolution spectra 
of about 200000 
asteroids 
(SNR~50-100)
Taxonomy
Space weathering 
age of the 
asteroids from 
Lecce/Catania 
model?

R~70

R~20

R~90

R~70

I Sampling is such to have about 18
independent bands in the BP-RP
domain (A. Brown, spring 2011)

I Sampling is 60 pixel per
photometer, signal is in general
contained in 40 pixel per
photometer.

I Telescope PSF FWHM is about 2
pixels AL (40/2∼20 independent
bands) and 1 pixel AC.

I 80% of asteroid observations have
velocities ≤15 mas/s.
Beacuse a CCD transit lasts 4 s →
≤1 pixel widening of the PSF: this
is not too bad.



BP-RP response for point like sources

G=15 point source with different colors.

  The crowding evaluation establishes if a source in its window is 

GAIA PHOTOMETRIC DATA PROCESSING
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Raw Data

PreProcessing: the aim is to handle the raw data coming from the Initial Data Treatment to obtain 

clean dispersed  images 

Internally calibrated spectra

Externally calibrated spectra

Clean Dispersed Images

Bias subtraction

  To reduce CTI effects, charges are periodically injected on the CCDs, 

causing  charge release trails which must be corrected for. 

 isolated 

background subtraction only 

blended 

more sources are inside the same window; fitting the data 

with template spectra or Gaia spectra will disentangle the 

spectra while also computing the background 

contaminated 

subtraction of flux from a nearby star 

falling inside the window

CTI mitigation must be applied to the 

spectra, in the AL direction, due the 

  radiation damage, and in the AC 

direction due to the fast reading of the  

serial register 

Internal Calibration: the aim is to bring all observations to a “mean instrument” as different 

observations of the same source can vary in a substantial way because of several effects. 

The position of the CCDs on the focal

  plane or the optical projection can 

 differ from the nominal ones; the 

calibration of this effect is called 

geometrical calibration, both in the AL 

 direction (by means of a reference sample) 

and in the AC direction (by means of 2D 

windows);

 The dispersion law  and 

PSFs vary with the Field of 

View and different focal 

plane position

 There is always a flux loss due 

to the limited window, but it can 

vary in case of truncated win-

dows, badly centered 

windows, motion of the star in the 

focal plane and due to differences 

in the PSF width across the focal 

plane

 The sensitivity varies between 

Fields of view, CCDs, columns 

and in case of gates.

 Non-linearity effects are ex-

pected in case of very bright or 

very faint stars. 

The calibration of these effects will produce a mean spectrum 

as the combination of many individual observations of a source. 

A mean spectrum will be characterized by a reference (pre-

defined) dispersion and by a mean sensitivity. A proposal for 

the representation of a mean spectrum is as sum of  basis 

functions Bk.  In some cases (as variables stars or solar system 

objects), a mean spectrum is not well defined and what is im-

portant  is the epoch spectrum, at the level of the individual 

transit. 

External Calibration: the aim is to obtain externally calibrated spectra in physical units.

! This is an overview of the processing of the dispersed images  for the Blue and Red Photometers of the Gaia Satellite. The data first pass through the

!    Initial Data Treatment where the telemetry is unpacked and sent to the photometric data reduction pipeline, called PHOTPIPE. We can define in the

     whole processing three main steps: the pre-processing of raw data to obtain clean spectra; the internal calibration, to bring all spectra to the same  

     “mean instrument”; the external calibration, for the absolute calibration of the spectra and the flux. All externally calibrated data for the same source 

                                        are then collected to obtain a high signal-to-noise spectrum which will be stored in the  final catalogue.

The calibration model is based on this 

equation, describing the formation of a 

spectrum on a CCD of BP or RP:

Sobserved =  D x Strue

where Sobserved  and Strue are the ob-

served and true spectrum respectively 

and D is called Dispersion Matrix and it 

contains the mean response curve, the 

dispersion function and the PSF. 

The Dispersion Matrix is calculated comparing ground-

based and Gaia internally calibrated spectra of suitable 

Spectro Photometric Standard Stars (SPSS). 

Inverting the equation and knowing D and Sobserved  is possible to obtain 

the true spectrum, removing also the effect of the PSF smearing.

The existence of problems, as the CTI, the small number of calibrators, non linearity effects, etc... indicate as possible 

solution the application of a forward model: in this case, knowing in advance the source parameters (position, magnitude, SED) and the instrument parameters, it is possible to predicted the raw data which 

will be compared with the observed data. The update of the models or the absolute calibrated spectra will be obtained iterating the whole process.
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BP-RP SNR for an asteroid with G=17
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Photon Noise limited in general. So SNR=
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BP-RP SNR as function of magnitude (1 transit)
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I Minimum and Peak SNR in the range 400-1000 nm per
transit.

I Best fit to min SNR: SNR=17631× 10−0.201317∗G



Average SNR for BP-RP at the end of mission

I The large majority of asteroids
(main belt) are observed at least
60 times [Mignard, F. 2001
(SAGFM09)]

I The SNR of the accumulated
(avarage spectrum) is 8 times
larger  10
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For asteroids with G=19-20 spectral classification will be difficult.
Solution:?!: Spectral binning.



Spectral Shape Coefficients: 8-colors asteroid survey

I Spectral Shape Coefficients (SSCs;
4 for BP and 4 for RP; 8 colors for
each source) are calculated by
IDT (Initial Data Treatment).

I SSCs calculated also by PhotPipe
and refined at every cycle.

I Potentially very interesting for
performing an 8-colors asteroid
survey.
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asteroid (solar-like spectrum).



Data products for asteroid color photometry

I The spectral energy distribution (SED) is obtained from
accumulated BP-RP data.

I Average SEDs is produced (1 per asteroid).
I Epoch SEDs is also produced where possible (for SNR≥20 per

transit ∼G≤15).
I Smearing due to proper motion is taken into account.

I Asteroid reflectivity is calculated from the SED.
I BP and RP SEDs are combined into one SED.
I The SED is divided by the solar spectrum and the results

normalized at 0.55 microns.

I The asteroid reflectivity is used to determine the asteroid
spectral class.

I Unsupervised clustering algorithm.
I Comparison with other classifications (e.g. Bus & Binzel).



Clustering method based on Minimal Spanning Tree (MST)

Galluccio et al. (2008 )
Method for partitioning a set V of N data
points (V ∈ RL) into K non-overlapping
clusters with:

I the inter-cluster variance is maximized;

I the intra-cluster variance is minimized.

Example of MST in R2
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Figure 1. Left: construction of a MST through a random set of data. Right: g(i) = |ei|, the length
of a new edge built at iteration i.

Spectral clustering with a graph-based distance measure

In [3], Grishkat et al propose a new distance measure based on the hitting time
when two MST rooted at each vertex intersect. At each iteration, both MST grow
from each initial vertex, until its collapse. This distance is referred as Dual Rooted
Hitting Time. More recently, a new distance measure based on diffusion processes
has been deducted from the previous. Details of the construction and properties
of this distance, referred to as Dual Rooted Prim, will be published elsewhere.
We propose to exploit these similarity measures in some popular similarity-based
clustering, based on spectral graph theory, spectral clustering methods [4].
From a matrix of distance M, an affinity matrix A is computed: A(i, j) =

exp−m(xi,x j)
2

σ2 . Let L be the normalized laplacian of a totally connected graph:

L = D1/2(D−A)D1/2, where D = ∑ j Ai j is the diagonal degree matrix of A. Eigen-
vectors with the K largest eigenvalues are kept then normalized. Finally, a classical
partitioning method, K-means, is applied to cluster the data.

DISTANCE MEASURES

Let X = {x1, . . . ,xL} and Y = {y1, . . . ,yL} two feature vectors, for example corre-
sponding to a pixel in the imagery domain or to a reflectance spectrum in astro-
physics. In order to measure the distance between two points, we can basically

compute the euclidean distance: d(X ,Y ) =
�

∑L
i=1(xi − yi)2.

Though this metric enjoys usefull properties (symmetry, non-negativity, triangu-
lar inequality), it has some restrictive drawbacks: it increases with the dimension
of the data; it does not handle cases when spectra contain missing values at some
wavelengths, it gives essentially a spatial distance, and does not take into account
the positivity of data. We prefer information divergences as measures of similarity

Identification of the number of clusters:

I The lenght of the edge at each addition of
a vertex of the MST is recorded.

I Then by identifying valleys in this curve,
we can estimate the number and positions
of high density regions of points → i.e.
the clusters. !!"# ! !"#
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Figure 1. Left: construction of a MST through a random set of data. Right: g(i) = |ei|, the length
of a new edge built at iteration i.

Spectral clustering with a graph-based distance measure

In [3], Grishkat et al propose a new distance measure based on the hitting time
when two MST rooted at each vertex intersect. At each iteration, both MST grow
from each initial vertex, until its collapse. This distance is referred as Dual Rooted
Hitting Time. More recently, a new distance measure based on diffusion processes
has been deducted from the previous. Details of the construction and properties
of this distance, referred to as Dual Rooted Prim, will be published elsewhere.
We propose to exploit these similarity measures in some popular similarity-based
clustering, based on spectral graph theory, spectral clustering methods [4].
From a matrix of distance M, an affinity matrix A is computed: A(i, j) =

exp−m(xi,x j)
2

σ2 . Let L be the normalized laplacian of a totally connected graph:

L = D1/2(D−A)D1/2, where D = ∑ j Ai j is the diagonal degree matrix of A. Eigen-
vectors with the K largest eigenvalues are kept then normalized. Finally, a classical
partitioning method, K-means, is applied to cluster the data.

DISTANCE MEASURES

Let X = {x1, . . . ,xL} and Y = {y1, . . . ,yL} two feature vectors, for example corre-
sponding to a pixel in the imagery domain or to a reflectance spectrum in astro-
physics. In order to measure the distance between two points, we can basically

compute the euclidean distance: d(X ,Y ) =
�

∑L
i=1(xi − yi)2.

Though this metric enjoys usefull properties (symmetry, non-negativity, triangu-
lar inequality), it has some restrictive drawbacks: it increases with the dimension
of the data; it does not handle cases when spectra contain missing values at some
wavelengths, it gives essentially a spatial distance, and does not take into account
the positivity of data. We prefer information divergences as measures of similarity



Test of the classification algorithm

I Spectra of asteroids belonging to all spectral classes were
obtained at the Telescopio Nazionale Galileo (TNG) under
Gaia-like observing geometry.
PI Paolo Tanga; Data analysis in progress.

photo credits: P. Tanga

I See next talk by Julie Gayon-Markt.



Removal of spectral classification degeneracies

There are some well known
degeneracies in the mineralogical
interpretation of asteroid spectral
classes.
For instance, asteroids (46)
Hestia, (55) Pandora, and (317)
Roxane have very similar spectra.
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But asteroids (46) Hestia, (55)
Pandora, and (317) Roxane have
different albedos.
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Albedo + spectra → removal of
spectral class degeneracies.



Asteroid spectral classification (Gaia + WISE data)

I NASA WISE has observed 100,000 asteroids in the thermal IR.

I Albedos will be obtained from WISE data.

I First data (IR images) already released.

I Albedo + spectra → removal of spectral class degeneracies.

I Albedo and spectra can be classified using our non supervised
classification algorithm.



ExploreNEOs with Warm Spitzer: PI D. Trilling (NAU)

Albedos from Warm Spitzer
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Conclusions

DPAC products (from Gaia observations only):

I Gaia will obtain R ∼ 20− 90 visible spectra of asteroids.

I Average spectra (reflectancies) will be published.

I Epoch spectra for the brighter asteroids.

I Spectral classes of asteroids will be also published.

Gaia + Auxiliary data (e.g. WISE albedos):

I Albedo from WISE or Spitzer will allow spectral classes
degeneracies to be removed
→ mineralogical map of the main belt.
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