Solar System science by Gaia observations

P. Tanga Observatoire de la Côte d'Azur

Paolo Tanga

Gaia and the Solar System...

- Asteroids (~400.000 most known)
 - Mainly Main Belt Asteroids (MBA)
 - Several NEOs
 - Other populations (trojans, Centaurs,..)
- Comets
 - Primitive material from the outer Solar System
- « Small » planetary satellites
 - « regular »
 - « irregular » (retrograde orbits)
- Gaia will probably NOT collect observations of « large » bodies (>600 mas?)
 - Main Planets, large satellites
 - A few largest asteroids

The scanning law

Observable region on the ecliptic

- ~ 60 detections/ 5 years for Main Belt asteroids
- 1 SSO object in the FOV every second around the ecliptic
- Discovery space:
 - Low elongations
 (~45-60°)
 - Inner Earth Objects (~unknown)
 - Other NEOs

How many asteroids with Gaia?

Evolution of the number of entries H < H_{lim}

Paolo Tanga, Gaia Solar System Science – Pisa May 4-6 2011

Gaia data for asteroids

Astrometric Field

- Main source of photometric and astrometric data
- Read-on window assigned on board around each source
- Window is tracked during the transit
- For most sources the signal is binned across scan
- → Best accuracy in the « along scan » direction
- \rightarrow Across Scan uncertainty ~ window size

Windows on moving sources

- Windows are allocated from ASM centroiding
 - centroiding errors lead to offset in the window
 - transit velocity errors lead to a drift in the window
- A moving object will also drift relative to the window
 - the total effect depends on the window size and V_{al}

Velocity distribution

simulation on 5,000 objects

 main-belt, NEOs

 motion detectable
 over 1 transit

σ~7 mas/s

Solar elongations

Phase angles

Expected properties of Gaia data: summary

- 1 linear signal per CCD column
 - 2D data available in some cases
 - Loss of data due to motion
- High accuracy in the along scan (AL) direction, poor accuracy across-scan (AC)
 - Resulting in strongly correlated ucertainties on single-epoch equatorial positions
- 50-70 observations of a given Main Belt Asteroid over 5 years
- Low elongations (~45°) accessible
- Frequent subsequent observations in the two FOVs
- parallax effect relative to Earth (observations from L2)

Science goals

- Systematic survey down to 20 mag ~ 3x10⁵ objects
 - Main belt
 - NEOs
- Orbits : virtually all object observed x30 better than now higher resolution of dynamical families
- Masses from close encounters ~ 100 masses expected
- Diameter for over 1000 asteroids : shape, density
- Binary asteroids
- Photometric data in several bands : albedo, taxonomic classification
- Light curves over 5 years : rotation, pole, shape
- Space distribution vs. physical properties
- Perihelion precession for 300 planets : GR tests

Astrometry \rightarrow orbit refinement

- Orbit reconstruction from simulated data
 - point sources & gravitational interaction
 - solar system perturbations

Paolo Tanga, Gaia Solar System Science – Pisa May 4-6 2011

Simulated Gaia photometry

Photometry → Shapes

- Asteroid's magnitude function of:
 - shape, rotation period, direction of spin axis
- Direct problem:
 - model of light curves for different shapes and rotation
- Inverse problem:
 - find the rotation parameters from photometric data
 - strongly non linear
- Choice for Gaia:
 - Three-axial ellipsoids

Size of the asteroids

- Direct size determination for over 1000 asteroids
 Cood quality sizes for Ds 40km
- Good quality sizes for D>40km
- Object's size at different epochs
 → overall shape
- Binarity

Signals for different source diameter

RP/BP → Taxonomic classification

- Taxonomy classifies asteroids on the basis of visible and near-IR reflectance spectroscopy
 - Based on ~1000 objects today
- Gaia special features:
 - High solar elongation
 - Blue spectrum coverage
 - Several "bands"
 - → Preliminary investigation on earth-based observations
- Limitations

...no albedo → ambiguity E,M,P...

 automatic classifier developed for Gaia
 → Gaia taxonomy

How much is / will be known

Property	today	Gaia
actromatry	0"5	0"005
rotation periods	~ 0 5 3000	
shapes, poles	~200	
spectral type	~ 1800	
masses, $\sigma < 60\%$	~ 40	
size , σ < 10%	~ 500	
satellites	~ 20 (MBA)	

Processing of SSO data

The DPAC

SSOs in the Gaia DPAC

Coordination Unit 4

- manager : D. Pourbaix; deputy: P. Tanga
- Implementation of software in the Data Processing Center
- ~ 20 european astronomers working on SSOs

Two pipelines for SSO:

- Short-term (daily) processing
 - Working on 24h of data
 - Fast processing for identifying anomalous/unknown asteroids
 - \rightarrow Triggering of alerts

Long term processing

- Best accuracy
- Complex object model (shapes, motion,...), best astrometric solution, all effects taken into account
- Aims: intermediate \rightarrow final data releases

Gaia Follow-Up-Network for SSO

- Validation of SSO nature of the «new» objects
 - Ground based recovery can discriminate « false » and « true » SSO
 - Reliability verification of the daily processing chain
- Recovery of the highest possible number of
 - New objects, discovered by Gaia
 - Objects with \ll poor \gg orbits (\rightarrow ambiguous identification)
- Improve orbit accuracy
 - a single ground-based detection can "collapse" the uncertainty of an orbit

Advantages

- contamination of data sent to Minor Planet Center during the early mission operations is avoided
- the science impact of the mission is maximized

No external data sources used for DPAC processing

probably for validation purposes only

Possible actions triggered by the Gaia output

• Further data exploitation

- Computation of proper elements, new dynamical family classifications
- Deeper analysis of anomalous sources (suspect binaries, comets...)

Obtention of new data

- TNO/asteroid occultations
- Complementary observations:
 - Spectra
 - Photometry
 - Astrometry (candidates for mass / Yarkovsky determination)

Exploitation by associating data of other surveys:
 – Pan-STARRS, LSST, Spitzer & WISE ...

This is the reason why we are in Pisa now!

Copyright (C) 2005, by Fahad Sulehria, http://www.novacelestia.com. All Rights Reserved