Solar System science before and after Gaia

*Pisa, Italy, 2011 May 4-6* 

# The representation of asteroid shapes: a test for the inversion of Gaia photometry

158 Koronis

#### A. Carbognani<sup>(1)</sup>, P. Tanga<sup>(2)</sup>, A. Cellino<sup>(3)</sup>, M. Delbo<sup>(2)</sup>, S. Mottola<sup>(4)</sup>

(1) Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA), Italy

- (2) Astronomical Observatory of the Côte d'Azur (OCA), France
  - (3) INAF, Astronomical Observatory of Torino (OATo), Italy
  - (4) DLR, Institute of Planetary Research, Berlin, Germany

### **Photometry and shapes**



<u>Photometry</u> has been one of the first observing techniques adopted to derive information about the physical properties of asteroids.

The <u>rotation period</u> can be derived from an <u>analysis of the lightcurve</u> and with lightcurve at different apparitions it is possible to determine the sky orientation of the <u>spin axis</u> and the <u>object's shape</u>.

An example of asteroid shape: 158 Koronis (Database of Asteroid Models from Inversion Techniques, DAMIT).

### Asteroid photometry with Gaia

- 1. Gaia will produce a large amount of <u>sparse</u> photometric data.
- 2. Each object will be observed 50-100 times, at a variety of observing circumstances.
- 3. Gaia will observe all asteroids down to visible magnitude +20 (about 300,000 objects).
- 4. Deriving rotational and shape properties from photometric data is a challenging problem.
- 5. <u>Inversion</u> of Gaia asteroid photometry will be made assuming that the objects have <u>three-axial ellipsoid</u> <u>shape</u>. But how accurate is this approximation?

### Simulation of Gaia data processing

- 1. A pipeline of simulations (called "runvisual") has been implemented to assess the expected performances of asteroid photometry inversion.
- Asteroid complex models (convex shapes) are used to

   (a) <u>extract best-fit ellipsoidal models of the assumed shapes</u>, and (b) to <u>simulate Gaia photometric observations</u>.
- 3. The <u>"genetic" algorithm</u> developed by Cellino et al. (2009) for Gaia data processing is used to derive the <u>rotation period</u>, <u>pole</u> <u>coordinates</u>, <u>ellipsoidal shape (b/a, c/a)</u>, and phase-mag slope for each simulated set of observations.
- 4. The <u>results of the inversion</u> are <u>compared with the correct solution</u>, and it is also checked whether the obtained <u>shape corresponds</u> to the <u>best-fit triaxial ellipsoid model of the complex shape</u>.

## Runvisual algorithm

Input of the model file, pole solution, diameter, scattering model, geometric albedo and ephemeris file.

- Scale the mesh according to the asteroid effective diameter.
- Start loop for visual magnitude computation:
- Read from ephemeris file JD, asteroid's heliocentric and geocentric coordinates.
- Rotation of the model in the ecliptic coordinate system.
- Computation of the normal vector to the asteroid faces in the ecliptic system.
- Computation of the faces illuminated from the Sun and seen from Earth.
- Compute the asteroid magnitude with the selected scattering model: geometric, Lambert, Lommel-Seeliger and Lommel-Seeliger-Lambert.
- End magnitude loop.

Runvisual was written in classical C-language under Linux OS.

### Choice of complex models

- 1. The analysis has been so far <u>limited to Main Belt asteroids</u>. Complex models (convex shapes) were taken from the <u>Database of Asteroid Models from</u> <u>Inversion Techniques (DAMIT)</u>.
- 2. The database and its web interface is operated by The Astronomical Institute of the Charles University in Prague, Czech Republic. The DAMIT Web address is: http://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php

#### From complex shape to best-ellipsoidal shape - 1



#### The best-ellipsoid fit is a two step processes:

- 1. Calculation of the major axis and of the second axis of the ellipsoid in the asteroid X-Y plane as best-fit ellipse.
- 2. Compute the <u>third</u> ellipsoid <u>axis</u> so that to have <u>equal volumes</u> between complex and ellipsoidal shape.

The spin is the same for complex and best-ellipsoidal shape.

#### From complex shape to best-ellipsoidal shape - 2



Asteroid 9 Metis. Red: complex shape. White: best-ellipsoidal shape.

#### Comparison between lightcurves of complex and best-fit ellipsoidal shapes

- 1. <u>Simulated lightcurves</u> of <u>complex shapes</u> and corresponding <u>best-fit triaxial</u> <u>ellipsoid shapes</u> were computed and compared at a variety of possible observing circumstances.
- So far, we used the complex models of <u>eight MBAs</u>: 3 Juno, 9 Metis, 192 Nausikaa, 484 Pittsburghia, 532 Herculina, 584 Semiramis, 1088 Mitaka and 1270 Datura, corresponding to <u>increasing irregularity in shape and decreasing effective</u> <u>diameter</u>.
- 3. The <u>simulated spin axis</u> was not that of the real asteroid, but was <u>taken on the</u> <u>ecliptic plane</u>, in the reverse direction of the gamma-point, to maximise lightcurve variations. The orbit was assumed to be circular with a 3 UA radius.
- 4. We found that a <u>triaxial ellipsoid model</u> provides a <u>good fit of the real lightcurve</u> only at <u>high aspect angles</u> (nearly equatorial view), at any phase angle. <u>At low</u> <u>aspect angles the agreement is quite poor</u>.

#### Geometry for photometric comparison on circular orbit

| Phase angle (°)   | Aspect angle (°) | Aspect angle (°)   | Aspect angle (°)   |
|-------------------|------------------|--------------------|--------------------|
|                   |                  |                    |                    |
| 0                 | 0                | $2^*\alpha_{max}$  | $4^* lpha_{max}$   |
| $lpha_{max}$      | 0                | $2^*\alpha_{max}$  | $4^* \alpha_{max}$ |
| -α <sub>max</sub> | 0                | $2^* \alpha_{max}$ | $4^* lpha_{max}$   |

For each phase angle were tested different aspect angles. In our geometry  $sin(\alpha_{max})=1/3$  so  $\alpha_{max} \sim 19.5^{\circ}$ .

#### *Complex vs best-ellipsoidal lightcurves – circular orbit*



Comparison of the lightcurves obtained at <u>phase angle -20</u> (before opposition) and <u>aspect angles</u> (from left to right) <u>0, 40 and 80</u> for the <u>complex model (blue line)</u> of the asteroid <u>3 Juno</u> and the corresponding <u>best-fit ellipsoid (red line)</u>. The scattering model is that of Lommel-Seeliger-Lambert.

## Simulating Gaia photometry

- 1. Gaia observations have been simulated using the <u>software written by F. Mignard</u> and P. Tanga and implemented in Java by Christophe Ordenovic (OCA). This software simulates the Gaia observation sequence for any Solar System object, giving for each observation the corresponding gaia-centric and heliocentric distances and the phase angle.
- Apparent magnitudes were computed at simulated observation epochs for some <u>Main Belt asteroids</u>, using their (already known) <u>spin, period and corresponding</u> <u>complex models</u> (convex shapes). Light scattering effects on asteroid surfaces were modeled using both a purely geometric and a "Finnic" model (0.1 Lambert scattering + 0.9 Lommel-Seeliger scattering).
- 3. <u>The simulated observations were inverted using the "genetic" algorithm</u> <u>developed for GAIA</u>.
- 4. Preliminary results (work in progress), suggest that the <u>"genetically derived"</u> <u>ellipsoids found by photometry inversion are strictly similar to the best-fitting</u> <u>ellipsoids of the simulated complex shapes</u>. Moreover, it is found that the RMS between simulated observations and computed solutions is not very important for a good pole fit (confirming similar results by Cellino et al., 2009).

### Example of simulated photometric data



The simulated photometric plot for the asteroid 484 Pittsburghia.

#### Some spins and shapes results from simulation - 1



Spin coordinates difference between the genetic inversion and the complex/best-ellipsoidal models. Whe have  $\Delta\lambda_{max}$  5 and  $\Delta\beta_{max}$  10. Axis ratio between the genetic inversion with the convex models and the best-ellipsoidal models.

The rotation periods are very good and are not compared.



#### Some spins and shapes results from simulation - 2



The spin fit is not strongly sensitive to the RMS (Root Mean Square) between complex and bestellipsoidal model.

## **Preliminary conclusions**

- 1. Confirmed rotation periods with high accuracy.
- 2. Confirmed unique solution for the spin.
- 3. Confirmed the spin fit is not strongly sensitive to the RMS between complex and best-ellipsoidal model.
- 4. <u>Axis ratio near that of the best-fit ellipsoid of the complex</u> <u>shape.</u>
- 5. <u>Best-fit ellipsoid and complex shape can have very</u> <u>different lightcurves.</u>

...but much work remains to be done, eg:

Which error is committed on the volume/density estimate?

Solar System science before and after Gaia

*Pisa, Italy, 2011 May 4-6* 

# The representation of asteroid shapes: a test for the inversion of Gaia photometry

158 Koronis

Thank You!

Contact: Email: albino.carbognani@gmail.com Web: www.oavda.it