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Abstract

Independent Component Analysis (ICA) is a recently developed tech-
nique that in many cases characterizes the data in a natural way. The
main application area of the linear ICA model is blind source separa-
tion. Here, unknown source signals are estimated from their unknown
linear mixtures using the strong assumption that the sources are mutually
independent. In practice, separation can be achieved by using suitable
higher-order statistics or nonlinearities. Various neural approaches have
recently been proposed for blind source separation and ICA. In this pa-
per, these approaches and the respective learning algorithms are briefly
reviewed, and some extensions of the basic ICA model are discussed.

1. Introduction

A recent trend in neural network research is to study various forms of unsu-
pervised learning beyond standard Principal Component Analysis (PCA). Such
techniques are often called nonlinear PCA methods. They can be developed
from various starting points, usually leading to different solutions [20]. Indepen-
dent Component Analysis (ICA) [12, 18] is a useful extension of PCA that has
been developed some years ago in context with blind source separation (BSS)
problems. In BSS, the goal is to extract independent sources signals from their
linear mixtures using a minimum of a priori information. Such blind techniques
are needed in several areas. The application of neural BSS approaches have
already been considered in communications [6, 14], speech processing [29, 38§],
and medical signal processing [25] for example.

Roughly speaking, in ICA the data vectors are represented in a linear ba-
sis which is determined by requiring that the coeflicients of expansion must be
mutually independent (or as independent as possible). Therefore, the basis vec-
tors of ICA are generally nonorthogonal, and higher-order statistics are needed
in determining the ICA expansion. However, this kind of representation often
characterizes the fundamental properties of the data better than standard PCA.
For example in blind source separation the ICA expansion leads to separation
of the original source signals.

Lately, there has been considerable interest in various neural realizations of
ICA and BSS. In these approaches, the higher-order statistics are typically taken
into account by using suitable nonlinearities in the learning phase, even though
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Figure 1: The three original voice sources.

the final input-output mapping is still linear. In this paper, we attempt to give
a short tutorial review of some recent neural approaches to ICA and BSS.

2. The data model

The basic data model used in defining both ICA [12] and the BSS problem
[18, 24] for linear memoryless channels has the following form [23].

Assume that there exist M zero mean source signals sg(1),...,s,(M), k =
1,2,..., that are scalar-valued and mutually statistically independent for each
sample value k. An example is given in Figure 1, which shows 3 sampled voice
waveforms. They are usually at least approximately independent for different
voice sources. We assume that the original sources are unobservable, and all
that we have are L possibly noisy but different linear mixtures z (1), ...,z (L)
of the sources. Three such mixtures of the voice sources in Fig. 1 are shown in
Fig. 2.

Denote by x3 = [zx(1),-..,z(L)]T the L-dimensional kth data vector made
up of the mixtures at discrete time (or point) k. The ICA signal model can then
be written in the vector form

M
Xy = Asp+ny = z sg(i)a(i) + ng. (1)

i=1
Here s = [s1(1),...,sx(M)]T is the source vector consisting of the M source
signals (independent components) sg(z) (¢ = 1,..., M) at the index value k. A
= [a(1),...,a(M)] is a constant L x M mixing matrix whose elements are the

unknown coefficients of the mixtures. The columns a(i) are the basis vectors of
ICA. The additive noise term ny, is often omitted from (1), because it is usually
impossible to separate it from the source signals.
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Figure 2: Linear mixtures of the voice sources (input data).

In addition to the independence assumption, we assume that the number of
available different mixtures L is at least as large as the number of sources M.
Usually M is assumed to be known in advance, and often M = L. Furthermore,
each source signal sg(7) is a stationary zero-mean stochastic process. Only one of
the source signals s (7) is allowed to have a Gaussian distribution. This follows
from the fact that it is impossible to separate several Gaussian sources from each
other [12, 42].

Note that very little prior information is assumed on the matrix A. There-
fore, the strong independence assumptions are required in determining the ICA
expansion (1). Even then, only the directions of the ICA basis vectors a(i),
i =1,..., M, are defined, because their magnitudes and the amplitudes of the
source signals sy (i) can be interchanged in the model (1). Also the order of the
terms in the sum in (1) can be arbitrary. To get a more unique expansion (1),
one can either require that each source sg(i) has unit variance or normalize the
basis vectors a() to unit length (and then arrange them according to the powers
of the sources, see [12]).

Linear models of the form (1) are used in several known techniques, but the
assumptions are different. In the standard least-squares method, it is assumed
that the matrix A is completely known. Then it is easy to estimate the vector
sp: 8x = (ATA)"1ATx,. If the matrix A is known except for a few parameters,
subspace type methods or the maximum likelihood method can be used for
estimating the unknown parameters [37]. In standard PCA, the expansion (1)
is determined by requiring that the basis vectors a(i) are mutually orthonormal
and the coefficients si () have maximal variances.

3. Blind source separation

In blind source separation, the task is to find the waveforms {sx(i)} of the
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Figure 3: The separated outputs given by the bigradient algorithm.

sources, knowing only the data vectors x; and the number M of sources. Both
batch type and data-adaptive BSS algorithms have been suggested. In neural
realizations, adaptive learning algorithms that are as simple as possible but yet
provide sufficient performance are desirable.

In adaptive source separation [6, 18, 24], an M x L separating matrix By, is
updated so that the M-vector

Vi = Bexy (2)

is an estimate yr = S of the original independent source signals. In neural
realizations, y; is the output vector of the network, and the matrix By is the
total weight matrix between the inputs and outputs. The estimate 55 (7) of the
ith source signal may appear in any component yx(j) of yr. The amplitudes
of the sources s (i) and their estimates yi(j) are typically scaled so that they
have unit variance. Figure 3 shows the separated sources given by the bigradient
algorithm (see Section 6) for the voice data of Fig. 2. These can be compared
with the original sources in Fig. 1. This experiment is described in more detail
in [41].

In several BSS algorithms, the data vectors x, are preprocessed by whitening
(sphering) them, so that their covariance matrix becomes the unit matrix. After
prewhitening, the separating matrix can be assumed orthogonal. Whitening has
certain advantages and drawbacks; see Section 5.

A crucial issue in BSS and ICA is reliable verification of the independence
condition. It is impossible to do this directly because the involved probability
densities are usually unknown. The first proposed separation algorithms are
based either on direct minimization of a sum of (typically) fourth order cumu-
lants, or on somewhat heuristic approaches where the learning algorithms have
such a form that they satisfy some kind of independence condition after conver-
gence; see [6, 8, 12] for references.



A mathematically more exact procedure [12], is to measure the degree of de-
pendence using mutual information. This is minimized when the output compo-
nents (estimated sources) are mutually independent. Approximating the mutual
information using Edgeworth expansion leads to contrast functions which are
maximized by separating matrices [12]. Even these contrast functions require
fairly intensive batch type computations using the estimated higher-order statis-
tics of the data, or lead to pretty complicated adaptive separation algorithms.

Fortunately, it is often sufficient to use the simple higher-order statistics
called kurtosis. For the ith source signal s(i), the (unnormalized) kurtosis is

defined by
cum[s(i)'] = E{s(i)*} - 3[E{s(i)"}]". 3)

If s(i) is Gaussian, its kurtosis cum[s(i)*] = 0. Source signals that have a
negative kurtosis are often called sub-Gaussian ones. Typically, their probability
distribution is ”flatter” than Gaussian, for example bimodal [16]. Sources with
a positive kurtosis (super-Gaussian sources) have usually a distribution which
has a longer tail and sharper peak than standard Gaussian distribution [3, 16].

The division of sources into sub-Gaussian and super-Gaussian ones is impor-
tant, because the separation capability of many simple algorithms depends on
this. Consider the situation where the sign of the kurtosis (3) is the same for all
the sources s (i), ¢ = 1,..., M, and the input vectors have been prewhitened.
In [28] it is proved that one can then use a particularly simple contrast function,
the sum of the fourth moments

M
J(y) = Z E{y(i)*}. (4)

A separating matrix B minimizes (4) for sub-Gaussian sources, and maximizes it
for super-Gaussian sources. We have used the criterion (4) because it is simple
enough, and can be applied in a straightforward way to our nonlinear PCA
type neural learning algorithms [22, 23, 40]. In many practical situations the
sources are either sub-Gaussian or super-Gaussian. For example speech signals
are typically super-Gaussian [3].

Recently, Bell and Sejnowski [3] have suggested minimization of the mutual
information in another way. They maximize the joint entropy of the outputs
of a neural network, and derive an explicit learning rule to this end. A similar
approach is followed in [2], where the Gram-Charlier expansion is used instead
of the Edgeworth expansion in approximating the mutual information. These
neural learning rules will be discussed in more detail later on.

4. Neural network models

Consider now neural estimation of the complete ICA expansion (1). Let us
denote the estimated expansion by

xp = Qy, +1nj, = Xi +nj. (5)



Figure 4: The basic ICA network structure.

Here, the L x M matrix Q denotes the estimate of the ICA basis matrix A, yg
is the estimate of the source (or independent component) vector sy, and nj, is
the noise term.

For estimation, we use the 2-layer feedforward network shown in Figure 4.
The L inputs of the network are the components of the vector x (at discrete
sample index k). In the hidden layer there are M neurons, and the output layer
consists again of L neurons. B denotes the M x L separating weight matrix
between the inputs and the hidden layer, and Q respectively the L x M weight
matrix between the hidden and output layers. The ICA expansion (1) can be
estimated using the network of Fig. 4 in two subsequent stages as follows:

1. Learn an M x L separating weight matrix B for which the components of
y = Bx are as independent as possible;

2. Learn an L x M weight matrix Q which minimizes the mean-square error
E{|| n}, I’} = E{|| xx — Qy}, ||*} with respect to Q.

This network structure is justified in more detail in [21, 23]. In BSS the basis
vectors of ICA are not of much interest, and the last layer is usually omitted
from the network of Fig. 4.

If prewhitening is used, the first stage is further divided into two subsequent
parts. First, the data (input) vectors xj are whitened by applying the transfor-
mation

Vi = VXk, (6)

where v denotes the kth whitened vector, and V is an M x L whitening matrix.
If L > M, V simultaneously reduces the dimension of the data vectors from L
to M. After this, the sources (independent components) are separated:

vi = Wy (7)

Here W7 denotes for clarity the orthonormal (WTW =1,,) M x M separating
matrix that the network should learn. Figure 5 shows the ensuing 2-layer source



Figure 5: The two-layer network structure used in source separation.

separation network structure, where now B = WT'V. If the basis vectors of ICA
are needed, an extra layer with the weight matrix Q can be appended to this
network quite similarly as in the network of Fig. 4.

In the ICA/BSS networks of Figs. 4 and 5, the number of sources M is
often equal to L, the dimension of the input vectors. In this case, no data
compression takes place in the hidden layer, but the independence constraint
anyway provides an ICA solution. As usual, feedback connections (not shown)
are needed in the learning phase, but after learning these networks become purely
feedforward if the data is stationary. Even though the input-output mappings
of the proposed ICA networks are linear after learning due to the linear data
model (1), nonlinearities must be used in learning the separating matrix B or
WT. They introduce the necessary higher-order statistics into computations.

Feedforward network structures are currently popular in source separation,
but they are not the only possibility. In [1, 18, 26] recurrent neural network
structures have been studied in the BSS problem. They may have some ad-
vantages over feedforward networks in hardware implementation [1]. Recently,
feedforward network structures containing several subsequent separation layers
have been proposed in [10]. Such networks seem to allow separation of sources
in difficult cases (weak sources or ill-conditioned problems) provided that the
data vectors x; do not contain noise and obey the ICA model (1) exactly.

5. Whitening

If the data vectors x; have a nonzero mean, it is usually first subtracted from
them. Furthermore, the effects of second-order statistics can be removed by
using the whitening transformation (6). The matrix V is chosen so that the co-
variance matrix {v;vy } becomes the unit matrix In;. Thus the components of
the whitened vectors vy are mutually uncorrelated and they have unit variance.
Uncorrelatedness is a necessary prerequisite for the stronger independence condi-
tion; so after prewhitening the separation task usually becomes somewhat easier.



There exist infinitely many solutions for whitening the input data (provided that
L>M).

Standard PCA is often used for whitening, because one can then simultane-
ously compress information optimally in the mean-square error sense and filter
possible noise [23, 19]. The PCA whitening matrix is given by

V =D"'/?E". (8)

In (8), D = diag[A(1),...,A(M)] is M x M diagonal matrix , and the L x M
matrix E = [¢(1),...,c(M)], where A(¢) is the ith largest eigenvalue of the
data covariance matrix E{x;x{ }, and c(i) denotes the respective ith principal
eigenvector. PCA whitening can be done either using standard software or
neurally [23]. Furthermore, it can be used for estimating the number of the
sources or independent components (see Section 8).

Probably the simplest neural algorithm for learning the whitening matrix Vy,

is

Vk+1 = Vk — uk[vkva - I]Vk. (9)
This has been independently proposed in [24, 35], and is utilized as a part of
the EASI (PFS) separation algorithm [6, 24]. The algorithm (9) can be applied
also to simultaneous data compression with M < L, but it does not have any
optimality properties in this respect.

Whitening and related procedures have been sometimes criticized [7], because
they do not provide so-called uniform performance in subsequent separation. In
uniform performance methods, the separation capability does not depend on
the condition number of the mixing matrix A. In theory, it is then possible to
separate even very weak sources or use almost similar mixtures as inputs [7, 10].
However, this property presumes that the input data obeys the ICA model (1)
exactly with no noise. In our experiments, separation algorithms that require
prewhitening usually performed quite well in normal conditions, for example
when the mixing matrix A was chosen randomly [22, 23].

6. Neural separation algorithms

During the last years, various neural algorithms have been proposed for learning
either the total separating matrix B directly or the orthogonal separating matrix
WT after prewhitening. In the direct approach, the output vector is defined by
¥ = BgXy; in the prewhitening approach the relationships (6) and (7) are used.
In the following, we list some relevant possibilities. The learning parameter py
in the algorithms below is usually positive.

1. The Herault-Jutten (HJ) algorithm [18, 8]. This seminal neural separation
algorithm has inspired a lot of later work. In its basic form, the separating
matrix B is sought in the form B = (I+S)~!, and the off-diagonal elements
of S are updated using the rule

Sk+1 = Sk + urg(yr)h(yi)- (10)



The diagonal elements of S are zero, and g(yy,) denotes the column vector
whose components are g(yx(1)),...,9(yx(M)). Similarly, h(y?) is a row
vector with components h(yx(¢)). Here, g(t) and h(t) are two different odd
functions, and the learning parameter pu; > 0.

The basic HJ algorithm is simple and local, but may fail in separating
more than two sources. Various odd functions g(t) and h(t) such as t, 3,
sgn(t), and tanh(t) have been used in (10). In [14], the choices g(t) = 3,
h(t) = t are recommended for sub-Gaussian sources, and respectively g(t)
=t, h(t) = t® for super-Gaussian sources. The HJ algorithm is derived
and discussed in the papers [18, 11, 36]. Its convergence properties have
been studied in several papers, and it can be realized using either feedback
or feedforward type architectures [27]. The algorithm has been extended
for convolutive mixtures (time delays) in [34, 29].

Especially in discrete realization, the separating matrix is often computed
from the approximation

Bit1 = I—Sgt (11)

which avoids the matrix inversion. In practice, the approximative algo-
rithm performs similarly or sometimes even better than the original HJ al-
gorithm. Cichocki [9, 10] has recently proposed various improved versions
of the basic HJ algorithm, where also the diagonal elements are updated.

. The EASI (or PFS) algorithm. This has been introduced and justified
as an adaptive signal processing algorithm in [6, 24], but it can as well
be used as a learning algorithm of a nonlinear PCA type network. The
general update formula for the separating matrix B is

Bir1 = By — mlyeyr —I+8yrh(ys) —h(ye)glyi)Be  (12)

In the original EAST algorithm h(t) = t; the learning rule (12) is a general-
ized form introduced in [22]. If the functions g(¢) or h(t) grow faster than
linearly, the algorithm (12) should be stabilized in practice; see [6, 22, 24].
The generalized form has the advantage that by using for example the
functions g¢(t) = ¢, h(t) = tanh(t) for sub-Gaussian sources and g(t) =
tanh(t), h(t) = t for super-Gaussian sources, separation can usually be
achieved without the extra stabilization. An advantage of (12) is that it
provides uniform performance [6, 24].

. Bell’s and Sejnowski’s algorithm. This is derived in the insightful paper
[3] using an information theoretic approach. The learning algorithm for
the separating matrix B is using our notation

Byt = Bi+m[By " + zix; ] (13)
Here By must be a square matrix (M = L), and the i:th element of the
column vector z is obtained from the formula [3, 4]
2(i) = 8. 3u(z)
Ou(i) Oy(1)

(14)



where u(i) is the i:th element of the vector u = f(y) = f(Bx), and f(¢)
is usually some sigmoidal function. If for example u = tanh(y), z =
—2tanh(y). The algorithm (13) can easily be generalized for mixtures
having a nonzero mean, blind deconvolution, etc. [3]. In [4] it is justified
that the optimal functions f(t) are the cumulative distribution functions of
the sources (if known). In practice, many other choices provide separation.

It is easy to get rid of the annoying inverse matrix B;T in the original
algorithm (13). The first possibility is to prewhiten the data [41, 4]; then
B; 7 = By (or actually W' = WY using our notation). Even better!,
one can use the so-called natural gradient approach [2] where essentially
the update term in (13) is multiplied by B} By,. This yields the modified
algorithm

By = By + [l — 2g(yi)yi |Br (15)

where usually the function g(t) = tanh(¢). Both whitening and the modi-
fication (15) often increase the convergence speed of Bell’s and Sejnowski’s
algorithm (13) by orders of magnitude [41, 4] and allow a truly neural
realization. Furthermore, (15) provides a uniform performance and needs
not prewhitening.

The form of the algorithm (15) (without the constant 2) is derived in [2] by
extending and combining the ideas in [3, 12]. Furthermore, approximation
of the mutual information using a Gram-Charlier expansion yields a specific
”universal” expression for the nonlinear function g(t) [2].

4. Cichocki and Amari with their co-workers have recently proposed a vari-
ety of new separation algorithms in [9, 10, 1]. For achieving separation,
different matrix functions G(y) depending on the output vector y can be
defined, such as

G(y) = I-g(y)h"), (16)
G(y) = I-yy" —gly)h(y") + h(y)g¥"), (17)
G(y)= T—=) yiyi ir- (18)

=0

In the last expression, T' is a suitably chosen time delay. Each of these
choices can be used for learning the separating matrix B in the general
algorithm

Biy1 = B+ mG(yr) (19)
for feedforward networks [10]. The first choice (16) yields a modified ver-
sion of the HJ algorithm, and the second matrix (17) resembles closely the
update term in the generalized EAST algorithm (12).

The same matrices G(y) can be used also in learning the separating matrix
in recurrent networks [9, 1]. The learning algorithm is

B, = Bj — (Bl +1)G(yx), (20)

IThis part is largely based on comments provided by Dr. Kari Torkkola



where the output vector yj is now computed from the formula
Vi = [[+B] " xp. (21)

The computation of the inverse matrix can be avoided; see [1]. The prop-
erties of the algorithm (20) have not yet been thoroughly investigated.

. The bigradient algorithm [39, 40, 41]. This learning algorithm for the
orthogonal separating matrix W after prewhitening reads

Wit = Wi + e vig(yi ) + % Wir(I — Wi W), (22)

In (22), the learning parameter uy, can be either positive or negative, and i
is another positive learning parameter, usually about 0.5 or 1 in practice.
The first update term ujvyg(yl) is essentially a nonlinear Hebbian term,
and the second term vy Wj(I — WIW,) keeps the weight matrix Wy,
roughly orthonormal. The bigradient algorithm is derived and analyzed in
[39, 40]. One of its best features is flexibility. The algorithm (22) can be
applied with slightly different forms and choices to separating either sub-
Gaussian or super-Gaussian sources, but also to standard PCA and MCA
(Minor Component Analysis). It is also easy to modify the algorithm (22)
so that the weight vectors of the neurons (columns of the matrix Wy,) are
computed sequentially in a hierarchic order; see [39].

. Nonlinear PCA subspace rule [31, 22]. This learning algorithm was orig-
inally introduced by Oja some years ago [30] as an extension of his well-
known PCA subspace rule; see [20] for early references. In BSS, it is used
quite similarly as (22), but the update formula for W is different:

Wit = Wi+ me[vi — Wig(ye)lg(yi)- (23)

Here the learning parameter p must be positive for stability reasons, re-
stricting the applicability of (23) mainly to sub-Gaussian sources. Without
prewhitening, the nonlinear PCA subspace rule is able to somehow sepa-
rate sinusoidal type sources only, because the algorithm responds in this
case still largely to the second-order statistics.

A major advantage of the learning rule (23) is that it can be realized us-
ing a simple modification of one-layer standard symmetric PCA network
[30, 20], allowing a simple and local neural implementation. An interest-
ing feature is that the underlying data model is actually slightly nonlinear
[20]: the coefficients (here sources) si(¢) in (1) are replaced by nonlinear
coeflicients g(s(i)). Nonlinear PCA subspace rule (23) can then be de-
rived by approximately minimizing the mean-square error E{|| n; ||?}. In
spite of this, the algorithm performs well for sub-Gaussian sources even
in large problems [22, 23]. The separation properties of (23) have been
analyzed mathematically in detail in [31, 23], where local convergence of
the algorithm to a separating solution is shown in certain cases.



The list above is by no means exhaustive. For example, we have made some
preliminary experiments showing that the hierarchic versions of the nonlinear
and robust PCA subspace rule (called nonlinear or robust GHA algorithms) [20]
as well as the hierarchic bigradient rule [39] work well with prewhitening in sep-
aration with suitable choices. Many of the proposed algorithms have not been
analyzed mathematically, and their properties are still largely unexplored. No
extensive comparisons have been made. Thus it is difficult to say much about
the superiority of these algorithms. In several cases, rather similar stochastic
nonlinear Hebbian type terms are effectively used in learning, suggesting that
the final performance given by various algorithms is often almost the same. This
was observed in our simulations [22, 23].

7. Estimation of the basis vectors of ICA

The basis vectors a(l),...,a(M) of the linear ICA model (1) are the counter-
parts of the principal eigenvectors in PCA. Therefore, they should be useful in
much the same applications [12], providing in many cases a more meaningful
characterization of the data. There exist several methods for estimating them;
see [23, 21] for a more detailed discussion.

Assuming that the M x L matrix By, has converged to a separating solution B,
the basis vectors a(i) can be estimated from the pseudoinverse A = BT (BB”)~!.
The columns of A are the desired estimated basis vectors of ICA. If B is a square
matrix, A =Bl Even though this method is simple, it is not feasible for a
truly neural realization because of the required matrix inversion.

Alternatively, the basis vectors can be estimated neurally using the extra Q
layer shown in Fig. 4. In [21], we have derived the stochastic gradient algorithm

Qi1 = Qi + pr(xk — Qryr)yr (24)

(ux, > 0) for learning the L x M weight matrix Qy, of this additional layer. The
algorithm (24) is based on the minimization of the mean-square representation
error E{|| x; — Qy/, ||?} (see Section 4). Again, the columns of the Qy, constitute
the estimates of the basis vectors of ICA after convergence (in any order). The
algorithm (24) can be used in context with any adaptive separation algorithm,
and it seems to perform well in practice. It would be rather straightforward to
design more accurate and faster converging but more complicated algorithms for
learning the matrix Q using the same MSE error minimization approach.

8. Extensions of the basic models

The standard problem considered in most neural network papers dealing with
the ICA model (1) is blind source separation, assuming that there is no noise and
the number M of sources is known. In this section, we discuss various extensions
of the basic model and assumptions made on it in Section 2. Estimation of the
basis vectors of ICA discussed before is already one such extension.

1. Nonstationary data. The basis vectors a(i) of ICA (mixture coefficients)



in (1) are usually taken as constants, and the sources s (i) are assumed
stationary. In practice, it is important that a separation algorithm could
adapt to (slow) changes in the statistics of the sources and mixture coeffi-
cients. Only a little has been published on this problem, perhaps because
it is generally difficult. A neural network for the nonstationary case is
proposed in [26]; however, only the sources s (i) are assumed nonstation-
ary, and the simulations have been made using cyclostationary rather than
truly nonstationary sources. In [29], some experimental results are given
for nonstationary speech data.

. The effect of noise. In most papers, it is assumed that the noise term ny in
(1) is zero, and sometimes noise is regarded as an extra source. Generally,
this is not the case, which can be seen by expressing the noise vector ny
in the form

M
n, = Y np(i)a(i) + ex. (25)
=1

Here ng(7) is the projection of ng onto a(i), and ey is the part of the
noise vector nj lying in the subspace orthogonal to the basis vectors
a(l),...,a(M). Inserting (25) into the ICA model (1) shows that noise
adds a component n(7) to each source. Experimental results confirm this:
noise smears the separated sources. If the number L of mixtures is greater
than the number M of sources, it is possible to filter some of the noise out.
This can be done by projecting the input data xj onto its M-dimensional
signal subspace using for example PCA whitening; see [23, 37].

. Estimation of the number M of the sources (independent components).
Usually M is assumed known, which is often not the case in practice,
especially if one wants to use ICA as a data analysis tool. If the signal-to-
noise ratio is good enough, it is relatively easy to estimate the number of
sources M using standard PCA [23, 19]. In practice, this is done by first
estimating the data covariance matrix E{x;x} } from the data vectors xj
and then computing its eigenvalues. The M largest ”signal” eigenvalues
should be clearly larger than the rest "noise” eigenvalues [37]. From this,
one can deduce the number M of the sources. If some of the sources are
weak or the power of the noise is not small, it is difficult to estimate the cor-
rect value of M using this simple method. Similar model order estimation
problems are encountered elsewhere, for example in sinusoidal frequency
estimation. It is still an open question whether the more advanced meth-
ods developed there could be applied also to the source separation problem
on some conditions.

. More/less mixtures than sources. Often it is assumed that the number L of
mixtures (the dimension of the data vectors xj) is equal to the number M
of sources. As discussed before, several separation algorithms can directly
handle the case L > M (more mixtures than sources). If not, it is always



possible to linearly compress the dimensionality of the data vectors from
L to M using for example standard PCA (provided that M is known).

The interesting case where there are less mixtures than sources (L < M)
is studied theoretically in [42]. The result is that it is still often possible
to separate the sources into L distinct groups. This phenomenon has been
experimentally confirmed in our experiments with the nonlinear PCA al-
gorithm (23). In the case L < M, the outputs were either some almost
pure sources or linear combinations of some of them. In many potential
applications, there are not available several different linear mixtures of the
source signals. This fact greatly limits the number of practical problems
to which ICA and BSS are applicable.

. Nonlinear ICA and source separation. A natural extension of linear ICA
and BSS is to assume that the components of the data vectors x; depend
nonlinearly on some statistically independent components (source signals).
This important but difficult problem has been first addressed in [5], and
later on in a series of papers [13, 32, 33] by Deco and Parra with their
co-workers. The approaches proposed thus far seem to be computationally
fairly complicated or require explicit estimation of higher-order statistics.
Simulations have been made in small-dimensional cases only (typically
M =2).

. Delays and convolutive mixtures. A problem related to blind source sepa-
ration is blind deconvolution [17], where the task is to recover an unknown
source signal mixed with unknown time-delayed versions of itself. A combi-
nation of both these problems is called blind identification [3], or separation
of convolutive mixtures [29]. There we have generally L unknown linear
mixtures of M independent source signals having different time delays in
each mixture. This situation can be modeled by replacing the elements
of the mixing matrix A in (1) by filters (typically FIR filters). The blind
identification problem naturally arises for example in practical speech sep-
aration: the delays of each speaker are different at different microphones.
This extension has been studied at least for the HJ algorithm in [34, 29],
and for Bell’s and Sejnowski’s algorithm in [3, 38]. If the source signals are
generated by technical systems (for example in communications), it may
be possible to handle time delays using synchronisation sequences [14].

. Use of prior information [19]. If there are available some additional infor-
mation on the sources, this can be often utilized in improving the sepa-
ration results or in devising simpler algorithms. In particular, when the
sources are temporally correlated, separation may be based on second-order
statistics only, and is possible also for Gaussian sources. If the source sig-
nals are discrete valued, typically binary, simpler separation approaches
exist. If the distributions of the sources are known, one can devise optimal
nonlinearities [4] or contrast functions. A good recent review of various
approaches, mostly nonneural, that utilize prior information is [19].



8. Application of ICA to other problems than BSS. The ICA model should
be useful in much the same applications [12] as standard PCA, which is
widely applied to various signal and information processing tasks. How-
ever, almost all the papers on ICA are related to the BSS problem. In
particular, the basis vectors of ICA provide a good description of the data.
They are useful in finding interesting directions in the data for example
in projection pursuit [15]. Fyfe and Baddeley [16] have already considered
this application without showing an explicit connection to ICA. In [23] we
have pointed out that their projection pursuit directions are in fact basis
vectors of ICA.

9. Concluding remarks

Blind signal processing is a rapidly emerging, promising new application area of
unsupervised neural learning. In this paper, we have attempted to give a tutorial
review of some neural approaches to blind source separation and to the closely
related Independent Component Analysis model. Many new learning algorithms
have been recently proposed. Their theoretical properties, range of applicability,
and mutual comparisons are still largely unexplored. Another important task
is to design methods which extend the simple basic linear model to cope with
realistic practical situations.
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