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Abstract

In this note I show how one can derive the timing of the four contacts of Venus
with the sun disk as a function of the location of the observer and of the solar parallax
with a relatively simple approximate formula whose accuracy is sufficient to process
the observations of a network of observers. Two models are discussed : one, linear
in the coordinates of the observer, has an accuracy of 5 to 10 s, and a quadratic one
with an accuracy of 0.2 s. The expressions can then be used to determine the parallax
either from the instant of the contact or from the duration of the transit between the
second and third contacts. The method is applied to the historical passage of 1769
for the five stations that produced timings for the two internal contacts and is also
illustrated one a worked out example for the passage of 2004.

1 Introduction

The passages of Venus on the solar disk have been used during the four previous historical
events (1761, 1769, 1874 and 1882) to attempt (as suggested by E. Halley in different
reports from 1677, upon his return from St Helena where he recorded the a transit of
Mercury) to determine the solar parallax and then the astronomical unit. In his last paper
on the subject in 1716 this great astronomer gave the mathematical details of the method
and urged the astronomers to prepare themselves for the next two passages of 1761 and
1769 by planning observations at widely scattered locations to determine accurately the

interval from internal tangency of Venus’s disk with the Sun’s edge at ingress to internal

tangency at egress, that is the interval of time between second and third contacts.
∗francois.mignard@obs-nice.fr
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The passage of June 2004 has provided a unique opportunity to repeat this measurements
with modern techniques of timing and time transfer, allowing laymen to take part in a
challenging experiment. Although the issue is no longer to determine the mean distance
between the Earth and the Sun, perfectly ascertained today from radar measurements
on the surface of the inner planets or from the doppler tracking of solar system orbiters,
this remains a very valuable exercise to introduce students, schoolchildren and the general
public to some aspect of the scientific method, let alone the direct relation of the event
with some glorious pages of the history of astronomy.

However, if the principles are very simple (the length of the chord drawn by Venus changes
with the position of the observer on the Earth), the details are more tricky and not liable to
a simple explanation. Among the numerous sites available on Internet, most indicate very
qualitatively how the parallax is obviously related to the transit observed from different
places, but none details the actual model at the level of the measurement accuracy.

In the following I propose to bridge this gap by supplying a derivation of the difference
of the instants of the contacts and that of the whole duration of the phenomena when
observed at two different locations on the Earth. The formulas can be reduced in numbers
leaving as only variable quantities the longitude and latitude of the observers and the ac-
tual solar parallax. From a comparison between the computed values based on an assumed
mean Sun-Earth distance and the observed values obtained by two widely separated ob-
servers, one can quickly obtain a true estimate of that distance, with an accuracy quite
equivalent to that achieved in the XVIIIth century. The very last section summarises just
what is needed for the 2004 transit, for those looking for practical formulas without being
interested in the technical derivation.

Figure 1: The four contacts of Venus during the transit on the solar disk. Only the two
inner contacts can be recorded.
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2 Geocentric contacts

In the following one considers that the geocentric timings of the four contacts have been
previously computed. They have no practical importance to determine the parallax since
one compares only the observations performed by two observers on the Earth. The geo-
centric timings are common to both observers and serve only as a reference point. They
cancel out in the difference between the two actual topocentric timings.

One denotes respectively by ti, i = 1, 2, 3, 4 the geocentric timings of the first external
contact, the first internal contact, the second internal contact and the second external
contact as illustrated in Fig. 1. One also refers the geocentric position of the centre of Venus
with respect to the Sun by the rectangular coordinates on the the tangent plane with origin
at the centre of the Sun by X,Y , where X is directed toward the increasing right ascension
and Y to the North. If α�, δ� and αv, δv are respectively the equatorial coordinates of the
Sun and Venus at any time during the transit, one has the following relationships between
the projected cartesian coordinates and the the equatorial coordinates,

X =
cos δv sin(αv − α�)

sin δ� sin δv + cos δ� cos δv cos(αv − α�)
(1)

Y =
sin δv cos δ� − cos δv sin δ� cos(αv − α�)
sin δ� sin δv + cos δ� cos δv cos(αv − α�)

(2)

where the denominator of these equations is related to the arc length ψ between the centre
of the Sun and that of Venus, with

cosψ = sin δ� sin δv + cos δ� cos δv cos(αv − α�) (3)

For the following it is important to remark that the position of Venus relative to the Sun
is the same as the difference of the geocentric unit vectors p and s giving respectively
the directions of Venus and the Sun and that X and Y are the components of this vector
projected on the tangent plane.

Eqs. 1-2 can be expanded in powers of ∆α and ∆δ to give,

X = ∆α cos δ − sin δ∆δ∆α+O(∆α3,∆δ3) (4)

Y = ∆δ +
1
4

sin 2δ∆α2 +O(∆α3,∆δ3) (5)

The second order terms are required here to predict the timing to one second of time since
at the time of the contacts ∆α,∆δ ' θ ∼ 0.◦25, where θ is the angular solar radius. The
typical relative speed of Venus on the solar disk during a transit is 240′′ per hour, or 0.07
′′/s. Then to predict the timing with an error less than one second of time the relative
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position of the two bodies must be known to better than 0 .′′05. The second order terms
in Eqs. 4 have a magnitude of θ2 ∼ 4′′ whereas the third order terms θ3 ∼ 0.′′01 can be
neglected. Omitting the terms of second order may lead to an error in the timing as large
as 6 seconds of time. With a numerical program, it is advisable to keep the rigourous
expressions of Eqs. 1 instead of the power expansions.

However, in single precision, these expressions are not very good for numerical calculation
as they are equivalent to compute a small arc on the sky from its cosine. So it is rec-
ommended in actual programming to use the alternative and numerically more accurate
following expressions,

sin2 ψ

2
= sin2 δv − δ�

2
+ cos δv cos δ� sin2 αv − α�

2
(6)

and for the numerator of Eq. 2

sin(δv − δ�) + 2 cos δv sin δ� sin2 αv − α�
2

(7)

An important question arises now on a possible difference between the angular radius
of the sun at one astronomical unit defined by sin θ = R�/a where a = 1au, and the
radius of the disk ρ =

√
X2 + Y 2 seen projected on the tangent plane. It is easy to see

from the projection equations that ρ = tan θ. Then by neglecting the third order terms
one can make ρ = θ. The error is less than 0.′′02. More generally with Eqs. 1-3 one as
tanψ =

√
X2 + Y 2.

In this paper I have adopted the following reference values listed in Table 1 for all the
numerical computations (geocentric or topocentric).

3 Topocentric contacts

3.1 Apparent topocentric positions

An observer is located somewhere on the surface of the Earth with longitude and latitude
λ and φ where the longitude is taken positive to the east of Greenwich. When a geocentric
contact takes place, the apparent position of both Venus and the Sun are displaced from
their geocentric position because of the parallactic angle between the centre of the Earth
and its surface. The order of magnitude is ∼ 9′′ for the Sun and at most 36′′ for Venus.
The maximum relative displacement is then 28′′. Therefore, given the typical relative
velocity of Venus during a transit of 1.6 deg/day, the difference between the instants of
the contact computed at the centre of the Earth and those observable at the surface could
be as large as ∼ 400 seconds of time, and twice that value for the observations carried out
at two nearly antipodal points on the Earth. It is time to note that the spheroidal shape
of the Earth is marginally significant to determine the contact to the nearest second. The
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Table 1: Standard values used for the numerical evaluations

Parameter Notation Value Unit

Angular solar radius at 1 AU θ 959.50 ′′

Solar radius R� 695900 km

Astronomical unit AU 149597870.61 km

Equatorial radius of the Earth ae 6378.136 km

Radius of Venus Rp 6051.8 km

Solar parallax at one AU π� 8.794142 ′′

TT − TU in June 2004 ∆T 64.6 s

flattening being 1/298, in the most extreme case using a spherical Earth instead of the
ellipsoid may cause an error just above one second of time. This will be neglected in the
following, although this is a very easy to take it into account (the correct expression is
given in Eqs. 72-75.

Let s and p be respectively the geocentric unit vectors to the sun and the planet at the time
of any of the geocentric contact and r�, rp their position vectors. One notes also r� the
geocentric distance of the Sun and rp that of the planet. The cartesian coordinates of the
planet with respect to the centre of the Sun on the tangent plane are always noted X, Y .
Similar notations are used for the topocentric phenomena as s′, p′, r′�, r′p, r′�, r

′
p, X

′, Y ′.
The vector position of the observer referred to the centre of the Earth is given by R and
its cartesian coordinates with the origin of the longitude at the Greenwich meridian are,

x = ae cosφ cosλ (8)

y = ae cosφ sinλ (9)

z = ae sinφ (10)

where ae could be replaced by a more accurate distance to allow for the Earth flattening.
The geocentric unit vector in the direction of the observer is R/ae = u.

With simple geometry one has without approximation,

r′� = r� −R (11)

and dividing both members by the geocentric solar distance r� this gives,
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Table 2: Useful notations

Notation Meaning

r� Geocentric position vector of the Sun

r′� Topocentric position vector of the Sun

r� Geocentric distance to the Sun

r′� Topocentric distance to the Sun

ρ� Geocentric angular radius of the Sun

s Geocentric unit vector to the Sun

s′ Topocentric unit vector to the Sun

rp Geocentric position vector of the planet

r′p Topocentric position vector of the planet

rp Geocentric distance to the planet

r′p Topocentric distance to the planet

ρp Geocentric angular radius of the planet

p Geocentric unit vector to the planet

p′ Topocentric unit vector to the planet

R Geocentric radius vector of the observer

R Distance of the observer to the Earth’s centre (∼ ae)

u Geocentric unit vector to the observer

r′�
r�

= s− R
r�

(12)

To express the correspondence between the geocentric and topocentric unit vectors one
needs to evaluate the modulus of the left-hand side of Eq. 12. Squaring both members
this yields,

∣∣∣∣r′�r�
∣∣∣∣ = (1− 2

s ·R
r�

+
R2

r2�

)1/2

(13)

The second term in the above expression is of the order of the solar parallax(∼ 9′′ ∼ 10−4)
whereas the last one is of the order of its square and can be neglected. This applies also
to Venus. So to the first order in the parallax one has,
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Figure 2: Parallactic effect on the apparent direction of the Sun between the centre of the
Earth (s) and a point on its surface (s′). A similar effect (albeit larger) applies also to
Venus.

∣∣∣∣r′�r�
∣∣∣∣ ' 1− s ·R

r�
(14)

Then dividing (12) by (14) and discarding factors containing the square of parallax, one
gets the relationship between the geocentric and topocentric unit vectors as,

s′ = s− R
r�

+
s ·R
r�

s (15)

The same procedure can now be applied to the position of Venus at the same time which
leads to,

p′ = p− R
rp

+
p ·R
rp

p (16)

Finally the topocentric Sun-Venus vector is easily expressed as,

p′ − s′ = p− s−R
[

1
rp
− 1
r�

]
+

p ·R
rp

p− s ·R
r�

s (17)

where one sees clearly the effect of the parallax. Qualitatively the situation is sketched out
in Fig. 3, where the geocentric transit is shown at the instant of the second contact (left)
and third contact (right). At the same times the topocentric position of Venus relative to
that of the Sun is also shown in the same diagram. In this case the topocentric first inner
contact happens at a later time compared to its geocentric counterpart. This is just the
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opposite for the third contact which comes earlier for the topocentric observer than at the
geocenter. In general the total duration of the phenomena will differ from place to place.

Figure 3: Schematic diagram showing the geocentric and topocentric position of Venus
relative to the centre of the Sun at the geocentric 2nd contact (left) or third contact (right).
From the difference of position it is easy to evaluate the time difference between the events
seen from different locations on the Earth and relate this difference to the solar parallax.

If we now express the distances r� and rp in astronomical units, considering a spherical
Earth and by introducing the equatorial parallax of the Sun in Eq. 17 one has,

p′ − s′ = p− s− π�

[
u
(

1
rp
− 1
r�

)
+

s · u
r�

s− p · u
rp

p
]

(18)

Eq. 18 is nothing but a vectorial presentation of the relative diurnal parallax between two
solar system bodies. It is convenient for the following to rewrite it as,

p′ − s′ = p− s− π�

[(
1
rp
− 1
r�

)
(u− (s · u)s) +

(s · u) s− (p · u)p
rp

]
(19)

where the last term in the bracket is of the order of |s−p| ∼ the solar radius and therefore
about 200 times smaller than the main term.

3.2 Time gap between the topocentric and geocentric phenomena

It remains now to determine the time shift between the geocentric contacts and the same
contacts observed at a particular location on the Earth surface. When Eq. 18 is evaluated
at the instant of one of the geocentric contact, one knows that the angular shift of Venus
from the topocentric contact is of the order of the relative parallax between Venus and
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the Sun, that is to say at most 30′′. So one needs only to evaluate the radial displacement
of Venus with respect to the centre of the Sun to transform this distance into time needed
to reach the contact, using in a first approximation the radial velocity of the geocentric
phenomena.

The geocentric outer and inner contacts are characterised by the fact that,

|p− s| = ρ� + ρp (20)

|p− s| = ρ� − ρp (21)

expressing that the disk of Venus is tangent to that of the Sun on either side of the solar
edge. For the transit of Venus of June 2004 one has typically ρ� = 945′′ and ρp = 29′′.

If one has two vectors v and v′ such that v′ = v+w and |w| � |v|, then to the first order
in w one has,

|v′| ' |v|+ v ·w
|v|

(22)

or said differently, the difference of modulus is just the projection of the correction vector
to the unit initial vector.

Applying Eq. 22 to Eq. 18 one finds readily,

∣∣p′ − s′
∣∣ = |p− s|− π�

|p− s|

[
u · (p− s)

(
1
rp
− 1
r�

)
+

(s · u) (s · (p− s))
r�

− (p · u) (p · (p− s))
rp

]
(23)

This equation is in fact much simpler than one can imagine at first glance. The first term
in the bracket is like |p− s|, that is to say to sin θ, the angular radius of the Sun. Consider
the last two terms in the bracket. One has, p ·(p−s) = 1−p ·s and s ·(p−s) = −(1−p ·s).
With p · s = cos(θ), the factors are like 1 − cos θ ∼ θ2 and about 200 times smaller than
the main term. Then one can take p · u ∼ s · u, meaning that one identifies the zenith
distance of Venus to that of the centre of the Sun. Finally we can rewrite Eq. 23 as,

∣∣p′ − s′
∣∣ = |p− s| − π�

|p− s|

[
u · (p− s)

(
1
rp
− 1
r�

)
− (s · u) (1− p · s)

(
1
rp

+
1
r�

)]
(24)

The first term in the bracket will produce time shifts as large as 400 s while the second
will never add corrections larger than 2 seconds of time. But as both are linear in the
solar parallax and in the position vector of the observer, there is no reason not to include
them simultaneously.

The last step is now to compute the radial velocity of Venus on the Solar disk at each
contact. Let w the transit velocity, that is to say the vector of components Ẋ, Ẏ on the
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projection plane. These components are computed at each geocentric contact and are
numerical values for a particular transit. The radial velocity is then ,

wr =
w · (p− s)
|p− s|

(25)

or

wr =
XẊ + Y Ẏ

ρ� ± ρp
(26)

where the± refers to the external or internal contacts. Combining 24 and 25 one eventually
obtains the time of the topocentric contacts from the corresponding geocentric timings.

t′i = ti + τ
(1)
i + τ

(2)
i (27)

with i = 1..4, where τ (1) and τ (2) denotes respectively the main and secondary terms from
(24).

One gets,

τ (1) = π�

[
u · (p− s)
w · (p− s)

(
1
rp
− 1
r�

)]
(28)

and

τ (2) = −π�
[
(u · s)(1− p · s)

w · (p− s)

(
1
rp

+
1
r�

)]
(29)

Remarks about the units : The derivation assumes that all the angles, including the
solar parallax, are in radians and the velocity in radian per unit of time. Care must be
taken in the numerical evaluation mixing radians, degrees and arcseconds to ensure the
homogeneity of the angular terms in the numerator and denominator. For example the
magnitude of (28) is essentially π�/|w|(1/rp − 1/r�). With |w| ∼ 1.6 deg/day, one must
express π� in degrees, to obtain τ (1) ∼ 400 s.

If we limit the evaluation to τ (1) we can draw interesting conclusions from simple argu-
ments :

• For a particular contact, all the vectors but u of Eq. 28 are known and do not depend
on the observer. Putting for the unit vector u,

α = cosφ cosλ

β = cosφ sinλ (30)

γ = sinφ

we see that once reduced in numbers, assuming a known solar parallax, τ (1) will
reduce to
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Aα+Bβ + Cγ (31)

where A, B, C will depend only on the contact. In addition these coefficients are
directly proportional to the solar parallax.

• From (31) or directly from the scalar product in (28) one sees that τ (1) = Γ× cosψ
where ψ is the angle between u and an axis parallel to p− s and going through the
centre of the Earth with Γ = (A2 + B2 + C2)1/2. Therefore the difference between
the timing of the geocentric contact and the topocentric timings goes from +Γ to -Γ
and is zero for observers located in a plane normal to p− s.

• The difference of the duration of the phenomena (topocentric - geocentric) between
the second and the third contact will be given by,

(A3 −A2)α+ (B3 −B2)β + (C3 − C2)γ (32)

having then the same form as for either contacts. So one can also define an axis on
the Earth so that τ3 − τ2 = Γ cosψ. This remarkable property will be essential to
assess the solar parallax from observations performed at two or more locations.

3.3 Practical formulas

The various scalar products can be evaluated in the most convenient frame. The position
of the observer is naturally known in a frame tied to the rotating Earth with the origin
of longitude at the Greenwich meridian. The components of the vector p − s are known
in cartesian coordinates in the plane tangent to the celestial sphere in the direction of the
Sun. The coordinates X, Y are given for each contact by Eqs. 1 or 4.

In the local frame attached to the centre of the Sun on has,

p− s =

 0
X

Y

 (33)

Let H� be the hour angle of the Sun for the Greenwich meridian at one of the contacts
(omitting the subscript i to label the contact) and δ� its declination. Therefore the matrix
that transforms the components of a vector from the local tangent frame into the hour
system is given by the application of two rotations,

R3(H�)R2(δ�) =

 cosH� cos δ� sinH� − cosH� sin δ�
− sinH� cos δ� cosH� sinH� sin δ�

sin δ� 0 cos δ�

 (34)
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Figure 4: Relationship between the local reference frame on the tangent plane centered at
the Sun and the hour system with the Greenwich meridian for the origin of the longitudes
and the hour angles. The close-up on the right is viewed from inside the celestial sphere.

Thus one has in the hour frame,

p− s =

 X sinH� − Y cosH� sin δ�
X cosH� + Y sinH� sin δ�

Y cos δ�

 (35)

which leads to,

τ (1) = A cosφ cosλ+B cosφ sinλ+ C sinφ (36)

with

A =
π�

XẊ + Y Ẏ

[
1
rp
− 1
r�

]
(X sinH� − Y cosH� sin δ�) (37)

B =
π�

XẊ + Y Ẏ

[
1
rp
− 1
r�

]
(X cosH� + Y sinH� sin δ�) (38)

C =
π�

XẊ + Y Ẏ

[
1
rp
− 1
r�

]
(Y cos δ�) (39)

We have also
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τ (2) = δA cosφ cosλ+ δB cosφ sinλ+ δC sinφ (40)

where the only vector to be expressed in the hour frame is s,

s =

 cos δ� cosH�

− cos δ� sinH�

sin δ�

 (41)

giving

δA = − 2π�
XẊ + Y Ẏ

sin2 θ

2

[
1
rp

+
1
r�

]
cos δ� cosH� (42)

δB =
2π�

XẊ + Y Ẏ
sin2 θ

2

[
1
rp

+
1
r�

]
cos δ� sinH� (43)

δC = − 2π�
XẊ + Y Ẏ

sin2 θ

2

[
1
rp

+
1
r�

]
sin δ� (44)

As mentioned earlier the coefficients A, B, C are of the order of few hundred seconds while
the δA, δB, δC reach only one or two seconds of time. From comparisons with rigourous
estimates of the topocentric phenomenons for various locations, I estimate the accuracy of
the prediction of the topocentric contacts with the approximate formulas to better than
0.1 minute of time at most locations, with maximum departure of 10-15s at some places.
This is sufficient to process observational material, given the difficulties to ascertain the
instant of the contacts even within 10 seconds. For the best observations, more accurate
expressions (but also more intricate) derived in the next sections may be needed.

4 Further refinements

4.1 Statement of the problem

It is shown later in this note that the accuracy of the linear formula for the instant of
the topocentric contacts is in general better than 10 seconds, with a well defined pattern
as a function of the location. It is also found that the errors for any of the four contacts
does not average out over the earth when locations are picked uniformly distributed, a
feature not accounted for by the linear formula. The relatively poor performances of the
linear approximation is rather surprising and not intuitive, since the main approximation
comes from neglecting the square of the parallax in Eq. 18. As the difference between the
geocentric and topocentric contacts is at most ∆τ ∼ 500s, one expects the neglect terms
to be of the order of π� ∆τ ∼ 0.05 s and not the 5–10 s eventually found.

This unaccounted discrepancy is both puzzling and challenging. It must be investigated,
at least to understand its origin and possibly to produce a better formula. There are
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clearly second order terms missing, larger than simply those that would come directly
from π2

� in the parallactic equation and unrelated to them. I eventually found the culprit
hidden away in a dark corner.

If we look again at Eq. 18 one sees that the parallactic term is small compared to p−s and
not relative to the unit vectors p or s, as it was the case in Eqs. 15-16. As |p−s| ∼ θ�, the
second order terms is typically π�/θ� ∼ 0.01 smaller than the main term and not simply
π� ∼ 10−4 . This means that some second order terms in the derivation of ∆τ will be of
the order of ∼ 5 s, instead of 0.05 s, and this will happen even with the parallactic equation
limited to first order in π�. This difference of few seconds is precisely the accuracy of the
linear formula found from a comparison to a full numerical computation of the contacts.
One then needs to recompute the topocentric timings by allowing for these second order
terms.

4.2 Second order equations

As explained there is no need at this point to introduce the square of the parallax in the
basic equations (18) or (19). The problem can then be restated as follows : given the
topocentric position of Venus relative to the Sun as,

p′ − s′ = p− s− π�

[(
1
rp
− 1
r�

)
(u− (s · u)s) +

(s · u) s− (p · u)p
rp

]
(45)

and knowing the geocentric motion of the two bodies and that of the observer, one wishes
to solve for the time t the equations,

|p′(t)− s′(t)| = ρ� ± ρp (46)

The solutions of (46) will be the instant of the four topocentric contacts and it must be
obtained with a better accuracy than that of the linear model. We also assume that the
solution for the geocentric contacts is known, meaning that at for certain t0,

|p(t0)− s(t0)| = ρ� ± ρp (47)

has been solved. To avoid too many subscripts, the contacts are not indexed here and the
formulas are meant to apply to any of the four contacts. For brevity one puts hereafter
v = p− s and v′ = p′ − s′ and introduce 1/p = 1/rp − 1/r� for the parallactic factor. In
this discussion one can restrict the parallactic equation (45) to its simplest form,

v′ = v − π�
p

[u− (s · u)s] (48)
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since we have already shown that the additional terms give corrections of the order of
∼ 1 s (29) and that they will not interfere with the second order terms we are about to
derive.

Let t0 the time of a geocentric contact and ρ the distance to the center of the Sun (so ρ
is either ρ� + ρp or ρ� − ρp according to the contact). At this time

v2(t0) = ρ2 (49)

(the equations are easier to derive with the square of the distance). The same contact for
an Earth-based observer occurs at t with

v′2(t) = ρ2 (50)

Now with (48)

v′2 = v2 − 2
π�
p

u · v +
π2
�
p2

[
1− (s · u)2

]
(51)

and by inserting the geocentric contact, the equation for the time of the topocentric contact
reduces to,

v2(t)− v2(t0)− 2
π�
p

u · v +
π2
�
p2

[
1− (s · u)2

]
= 0 (52)

This equation is very general and the only approximation results from our neglecting π2
�

in the initial parallactic equation. As mentioned earlier this does not conflict with the
second order terms of (52), since the magnitude of the second order term relative to the
first order is π�/|v| ∼ 0.01 and not π� ∼ 10−4.

In the vicinity of the contact the geocentric motion of Venus relative to the Sun is nicely
approximated by a rectilinear uniform motion as,

v(t) = v(t0) + w τ (53)

and the motion of the observer is provided by the rotation of the Earth as,

u(t) = u(t0) + ω × u(t0) τ (54)

where ω is the rotation vector of the Earth and τ = t− t0. Inserting in (52) this leads to,

π�
p

u · v − 1
2
π2
�
p2

[
1− (s · u)2

]
−
[
v ·w − π�

p
(ω × u) · v − π�

p
u ·w

]
τ − 1

2
w2τ2 = 0 (55)
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Although this quadratic equation in τ can be solved in closed form it is better to use
the fact that τ ∼ π�/|w| to solve the linear part first and add the quadratic term as a
correction. After few algebraic transformations one gets,

τ =
π�
p

u · v
w · v

(56)

+
π2
�
p2

[
(u · v)((ω × u) · v)

(w · v)2
+

(u · v)(u ·w)
(w · v)2

− 1
2

[
1− (s · u)2

]
w · v

− 1
2

(w ·w)(u · v)2

(w · v)3

]

where the first order term is the same as (28). The complementary expression (29) does
not appear as expected since I have discarded the specific small terms in the parallactic
equation (48). So Eq. 29,

τ (2) = −π�
[
(u · s)(1− p · s)

w · v

(
1
rp

+
1
r�

)]
(57)

should be added to this result to get the correct timing to the second order.

It is interesting to rewrite (56) by introducing,

Γ = (A,B,C)T =
π�
p

v
w · v

(58)

where the components A, B, C are the same as in (37). Put also,

Γ′ = (A′, B′, C ′)T =
π�
p

w
w · v

(59)

Then (56) becomes,

τ = Γ · u + (Γ · u) [Γ · (ω × u)] + (Γ · u) (Γ′ · u) (60)

−1
2
π2
�
p2

[
1− (s · u)2

]
w · v

− 1
2

(w ·w)
(w · v)

(Γ · u)2

With this last equation the question raised at the beginning of this section is answered,
since we have now a solution for the time of the contacts including second order terms. A
quick evaluation of each term with u2 indicates that they are all of the order of 1 to 5 s,
as expected.
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Table 3: Coefficients of the expansion of (60) on the spherical functions.

Term Γ · u (Γ · u) [Γ · (ω × u)] (Γ · u) (Γ′ · u) (Γ · u)2 1− (s · u)2

C00 0 0 (AA′ + BB′ + CC′)/3 (A2 + B2 + C2)/3 2/3

C11 A 0 0 0 0

S11 B 0 0 0 0

C10 C 0 0 0 0

C22 0 AB/3 (AA′ −BB′)/6 (A2 −B2)6 (S2
y − S2

x)/6

S22 0 (B2 −A2)/6 (AB′ + BA′)/6 AB/3 −SxSy/3

C21 0 BC/3 (AC′ + CA′)/6 2AC/3 −2SxSz/3

S21 0 −AC/3 (BC′ + CB′)/6 2BC/3 −2SySz/3

C20 0 0 −(AA′ + BB′ − 2CC′)/3 −(A2 + B2 − 2C2)/3 (1− 3S2
z )/2

4.3 Convenient representation

It appears from these equations that the time difference between the geocentric and
topocentric contacts can be expressed as a function of the location of the observer with an
expansion involving only first and second degree of u. A full expansion of (56) will lead
to a second degree polynomial in α, β, γ. So it is possible to derive a certain number of
constants, depending only on the transit and the contacts but not on the observer, from
which any timing could be computed for a particular location. We have already done this
expansion with the linear term in u and it is wise to organise the expansion to the second
order on the spherical functions of the first and second degree. Our previous expansion
turns out to be identical to such a development on the spherical function of first order
since,

C11 = cosφ cosλ = α

S11 = cosφ sinλ = β

C10 = sinφ = γ

(61)

Now more generally one has,
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C00 = 1
C22 = 3 cos2 φ cos 2λ = 3(α2 − β2)
S22 = 3 cos2 φ sin 2λ = 6αβ
C21 = 3 cosφ sinφ cosλ = 3αγ
S21 = 3 cosφ sinφ sinλ = 3βγ
C20 = (3 sin2 φ− 1)/2 = (3γ2 − 1)/2

(62)

There are in total only nine base functions, since α2+β2+γ2 = 1. It remains to expand (60)
on α, · · · , α2, · · · , αβ · · · and then on the Clm, Slm to obtain a general formula applicable
to any locations. For the user the nine numerical values for each contact can be computed
in advance and provided in the form of table. The analytical form of the contribution of
each second order factor of (60) is given in Table 3. One must note in this table that the
first line gives the average of the difference between the topocentric and geocentric timing
over the Earth. For the 2004 Venus transit the numerical values are listed in Tables 5 and
6.

Table 4: Venus transit of 8 June 2004 – Geocentric contacts

Contact Time X Y Ẋ Ẏ θ H�

UT ′′ ′′ ′′/h ′′/h ′′ deg

1st 05h13m34s 873.44 -431.34 -233.62 -57.35 945.40 258.62

2nd 05h32m51s 798.41 -449.76 -233.62 -57.35 945.39 263.45

3rd 11h06m41s -501.99 -766.61 -233.80 -56.53 945.37 -13.10

4th 11h25m58s -577.09 -784.78 -233.80 -56.53 945.37 -8.28

5 Numerical Values

5.1 The geocentric transit

The circumstances of the Venus transit of June 2004 have been computed with the reference
values listed in Table 1 and solar system ephemeris developed over the years at the Institut
de Mécanique Céleste et de Calcul des Ephémérides in Paris. The timings are computed
in dynamical times but given as usual in UT, using TT − UT = 64.6s in June 2004. This
value may differ by few seconds from one institute to another and will be known for sure at
the end of 2004. The predictions are also very sensitive to the solar radius : increasing this

18



radius by 100 km, or equivalently by about 0.′′1 (this is less than the current uncertainty
of the angular radius of the Sun), advances the first two contacts of 2 seconds and delays
the last contacts by the same amount. So the length of the transit is increased of 4s.
This is then close to the absolute accuracy reachable by any prediction, even though the
numerical model of the motion of the Earth and Venus would allow to achieve something
much better, by several orders of magnitude. The geocentric parameters of the transit are
given in Table 4.

Figure 5: Geometry of the passage of 8 June 2004.

5.2 The topocentric transit

To obtain a good approximation of the timing at any point of the Earth and also the dura-
tion of the transit one needs only to compute the coefficients A, B, C (and A′, B′, C ′ for
greater precision). The values are listed in Table 5, in cartesian and spherical coordinates,
using respectively b and l for the latitude and longitude of the representative point on the
Earth surface, with,

A+ δA = Γ cos b cos l (63)

B + δB = Γ cos b sin l (64)

C + δC = Γ sin b (65)

With the last two lines of Table 5 one can evaluate the duration of the transit between
the two internal contacts from any place on the Earth. It remains to check that the Sun
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Table 5: Venus transit of June 2004. Coefficients for the topocentric contacts : linear

formula.

Contact A+ δA B + δB C + δC Γ b l

s s s s deg deg

1st 388.6 4.9 174.4 425.9 24.2 0.7

2nd 396.5 -38.6 202.9 447.0 27.0 354.4

3rd 195.5 -206.0 -345.3 447.1 -50.6 313.5

4th 166.9 -230.7 -316.8 426.0 -48.1 305.9

2nd to 3rd -200.9 -167.4 -548.2 607.3 -64.5 219.8

1st to 4th -221.6 -235.7 -491.2 588.2 -56.6 226.8

is above the horizon at this time. However the result of the computation is precisely
what would be observed through a transparent Earth if the sun is set !. The accurate
value of the difference between the topocentric and geocentric time of the contacts and
the duration of the inner transit is plotted in Fig. 6 for any point on the Earth, letting
aside the problem of visibility. The plots show obvious pattern of regularity with the
maximum deviation around the poles indicated in Table 5. The model with 3 (linear) or
9 (quadratic) parameters aims precisely to account for this pattern.

5.3 Accuracy of the approximation

Earlier in this note I have estimated the accuracy of the simplified formula to 5–10 s,
without providing hints for the magnitude of the neglected terms. This was based on
quick comparison between predictions based on the linear model and a rigourous numerical
computation of the time of the contacts. About the accuracy one must already notice that
the various official, and basically very trustworthy, computations carried out in Paris,
Washington or by Nasa, may differ by few seconds in the geocentric phenomena. This
comes primarily, not from the model as stated earlier, but from the adopted angular
radius of the Sun, from the prediction of the rotation of the Earth in June 2004, and to
a lesser extent to the ephemerides they use. Therefore a precision of one second, is not
only not required for the observations, but is difficult to achieve in absolute sense with
our knowledge of the solar diameter.
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Table 6: Venus transit of June 2004. Coefficients for the topocentric contacts : second

order terms.

Contact C00 C22 S22 C21 S21 C20

s s s s s s

1st 2.7 0.0 -2.1 1.5 -3.2 3.8

2nd 3.3 -0.5 -2.2 1.5 -4.0 4.7

3rd -3.3 -1.0 -0.3 3.6 3.5 -4.7

4th -2.7 -1.0 0.0 3.4 2.7 -3.8

2nd to 3rd -6.7 -0.5 1.9 2.1 7.5 -9.4

1st to 4th -5.4 -1.0 2.1 1.9 5.9 -7.6

However, within a given set of astronomical constants, including a conventional size of the
Sun, it is possible to compare the prediction of the linear model to an exact computation
of the contact timings at different locations on the Earth. I have determined this precise
timings for about 3000 locations on the Earth, regularly distributed on its surface, using a
spherical Earth for the purpose of comparison with the model (the main difference would
have appeared in the coefficient C which should be corrected by a factor 1 − 2f for the
Earth flattening). For this check of a purely mathematical formula, the actual visibility of
the phenomena is of no importance. Stated differently the computation is done as if the
Earth were a transparent sphere with the Sun observable from any location (this situation
would be perfectly relevant for the observation of a transit with neutrino detectors !).
Then for each contact and for all the places the differences between the geocentric and
topocentric phenomena have been fitted with a least squares model to the simplified and
full model. This allows to check the accuracy of each model and at the same time to
compare the numerical value of each of the coefficients given in Table 5 for the linear
model and Table 6 for the second order model.

For each contact (or duration) i and place k one has an equation like

dτ i
k = Aiα+Biβ + Ciγ (66)

or

dτ i
k =

∑
l,m

clmClm(φ, λ) + slm Slm(φ, λ) (67)
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Figure 6: Difference in seconds between the geocentric and topocentric time of the second
(top) and third contact (middle), and difference of duration of the transit (bottom) for
any point on the Earth (irrespective of the visibility). The plot is based on a rigorous
computation for the contacts of the 2004 transit.
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according to the model.

The results are shown in Table 7 (linear model) Table 8 (full model) for the second and
third contact and for the duration of the transits between these contacts.

A straight comparison with Tables 5-6, confirms that the analytic modelling and the
numerical evaluation of the coefficients are correct, and that not term of second order
is missing. The remaining difference between the coefficients is less than 0.1 s. The last
two columns give the average of the post-fit residuals and their standard deviation. As
mentioned earlier, the linear model leaves residuals between 5 and 10 s, which do not
average out over the Earth. The standard deviation is about 5 s for the contacts and 8s
for the duration. Results are exactly similar for the first and fourth contact.

Table 7: Venus transit of June 2004 : Coefficients for the topocentric contacts fitted with

the linear model onto an accurate determination of the contacts on uniformly sampled

points on the Earth.

Contact A+ δA B + δB C + δC Mean σ

s s s s s

2nd 396.4 -38.6 203.0 3.4 5.2

3rd 195.5 -205.8 -345.4 -3.3 4.7

2nd to 3rd -200.9 -167.2 -548.5 -6.6 8.0

The distribution of the residuals is shown in Fig. 7 (linear model) and 8 (second order
model) for the duration between the second and third contact. In the first case we see a
very distinctive pattern as a function of the longitude and latitude with a non-zero average
over the surface of the Earth. The amplitudes around the mean have a maximum of 10
seconds for the contacts and 15s for the duration of the transit and the standard deviations
are respectively 5 and 8 seconds, that is to say in keeping with the claim of an accuracy
of 0.1 mn for the linear formula. When the full model is applied the residuals are down by
almost two orders of magnitude, and the remaining effect averages out to zero although
the remaining residuals are not yet pure noise. However there is neither theoretical nor
practical need to derive a more accurate analytical formula than (56) for the timings.
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Table 8: Venus transit of June 2004 : Coefficients for the topocentric contacts fitted with

the complete model onto an accurate determination of the contacts on uniformly sampled

points on the Earth.(The coefficients of the linear model are not repeated)

Contact C00 C22 S22 C21 S21 C20 Mean σ

s s s s s s s s

2nd 3.4 -0.4 -2.2 1.5 -4.0 4.7 0 0.14

3rd -3.3 -1.0 -0.3 3.6 3.5 -4.7 0 0.11

2nd to 3rd -6.6 -0.5 1.9 2.1 7.5 -9.4 0 0.19
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Figure 7: Residuals in seconds for the 2004 Venus transit in the timing of the second (top)
and third contact (middle) and the transit duration (bottom) between the exact computation
and the linear model with three coefficients using the best fitted values of Table 7, for any
point on the Earth (irrespective of the visibility). Note the amplitude of ∼ 10 s and the
non zero average.
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Figure 8: Residuals in seconds for the 2004 Venus transit in the timing of the second
(top) and third contact (middle) and the transit duration (bottom) and between the exact
computation and the second order model with nine coefficients using the best fitted values
of Table 8, for any point on the Earth. The amplitude is less than 0.5 s and the average
is zero.
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6 Determination of the solar parallax

In this section an application of the linear model is proposed in view of processing timings
to determine the astronomical unit. As explained in the previous sections the time differ-
ence between the geocentric and topocentric contacts is given by the simple expression,

τ = Aα+Bβ + Cγ (68)

where A, · · · stands in fact for A + δA, · · · and α, β, γ are the direction cosines of the
observer referred to the equator and the Greenwich meridian with,

α = cosφ cosλ (69)

β = cosφ sinλ (70)

γ = sinφ (71)

If one wishes to allow for the flattening of the Earth this must be replaced by,

α = ρ(φ) cosφ cosλ (72)

β = ρ(φ) cosφ sinλ (73)

γ = ρ(φ)(1− 2f) sinφ (74)

with,

ρ(φ) = (1− 2f sin2 φ)−1/2 (75)

where f = 1/298.26 is the Earth flattening (relative difference between the equatorial and
polar radius). The effect of the flattening on the timing will be at most of 1 to 2 seconds
of time.

6.1 Parallax from the timings

All the numerical values in Table 5 have been computed with an assumed solar parallax
πref = 8.794142, that is to say an astronomical unit of 149597870.61 km. The coefficients
A, · · · are directly proportional to π�.

Let two distant observers located at coordinates φ1, λ1 and φ2, λ2. Assuming that their
clocks are perfectly set and that they can express their measurements in UTC, the expected
contact timings of the ith contact for the first observer is,
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t
(i)
1 = t

(i)
geo + Ãα1 + B̃β1 + C̃γ1 (76)

where t(i)geo is the geocentric time of the contact. For the second observer one has a similar
equation,

t
(i)
2 = t

(i)
geo + Ãα2 + B̃β2 + C̃γ2 (77)

Therefore by subtracting these two equations one gets the expected timing difference for
these two observers as,

dtc = Ã(α2 − α1) + B̃(β2 − β1) + C̃(γ2 − γ1) (78)

where the coefficients are taken for the relevant contact(s) in Table 5. If they measure a
difference dto, and if the only source of discrepancy is the value of the solar parallax, then
they can conclude that the true value of the solar parallax is,

π� = πref
dto
dtc

(79)

6.2 Parallax from the duration of the transit

6.2.1 Two observers

The comparison between observers of the duration of the transit between the second
and third contact, is much easier as it requires only a good standard wristwatch at each
location to assess a duration of few hours to few seconds accuracy. Therefore each observer
determines a duration and can dispense with an accurate synchronisation to some form of
UT. The formula for the computed value is the same as (78) with the coefficients Ã, . . .
taken from the last line of Table 5. As before, if they observed a difference of duration
dto, they can conclude from this single pair of measurements a value of the parallax with
Eq. 79.

It is important to stress that the reference value of the parallax is totally irrelevant and that
only the precision of the observations performed at the two locations matters. Changing
the reference parallax would change the coefficients A, · · · accordingly and would not affect
the ratio πref/dtc.

6.2.2 Combination of observations

Having n observers on the Earth able to observe ingress and egress providesN = n(n−1)/2
baselines and as many different determinations of parallaxes. Even if each observer worked
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Table 9: Topocentric coefficients for the historical Venus transits for the duration be-

tween the two inner contacts. The second column gives the computed geocentric duration

between this two contacts. The reference parallax π� = 8.′′794142 has been used.

Year t3 − t2 Ã B̃ C̃

s s s

1761 05h57m41s 4.6 -313.4 -465.6

1769 05h42m12s 476.5 376.5 516.1

1874 03h36m38s -293.1 -12.9 1178.6

1882 05h39m03s -302.1 591.9 -576.1

with the same accuracy in the timing of the contacts, the precision on the parallaxes would
not be constant. A longer baseline (in fact a longer shift in the duration of the transit
between the two locations) yields a more accurate parallax. Therefore one cannot combine
straightforwardly the N determinations into a single one without weighing properly each
determination. The weight is a function of the accuracy of the individual timings (very
difficult to assess) and of the baseline. Once this is done, one must evaluate the standard
error, taking into account that if there are N parallaxes, there are not N independent
measurements, but only n. Thus a full N × N correlation matrix must be evaluated
to assess the final standard error. The details are given in the next section with the
application to the transit of 1769.

7 Application to the passage of 1769

The method developed in the previous sections can be applied to the historical transits,
in particular that of 1769 when combined measurements of the inner and outer contacts
have been obtained at different locations. For these transits the relevant coefficients for
the topocentric durations between the 2nd and 3rd contact are given in Table 9.

Consider now the observations performed during the expeditions of 1769, restricting to the
five stations where the two internal contacts of Venus with the Sun where properly seen
and timed. A very simple approach consists of grouping the stations two by two so that
one parallax can be estimated for each of the possible pairs. Clearly the results are not
statistically independent and this would not be the method favoured today by astronomers,
but basically this was the method employed in the XVIIIth century. The first two stations
being very similar in position I will not combine them as a pair, although they would
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Table 10: Venus transit of June 1769 : Location and observations carried out at the five

stations with timings at the inner ingress and egress. The local times are in true solar

time and have not been converted into UT.

Place φ λ Observer t2 t3 t3 − t2

deg deg local time local time

1 Vardö 70.367 31.02 Hell 21h33m54s 03h27m08s 5h53m14s

2 Kola 68.882 33.02 Rumunsky 21h45m47s 03h39m06s 5h53m19s

3 Hudson Bay 58.792 -94.26 Wales 13h15m23s 19h00m47s 5h45m24s

4 St Joseph 23.060 -109.68 Chappe 12h17m27s 17h54m50s 5h37m23s

5 Tahiti -17.482 -149.48 Cook 09h44m04s 15h14m08s 5h30m04s

be naturally downweighed by a proper statistical treatment. For each pair (i, j) I have
computed the expected difference of duration between the inner contacts from Eq. 78 using
the data of the 1769 passage in Table 9. This is then compared to the observed value and
the parallax is eventually estimated from Eq. 79.

For each pair of stations I also estimated the standard error on the parallax by assuming
that the timing of the inner contacts is carried out without bias (this point is obviously
questionable because of the black-drop effect) and with a random error of τ = 10 s in the
timing. Then the error on the duration is

√
2τ and the error in the difference of duration

between the station i and station j is 2τ . This leads to the standard error for the parallax
based only on these two stations,

σπ = πref
2τ
dtc

(80)

The values are given in Table 11 and indicate a precision of the order of 0.1 to 0.4 arcsec,
variable with the baseline between the two stations, as explained earlier.

To obtain a value of the parallax from these five stations one must combine the individual
results. A straight mean is not appropriate, since the accuracy is not constant through
the measurements. Moreover, the 9 determinations are not independent because a given
station is combined with the other four. An optimal statistical combination is not trivial to
find and the best compromise is to take a weighted mean between the nine determinations
by assigning a weight w(k) = 1/σ2(k) to the kth combination. Then one computes,
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Table 11: Venus transit of June 1769 : Estimation of the solar parallax from the combi-

nation of observing stations with the timings of the 2nd and 3rd contacts. The estimate

of the standard error is based on a random timing error of 10 s at each contact.

] Combination dtc dtobs π� σ AU

s s ′′ ′′ 106 km

1 1 - 3 461 470 8.96 0.4 146.8

2 1 - 4 961 951 8.70 0.2 151.2

3 1 - 5 1418 1390 8.62 0.1 152.6

4 2 - 3 472 475 8.84 0.4 148.8

5 2 - 4 973 956 8.64 0.2 152.3

6 2 - 5 1430 1395 8.58 0.1 153.3

7 3 - 4 500 481 8.45 0.4 155.7

8 3 - 5 957 920 8.45 0.2 155.7

9 4 - 5 457 439 8.44 0.4 155.9

π� =
9∑

k=1

w(k)π(k)/
∑

w(k) = 8.′′61 (81)

The standard error of this weighted mean can be estimated from the variance of (81),
by taking into account the correlations between the different observations. It is easy
to establish that the correlation coefficient ρ(k, k′) between the results k based on the
combination from the stations (i, j) and k′ for the stations (i′, j′) is 0, if there are no
stations in common, 1/2 for the combinations (i, j) with (i, j′) or (i, j) with (i′, j) and
-1/2 for the combinations (i, j) with (j′, i) or (i, j) with (j, i′). The simple structure of
the correlations matrix comes also from the uniform error in the timing (τ = 10 s) assumed
for each observer.

For the nine combinations of Table 11 the correlation matrix has the following form,

31



1

2

3

4

5

6

7

8

9



1.0 0.5 0.5 0.5 0.0 0.0 −0.5 −0.5 0.0

0.5 1.0 0.5 0.0 0.5 0.0 0.5 0.0 −0.5

0.5 0.5 1.0 0.0 0.0 0.5 0.0 0.5 0.5

0.5 0.0 0.0 1.0 0.5 0.5 −0.5 −0.5 0.0

0.0 0.5 0.0 0.5 1.0 0.5 0.5 0.0 −0.5

0.0 0.0 0.5 0.5 0.5 1.0 0.0 0.5 0.5

−0.5 0.5 0.0 −0.5 0.5 0.0 1.0 0.5 −0.5

−0.5 0.0 0.5 −0.5 0.0 0.5 0.5 1.0 0.5

0.0 −0.5 0.5 0.0 −0.5 0.5 −0.5 0.5 1.0


Then we have for the standard deviation of the weighted mean,

σ2
π� =

(
9∑

k=1

w(k)2σ2(k) + 2
∑

k

∑
k′>k

w(k)w(k′) ρ(k, k′)σ(k)σ(k′)

)
/
(∑

w(k)
)2

(82)

yielding the final result,

π� = 8.61± 0.10 (83)

(If the correlations are omitted the standard error is only 0.′′06). This result is in good
agreement with the extensive and numerous discussions that followed the transit of 1761,
whose final conclusion was a solar parallax between 8.′′45 and 8.′′85 and the re-evaluations
on the XIXth century by Encke in 1824 leading to π� = 8.′′6030.

8 Worked example for the passage of 2004

This section summarises the results developed in detail in the course of this paper, applying
the main formulas to the passage of 2004. Its intent is very practical and directed to users
who wish to skip the rather intricate mathematical derivation. It can be read almost
independently of the rest of the text.

The difference δt of time between the contacts observed at the centre of the Earth and at
a point of longitude λ and latitude φ at its surface is computed by the following formula,

δt = A cosφ cosλ+B cosφ sinλ+ C sinφ (84)
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where the coefficients A, B, C are numerical constant independent of the observer and
computed once for all for the transits, for each contact. Their values in seconds of time
are given in Table 12. The accuracy of this approximation to obtain the topocentric
contacts is estimated to about 5 seconds, and is considered sufficient to analyse most of
the observations of contact timings.

Table 12: Venus transit of June 2004 : Geocentric contacts and Coefficients A, B, C giving

the time shift of the topocentric contacts relative to the corresponding geocentric ones.

Contact Time A B C

UT s s s

1st 05h13m34s 388.6 4.9 174.4

2nd 05h32m50s 396.5 -38.6 202.9

3rd 11h06m41s 195.5 -206.0 -345.3

4th 11h25m57s 166.9 -230.7 -316.8

For the duration of the transits between the outer or inner contacts, the difference between
the two contacts determined with (84) yields an expression of the same form, with different
numerical factors. They are given in Table 13 together with the geocentric duration. These
coefficients have been computed with a reference value for the parallax πref = 8.′′794142
and are directly proportional to the actual parallax. Any other value could have been used
and this has absolutely no impact at all on the determination of the Astronomical Unit
that a network of observers would obtain from their own timings of the transit.

Table 13: Venus transit of June 2004 : Duration of the transits for the outer and in-

ner contacts and coefficients A, B, C needed to compute the corresponding topocentric

durations.

Contact δtgeo A B C

mn s s s

1st to 4th 372.40 -221.6 -235.7 -491.2

2nd to 3rd 333.85 -200.9 -167.4 -548.2
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Two observers measuring each at its location the duration of the transit between the two
inner contacts can determine the solar parallax from their measurements with (78)and
(79), by computing the expected difference of duration of the transits between the two
places from the reference distance, and using the observed value in (79). A similar formula
can be written giving directly the astronomical unit in kilometres as,

1AU = 149.60× 106 δtref
δtobs

(85)

As a numerical application consider an observer located at Nice ( O1 : λ = 7.◦30, φ = 43.◦72)
and the second at Saint-Denis in the Island of Reunion (O2 : λ = 55.◦47, φ = −20.◦87). One
determines first the computed duration (between second and third contact) for each place
with (84), taking the coefficients A, B, C and the geocentric duration from the second line
of Table 13. One gets,

δt1 = δtgeo − 538.3 s = 324.87 mn (86)

δt2 = δtgeo − 40.0 s = 333.18 mn (87)

for the duration of the transit at Nice and at Saint-Denis. The differences in the duration
between the geocentric event and the topocentric event expressed in seconds follow just
from a straight application of (84) to the two locations. Therefore the theoretical difference
between the two measurements computed with a reference astronomical unit of 149.60×106

km should be,
δtref = 498.3 s (88)

Assuming that the observed values for the duration are (with a reasonable random error
in the timing of about 20 s),

δt1 = 324.60 mn (89)

δt2 = 333.30 mn (90)

or
δtobs = 522.0 s (91)

Therefore, they would find with (85) an astronomical unit of 142.9× 106 km, or an error
of ∼ 5%.

It happens that the linear formula performs poorly in the middle of the Indian Ocean (see
Fig. 7-bottom) and that in this particular case, a processing with the quadratic expression
would be more appropriate. Essentially, one has to correct the observed duration for the
magnitude of the second order terms before applying the result to the determination of
the parallax with the linear terms.

34



ANNEX

Numerical data for the transit of June 2012

The following tables are identical to Table 4-5-6, but for the transit of 2012 with an
extrapolated value of TT − TU = 65.8s.

Table 14: Venus transit of 5-6 June 2012 – Geocentric contacts

Contact Time X Y Ẋ Ẏ θ H�

UT ′′ ′′ ′′/h ′′/h ′′ deg

1st 22h09m44s 633.84 738.38 -232.58 -60.92 945.72 152.78

2nd 22h27m33s 564.83 720.31 -232.58 -60.92 945.72 157.23

3rd 04h31m45s -847.59 353.06 -232.78 -60.07 945.69 248.27

4th 04h49m34s -916.66 335.23 -232.78 -60.07 945.69 252.72
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Table 15: Venus transit of 5-6 June 2012. Coefficients for the topocentric contacts : linear

formula.

Contact A+ δA B + δB C + δC Γ b l

s s s s deg deg

1st -222.7 176.1 -277.3 396.9 -44.3 141.7

2nd -213.9 184.4 -296.9 409.8 -46.4 139.2

3rd 373.9 82.0 144.5 409.1 20.7 12.3

4th 371.4 59.0 125.0 396.3 18.4 9.0

2nd to 3rd 587.8 -102.5 441.4 742.2 36.5 350.1

1st to 4th 594.1 -117.1 402.2 727.0 33.6 348.9

Table 16: Venus transit of 5-6 June 2012. Coefficients for the topocentric contacts : second

order terms.

Contact C00 C22 S22 C21 S21 C20

s s s s s s

1st 2.2 -1.1 -0.0 -0.4 0.1 3.0

2nd 2.6 -1.1 0.1 -0.2 0.2 3.6

3rd -2.6 0.7 -1.4 -1.4 -0.2 -3.6

4th -2.2 0.5 -1.4 -1.2 -0.0 -3.0

2nd to 3rd -5.1 1.7 -1.5 -1.2 -0.4 -7.1

1st to 4th -4.4 1.6 -1.4 -0.8 -0.1 -6.1
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Figure 9: Difference in seconds between the geocentric and topocentric time of the second
(top) and third contact (middle), and difference of duration of the transit (bottom) for any
point on the Earth (irrespective of the visibility)
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