Spectro-polarimétrie THEMIS/DPSM de raies hors ETL et structures magnétiques chromosphériques

P. Mein¹, N. Mein¹, A. Berlicki^{1;2}, B. Schmieder¹
Observatoire de Paris, section de Meudon, LESIA, F-92195 Meudon

² Astronomical Institute of the Wroclaw University, ul. Kopernika 11, 51-622 Wroclaw, Poland

Nous présentons quelques résultats obtenus avec le DPSM de THEMIS sur des raies hors ETL, et nous proposons quelques aspects prospectifs pour l'observation de ces raies.

- 1) L'exploration des profils V de la raie NaD1 nous a permis de préciser le champ longitudinal à divers niveaux, jusqu'à la basse chromosphère (Eibe et al, 2002; Berlicki et al, 2005):
 - les comparaisons avec SOHO/MDI montrent une grande similarité avec les champs mesurés à partir du bissecteur de NaD1 à 0.3 Å du centre raie.
 - le comportement différent du gradient vertical dans les taches et les régions faculaires souligne l'importance des canopies dans les couches subchromosphériques.
 - Dans le prolongement des études de fonctions-réponses pour les profils V de NaD1, des simulations numériques sont en cours pour la polarisation linéaire et la sensibilité aux champs transverses.
- 2) Les profils V de la raie $H\alpha$ permettent une mesure du champ sur le disque à un niveau plus élevé, dans la chromosphère. Le caractère bidimensionnel du DPSM permet de choisir, par lissages xy au dépouillement, le meilleur compromis entre résolution spatiale et rapport signal/bruit.
- 3) Des cartes de polarisation linéaire dans Hα et D3 ont été mesurées pour les protubérances. La remarque précédente est également valable pour l'augmentation du rapport signal/bruit. Outre la rapidité du DPSM, qui permet l'étude temporelle de structures MHD évolutives, nous espérons que sa haute résolution spatiale pourra être exploitée par le tip-tilt de THEMIS, notamment dans l'étude des tubes de flux et des canopies..