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In the context of 3D Euler equations possessing a symmetry plane (see [1, 2]) we introduce
a new set of 2D equations on the symmetry plane:

D
Dtω = α ω , D

Dtκ2D = ∇2Dα + (κ2D · ∇2D)u2D − 2α κ2D,
42Dα + α,zz = −ω̂ · (∇2D × ωκ2D).

(1)

The out-of-plane coordinate is denoted by z, so the symmetry plane indicated by the subscript
2D corresponds to z = 0. All vector fields are parallel to the symmetry plane, except for ω̂,
which is pointing out of plane. On the symmetry plane D

Dt ≡ ∂
∂t +u2D ·∇2D is the 2D convective

derivative and α is the stretching rate in the out-of-plane direction ẑ. The remaining quantities
in the symmetry plane come from the full three-dimensional vorticity ω and are its magnitude
ω = |ω|, its direction vector ω̂ ≡ ω/ω, and the curvature vector of vortex lines κ = (ω̂ · ∇)ω̂.
The 2D velocity u2D is obtained from α and ω by solving α = −∇2D ·u2D and ω = ω̂·(∇2D×u2D).

The system of equations (1) can be closed (and this is the only approximation to be made)
by assuming that the second out-of-plane derivative of the stretching vanishes: α,zz = 0. This
implies 42Dα = ∇2D · (ω̂ × ωκ2D) which can be solved for the curvature:

ω κ2D = −ω̂ ×∇2Dα . (2)

In order to validate the above assumption, figure 1 (left) shows, on the symmetry plane, gray
scale contours of ω and line contours of α taken from a full 3D calculation [3]. There is clearly a
direction of high gradients of α, parallel in the symmetry plane, making some angle with respect
to the vertical, as there is a direction of weaker gradients. Though not shown, the out-of-plane
term α,zz has the same order of magnitude as the square of the weaker gradient just mentioned.
Thus the condition α,zz << 42Dα is satisfied, with a factor of around 1/400.

In order to demonstrate the potential of these new 2D equations, we have done a calculation
in a vortex dipole approximation. Preliminary results are consistent with a full 3D vortex
filament calculation [4], showing the expected scaling laws and time dependence for the collapse
of a vortex dipole. These results, plotted in figure 1 (right), show the following scaling laws:
for the maximum value of stretching, α ∝ (T − t)−1. For the maximum value of approaching
velocity squared of the interacting vortices, u2 ∝ (T − t)−1. Finally, for the maximum value of
vortex curvature squared, κ2

2D ∝ (T − t)−1. Our calculation goes further. It gives an estimate
of the ratio ωpk/αpk ≈ 16.0 where ωpk = max(x,y)∈R2 ω(x, y, 0, t) is the maximum value of the
modulus of the vorticity and αpk is the value of the stretching at the point where the vorticity
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is maximum. Our estimate is consistent, within this approximation, with the full 3D Euler
calculations by [5, 6].

Moreover, applying eq.(2) to the full 3D data in figure 1 (left) gives the direction of κ2D to
be along contours of α, denoted by dashed and solid lines in the figure. The results from our
vortex dipole approximation (figure not shown) are consistent with this direction.

Now that our approximate 2D system, eqs.(1),(2) has been validated, we plan to study
it numerically using the initial condition of anti-parallel vortices from an existing fully three-
dimensional Euler calculation [5]. Further validations would then consist of comparisons with
that calculation. It is worth mentioning that our approximation is consistent with the conser-
vation of total energy when the energy flux to and from a neighborhood of the symmetry plane
is taken into account. Finally, we plan to study a variational formulation of our new equations.

Figure 1: (Left): Plot of vorticity contours (gray scale) and stretching contours (lines) on the
symmetry plane. (Right): Time dependence of quantities from vortex dipole approximation:
maximum stretching (solid line), approaching velocity of vortices (dashed), and maximum cur-
vature (dash-dotted). The dotted lines are just indicators.
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