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Particle laden flows

Warm clouds

Protoplanetary disks
Sprays  Particle pollution

Plankton
Pyroclasts

Finite-size and mass impurities advected by turbulent flow



Very heavy particles
• Spherical particles much smaller than the

Kolmogorov scale    , much heavier than
the fluid, feeling no gravity, evolving with
moderate velocities: one of the
simplest model

! 2
parameters:

Prescribed velocity field
(random or solution to NS)

• Dissipative dynamics (even if       is incompressible)
Lagrangian averages correspond to an SRB measure that
depends on the realization of the fluid velocity field.



Clustering of inertial particles
• Important for

- the rates at which particles interact (collisions, chemical
reactions, gravitation…)
- the fluctuations in the concentration of a pollutant
- the possible feedback of the particles on the fluid

Inertial-range clusters and voids
Multifractal at dissipative scales



Phenomenology of clustering

• Idea: find models to disentangle these two effects

• Different mechanisms:
Ejection from eddies by

centrifugal forces
Dissipative dynamics
! attractor

Random flows uncorrelated in time
(isolate effect of dissipative dynamics)
Lyapunov exponents

fractal dimensions

Wilkinson & Mehlig; Falkovich & Co.

Simple model for both the flow
and the dynamics able to
reproduce the typical shape of
the mass distribution



Mass distribution

• Coarse-grained density

• Two asymptotics:

(i.e.          ): multifractal formalism
large deviations for the ‘local dimension’

Question = dependence of the rate function     on the Stokes number
 tools = Lyapunov exponents and their large deviations

(i.e.            ): how is uniformity recovered at large scales?
use of the inertial-range properties of the flow

Problem = not scale invariant anymore
Question = how to account for a ‘scale-dependent inertia’?



Small-scale clustering

• Linearized dynamics (tangent system)
     = infinitesimal separation between two trajectories

  DNS (JB, Biferale, Cencini, Lanotte, Musacchio & Toschi, 2007)

Correlation
dimension

Related to the radial
distribution function
(see Sundaram & Collins 1997)



Kraichnan flow
• Gaussian carrier flow with no time correlation

Incompressible, homogeneous, isotropic

                          = Hölder exponent of the flow



Reduction of the dynamics

• Maps to a problem of Anderson localization

• Exponential separation
Lyapunov exponent

Expansion in powers of the Stokes number
 = diverging series ! Borel resummation

Duncan, Mehlig, Östlund & Wilkinson (2005)

with



“Solvable” cases
• One dimension (Derevyanko et al. 2006)

Potential

Constant flux solution

Lyapunov exponent:

• Large-Stokes asymptotics
(Horvai nlin.CD/0511023)

+ same scaling for FTLE

(Bec, Cencini & Hillerbrand, 2007)



Inertial range distribution of mass
• Effective inertia decreases with    : scale invariance disappears

Tail faster
than

exponential

Algebraic
tail

decreases
or

increases

Poisson



Small Stokes / Large box scaling
• The two limits               and               are equivalent

• Naïve idea: Local Stokes number

• Actually, scaling determined by the increments of pressure:
Small inertia: Maxey’s approximation
synthetic compressible flow:

• Relevant time scale for the time evolution of a blob of particles

• Dimensional analysis:

Observed: scaling dominated by sweeping

so that



Small Stokes / Large box scaling
• The density distribution depends only on



Model for vortex ejection

• Flow divided in cells.

With a probability      the cells are
rotating and eject particles to
their non-rotating neighbors

• Each cell contains a continuous

mass         of particles.
The mass ejected from the    th
cell is at most           .

Between two time steps:     and

(JB & Chétrite 2007)



One-cell mass distribution
After sufficiently large time:
the system reaches a non-equilibrium steady state.

PDF of         very similar to that obtained in DNS (same tails) 

1D



Behavior of tails
• Left tail: algebraic                             when

• Right tail: super exponential
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Summary / Open questions
• Two kinds of clustering
• Dissipative scales: scale invariant (multifractal)

relevant time scale = Kolmogorov time
• Inertial range: scale invariance broken

relevant time scale = acceleration (pressure gradient)

• What can be analytically quantified?
! Fractal dimensions / Lyapunov exponents:

Short-correlated flows: Wilkinson & Mehlig
1D telegraph: Falkovich and coll.

! Inertial-range distributions (cell ejection models)

• Is the 5/3 scaling a finite Reynolds number effect?


