Preferential concentration of inertial particles in turbulent flows

Jérémie Bec

CNRS, Observatoire de la Côte d'Azur, Université de Nice

EE250, Aussois, June 22, 2007

Particle laden flows

Finite-size and mass impurities advected by turbulent flow

Very heavy particles

 Spherical particles much smaller than the Kolmogorov scale η, much heavier than the fluid, feeling no gravity, evolving with moderate velocities: one of the simplest model

• **Dissipative dynamics** (even if u(x,t) is incompressible) Lagrangian averages correspond to an SRB measure that depends on the realization of the fluid velocity field.

Clustering of inertial particles

• Important for

- the rates at which particles interact (collisions, chemical reactions, gravitation...)

- the fluctuations in the concentration of a pollutant
- the possible feedback of the particles on the fluid

Phenomenology of clustering

Ejection from eddies by centrifugal forces

• Idea: find models to disentangle these two effects

Random flows uncorrelated in time (isolate effect of dissipative dynamics) *Lyapunov exponents fractal dimensions* Wilkinson & Mehlig; Falkovich & Co. Simple model for both the flow and the dynamics able to reproduce the typical shape of the **mass distribution**

Mass distribution

• Coarse-grained density $ar{
ho}_r(oldsymbol{X},t) = rac{1}{|\mathcal{B}_r|} \int_{\mathcal{B}_r(oldsymbol{X}(t))} d\mu_t$

• Two asymptotics:

 $r \rightarrow 0$ (i.e. $r \ll \eta$): multifractal formalism $p(\bar{\rho}) \propto r^{S(\ln \bar{\rho}/\ln r)}$ large deviations for the 'local dimension' $\ln \bar{\rho}_r / \ln r$ Question = dependence of the rate functionS n the Stokes numberSttools = Lyapunov exponents and their large deviations

 $r \rightarrow \infty$ (i.e. $r \gg \eta$): how is uniformity recovered at large scales? use of the inertial-range properties of the flow

Problem = not scale invariant anymore

Question = how to account for a 'scale-dependent inertia'?

Small-scale clustering

DNS (JB, Biferale, Cencini, Lanotte, Musacchio & Toschi, 2007)

Kraichnan flow

• Gaussian carrier flow with no time correlation Incompressible, homogeneous, isotropic $\langle u_i(\boldsymbol{x},t) \, u_j(\boldsymbol{x}',t') \rangle = [2D_0\delta_{ij} - B_{ij}(\boldsymbol{x}-\boldsymbol{x}')] \, \delta(t-t')$ $B_{ij}(\boldsymbol{r}) \simeq D_1 \, r^{2h} \left[(d-1+2h) \, \delta_{ij} - 2h \, r_i r_j / r^2 \right]$ $0 \le h \le 1$ = Hölder exponent of the flow

Reduction of the dynamics

$$egin{array}{rll} \mathrm{d}X&=&-\left[X+X^2-Y^2
ight]\mathrm{d}s+\sqrt{2S}\,\mathrm{d}B_1\ \mathrm{d}Y&=&-\left[Y+2X\,Y
ight]\mathrm{d}s+\sqrt{6S}\,\mathrm{d}B_2\ \mathrm{d}R&=&X\,R\,\mathrm{d}s\ \mathrm{with}\quad S=D_1 au_s \end{array}$$

- Maps to a problem of Anderson localization
- Exponential separation
 Lyapunov exponent λ = ⟨X⟩/τ > 0

 Expansion in powers of the Stokes number
 = diverging series ⇒ Borel resummation
 Duncan, Mehlig, Östlund & Wilkinson (2005)

"Solvable" cases

• **One dimension** (Derevyanko et al. 2006) Potential $U(X) = \frac{X^2}{2} + \frac{X^3}{3}$ X Constant flux solution $p(X) \propto e^{-U(X)/S} \int_{-\infty}^{X} dX' e^{U(X')/S}$ $c \propto S^{-2}$ Lyapunov exponent: $\lambda = \frac{1}{2\tau} \left[-1 + c^{-1/2} \frac{\operatorname{Ai}'(c)}{\operatorname{Ai}(c)} \right]$ Large-Stokes asymptotics 10 (Horvai nlin.CD/0511023) $\lambda \propto D_1 S^{-2/3}$

+ same scaling for FTLE $\mu(t) = \frac{1}{t} \ln[|\mathbf{R}(t)|/|\mathbf{R}(0)|]$ $p_t(\mu; S) \propto e^{-tD_1 S^{-2/3} h(S^{2/3} \mu/D_1)}$ (Bec, Cencini & Hillerbrand, 2007)

Inertial range distribution of mass

• Effective inertia decreases with r: scale invariance disappears

Small Stokes / Large box scaling

- The two limits $au_s
 ightarrow 0$ and $r
 ightarrow \infty$ are equivalent
- Naïve idea: Local Stokes number $St(r) = \frac{\tau_s}{e^{-1/3r^2/3}}$
- Actually, scaling determined by the increments of pressure: Small inertia: Maxey's approximation X
 [×] ≈ v(X,t) synthetic compressible flow: v = u - τ_s(∂_tu + u · ∇u)
- Relevant time scale for the time evolution of a blob of particles
 Γ = ¹/_{r³} ∫_{B_r} ∇ · v d³x ~ -^τ/_s Δ_r∇p
 Dimensional analysis: Δ_r∇p ~ ε^{2/3} r^{-1/3}

Observed: scaling dominated by sweeping

$$\Delta_r \nabla p \sim U \varepsilon^{1/3} r^{-2/3}$$
 so that $\Gamma \propto \tau_s r^{-5/3}$

Small Stokes / Large box scaling

- The density distribution depends only on $\Gamma \propto \tau_s \, r^{-5/3}$

Model for vortex ejection

Between two time steps: t and t + T

• Flow divided in cells.

With a probability p the cells are rotating and eject particles to their non-rotating neighbors

 Each cell contains a continuous mass m_j of particles. The mass ejected from the j th cell is at most γm_j.

(JB & Chétrite 2007)

One-cell mass distribution

After sufficiently large time:

the system reaches a **non-equilibrium steady state**.

PDF of m_j very similar to that obtained in DNS (same tails)

Behavior of tails

- Left tail: algebraic $p(m) \propto m^{\alpha(\gamma)}$ when $m \ll 1$ $\downarrow M$ times $\downarrow Initial mass <math>m_j \approx 1$ $\downarrow N$ times $\downarrow Initial mass <math>m_j \approx (1-\gamma)^N (1-\gamma/2)^M$ $Prob = [p(1-p)^2]^N [p(1-p)]^M \implies \alpha(\gamma, p)$
- Right tail: super exponential

$$m = \frac{1 - \left[1 - (1 - \gamma/2)^N\right]^M}{(1 - \gamma/2)^N}$$
$$Prob = \left[p^2(1 - p)\right]^{NM}$$
$$\Rightarrow p(m) \propto \exp(-C m \log m)$$

Summary / Open questions

- Two kinds of clustering
 - **Dissipative scales:** scale invariant (multifractal) relevant time scale = Kolmogorov time τ_{η}
 - Inertial range: scale invariance broken relevant time scale = acceleration (pressure gradient) $\propto r^{5/3}$
- What can be **analytically quantified**?

 Fractal dimensions / Lyapunov exponents: Short-correlated flows: Wilkinson & Mehlig
 1D telegraph: Falkovich and coll.

- Inertial-range distributions (cell ejection models)
- Is the 5/3 scaling a **finite Reynolds number effect**?