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In honour of

Leonhard Euler (1707–1783)

(from Ecclesiasticus 44:1-15)

Let us now praise famous men

& our fathers that begat us.

The Lord hath wrought great glory by them

through his great power from the beginning ...

All these were honoured in their generations,

and were the glory of their times.

There be of them, that have left a name behind them,

that their praises might be reported ...
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Summary of this lecture

1. Some elementary introductory remarks on :

• 3D incompressible Euler fluid equations & its invariants
• 2D and 212D Euler equations.

2. The Euler singularity problem :

• The Beale-Kato Majda (BKM) Theorem.
• Numerical studies : A brief history of investigations regarding the possible

development of a finite time singularity in ω in 3D Euler.

•Work on the direction of vorticity.

3. Ertel’s Theorem & its consequences : 3D Euler as a Lagrangian evolution

equation. Euler & his brothers/sisters: ideal MHD, barotropic Euler, mixing.

4. Quaternions & their application to Euler (aero/astro/animation ideas) : La-

grangian frame dynamics of an Euler fluid particle & the pressure Hessian.

5. Review of work on the restricted Euler equations.
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3D incompressible Euler equations

1. The 3D incompressible Euler equations in terms of the velocity field u(x, t) :
(
∂

∂t
+ u ∙ ∇

)

u = −∇p ; divu = 0

divu = 0 constrains the pressure p to obey {S = 1
2(ui,j+uj,i) strain matrix}

−Δp = TrS2 − 1
2ω
2 .

2. 3D incompressible Euler in terms of the vorticity field ω(x, t) = curlu :
(
∂

∂t
+ u ∙ ∇

)

ω = ω ∙ ∇u = Sω .

3. Three invariants :

• Energy :
∫
V
|u|2 dV • Circulation :

∮
C
u ∙ dr – Kelvin’s Theorem

• Helicity :
∫
V
ω ∙ u dV : for a vector field in 3-space this is the standard

measure of the extent to which the field lines wrap (coil) around one another.
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• G. I. Barenblatt (1990) said in his review of

Topological Fluid Mechanics, Proceedings of the IUTAM Symposium,

edited by H. K. Moffatt and A. Tsinober, CUP, 1990.

“The magnetic helicity-invariant integral characterizing the topology of a

magnetic field, was discovered by the plasma physicist Woltjer (1958) ...

The next developments in Topological Fluid Mechanics were made by Mof-

fatt & Arnol’d. Moffatt recognized the topological nature of such invariants

for magnetic fields ... whilst Arnold demonstrated their general nature for

fields of general type. In 1969 Moffatt introduced the concepts of the he-

licity density & the helicity integral for vortex flows.”

• Arnol’d & Khesin, Topological Methods in Hydrodynamics, 1998.

•Moffatt (1969,78,85/6,92), Ricca & Moffat (1992).

4. Vortex sheets : Sijue Wu, Wednesday 15:50-16:20, Recent progress in the

mathematical analysis of vortex sheets.
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2D incompressible Euler vortex patches

In the interior of Ω(t), ω = ω0 = const

for all t > 0 : in the exterior ω = 0. The

boundary, initially Γ0, evolves as Γt.

The existence of weak solutions was proved by Yudovich (1963). Euler vortex

patches are such that when u is smooth, ω is a particular solution of the 2D

incompressible Euler equations (ω = curlu)
(
∂

∂t
+ u ∙ ∇

)

ω = 0 , ω ∙ ∇u = 0 .

Using harmonic analysis Chemin (1993) proved that if the boundary Γt is ini-

tially smooth (Γ0 is C
r for r > 1) then it remains smooth for all t > 0. The

theoretical bounds for the parametrization of Γt are exp exp t.

• ∃ a different version on this proof by Bertozzi & Constantin (1993).

• See also Chapter 9 of the book by Majda & Bertozzi (2000).
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212D Euler infinite energy singular solutions

U3D(x, y, z, t) = {u(x, y, t), zγ(x, y, t)} e.g. Burgers’ vortex

on a domain that is infinite in z with a circular X-section Ω of radius L.

ωθ (∂t + u ∙ ∇)u = −∇p ,

divu = −γ ,

(∂t + u ∙ ∇)γ + γ
2 =

2

πL2

∫

Ω

γ2 dA .

1. A time-independent form of these equations was given by Oseen (1922).

2. Ohkitani/JDG (2000) derived the above & showed numerically γ → −∞.

3. Later, using Lagrangian arguments, Constantin (2000) proved analytically that

γ → ±∞ in a finite time in different parts of the X-section Ω.

• γ → +∞ the vortex is tube-like; as γ → −∞ ring-like: infinite energy.

• JDG/Moore/Stuart (2003) found a class of analytical singular solutions.
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3D Euler: Why the interest in singularities?

• Physically their formation may signify the onset of turbulence & may be a

mechanism for energy transfer to small scales (talk by Greg Eyink: Dissipative

anomalies in singular Euler flows, Thursday 08:30-09:20).

• Numerically they require very special methods – a great challenge to CFD.

•Mathematically their onset would rule out a global existence result (talk of

Peter Constantin: The Euler blow-up problem, Thursday at 09.30–10.00).

Beale-Kato-Majda-Theorem (1984) : There exists a global solution of the

3D Euler equations u ∈ C([0, ∞];Hs) ∩ C1([0, ∞];Hs−1) for s ≥ 3 if
∫ T

0

‖ω(∙ , τ )‖L∞(Ω) dτ <∞ , for every T > 0.

Corollary to BKM Thm : If a singularity is observed in a numerical experiment

‖ω(∙ , t)‖L∞(Ω) ∼ (T − t)
−β

then β ≥ 1 for the singularity to be genuine & not an artefact of the numerics.

J. D. Gibbon, EE250; 19th June 2007 8



Imperial College London

Numerical search for singularities
(a revised & up-dated version of a list originally compiled by Rainer Grauer)

1. Morf, Orszag & Frisch (1980): Padé-approximation, complex time singular-

ity of 3D Euler {see also Bardos et al (1976)}: Singularity: yes. (Pauls,

Matsumoto, Frisch & Bec (2006) on complex singularities of 2D Euler).

2. Chorin (1982): Vortex-method. Singularity: yes.

3. Brachet, Meiron, Nickel, Orszag & Frisch (1983): Taylor-Green calculation.

Saw vortex sheets and the suppression of singularity. Singularity: no.

4. Siggia (1984): Vortex-filament method; became anti-parallel. Singularity: yes.

5. Ashurst & Meiron/Kerr & Pumir (1987): Singularity: yes/no.

6. Pumir & Siggia (1990): Adaptive grid. Singularity: no.

7. Brachet, Meneguzzi, Vincent, Politano & P-L Sulem (1992): pseudospectral

code, Taylor-Green vortex. Singularity: no.
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8. Kerr (1993, 2005): Chebyshev polynomials with anti-parallel initial conditions;

resolution 5122 × 256. Observed ‖ω‖L∞(Ω) ∼ (T − t)−1. Singularity: yes.

(poster by Bustamante & Kerr, Tuesday 17:00-18:00.)

9. Grauer & Sideris (1991): 3D axisymmetric swirling flow. Singularity: yes.

10. Boratav & Pelz (1994, 1995): Kida’s high symmetry. Singularity: yes.

11. Pelz & Gulak (1997): Kida’s high symmetry. Singularity: yes.

12. Grauer, Marliani & Germaschewski (1998): Singularity: yes.

13. Pelz (2001, 2003): Singularity: yes.

14. Kida has edited a memorial issue for Pelz in Fluid Dyn. Res., 36, (2005) :

• Cichowlas & Brachet: Singularity: no.

• Pelz & Ohkitani: Singularity: no.

• Gulak & Pelz: Singularity: yes.

15. Hou & Li (2006): Singularity: no. (talk by Hou on Thursday 10.00–10.30).
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Discussion on Thursday 17:00-18:00

moderated by Claude Bardos & Edriss Titi

Singularities: why do we care?

My own suggestion for debate:

By concentrating on the ‘yes/no’ aspect of Euler solutions, have we

over-emphasized the blow-up problem to the detriment of studying

the subtle directional amplification mechanisms that produce violent

growth of the vorticity in the first place?
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Direction of vorticity: the work of CFM & DHY

a) Constantin, Fefferman & Majda (1996) dis-

cussed the idea of vortex lines being “smoothly

directed” in a region of greatest curvature. They

argued that if the velocity is finite in a ball (B4ρ)

& limt→T supW0
∫ t
0 ‖∇ω̂(∙ , τ )‖

2
L∞(B4ρ)

dτ < ∞

then there can be no singularity at time T .

b) Deng, Hou & Yu (2006) take the arc length L(t) of a vortex line Lt with n̂

the unit normal and κ the curvature. IfM(t) ≡ max
(
‖∇ ∙ ω̂‖L∞(Lt), ‖κ‖L∞(Lt)

)

they argue that there will be no blow-up at time T if

1. Uω̂(t) + Un̂(t) . (T − t)−A A + B = 1,

2. M(t)L(t) ≤ const > 0
3. L(t) & (T − t)B .

See the talks : Constantin (Thurs 09.30–10.00) & Hou (Thurs 10.00–10.30).
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The 3-dim Euler equations and Ertel’s Theorem

Dω

Dt
= ω ∙ ∇u = Sω incompressible Euler

Ertel’s Theorem (1942): If ω satisfies the 3D incompressible Euler
equations then any arbitrary differentiable μ satisfies

D

Dt
(ω ∙ ∇μ) = ω ∙ ∇

(
Dμ

Dt

)

Clearly, the operations
[
D
Dt
, ω ∙ ∇

]
= 0 commute. Thus ω ∙ ∇(t) = ω ∙ ∇(0) is

a Lagrangian invariant & is “frozen in” (Cauchy 1859).

• Ertel (1942); Truesdell & Toupin (1960); Beltrami (1871);

• Ohkitani (1993); Kuznetsov & Zakharov (1997);

• Viudez (2001); Bauer (2000).

J. D. Gibbon, EE250; 19th June 2007 13

Imperial College London

The 3-dim Euler equations and Ertel’s Theorem

Dω

Dt
= ω ∙ ∇u = Sω incompressible Euler

Ertel’s Theorem (1942): If ω satisfies the 3D incompressible Euler
equations then any arbitrary differentiable μ satisfies

D

Dt
(ω ∙ ∇μ) = ω ∙ ∇

(
Dμ

Dt

)

Clearly, the operations
[
D
Dt
, ω ∙ ∇

]
= 0 commute. Thus ω ∙ ∇(t) = ω ∙ ∇(0) is

a Lagrangian invariant & is “frozen in” (Cauchy 1859).

• Ertel (1942); Truesdell & Toupin (1960); Beltrami (1871);

• Ohkitani (1993); Kuznetsov & Zakharov (1997);

• Viudez (2001); Bauer (2000).

J. D. Gibbon, EE250; 19th June 2007 13



Imperial College London

Two important consequences of Ertel’s Theorem

(i) Take μ = ρ, the fluid density, which satisfies Dρ/Dt = 0 (Boussinesq). Then

D

Dt
(ω ∙ ∇ρ) = ω ∙ ∇

(
Dρ

Dt

)

= 0

ω ∙∇ρ is the (conserved) potential vorticity – very important in GFD :

– see Hoskins, McIntyre, & Robertson (1985).

(ii) μ = u : the vortex stretching vector ω ∙ ∇u = Sω obeys (Ohkitani 1993)

D(ω ∙ ∇u)
Dt

= ω ∙ ∇

(
Du

Dt

)

= −P ω

where the Hessian matrix of the pressure is defined as

P = {p,ij} =

{
∂2p

∂xi ∂xj

}

.
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Express 3D Euler as a Lagrangian evolution equation

Consider the class of Lagrangian evolution equations for a 3-vector w(x, t)

Dw

Dt
= a(x, t)

D

Dt
=
∂

∂t
+ u ∙ ∇

transported by a divergence-free velocity field u, where a satisfies

Da

Dt
= b(x, t) .

Using Ertel’s Theorem, for Euler we identify the quartet of vectors:

{u, w, a, b} ≡ (u, ω, Sω, −Pω)

The divu = 0 constraint becomes the nonlocal relation

Tr P = 1
2ω
2 − Tr S2 .
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Quartets {u, w, a, b} for Euler & his brothers/sisters

D

Dt
=
∂

∂t
+ u ∙ ∇ , ideal MHD (Elsasser)

{
D±

Dt
= ∂
∂t
+ v± ∙ ∇

v± = u±B

System u w a (Ertel) b BKM

incom Euler u ω Sω −Pω ∫ T
0
‖ω‖∞ dt

barotr Euler u ω/ρ (ω/ρ) ∙ ∇u −(ωj/ρ)∂j(ρ∂i p) ∙ ∙ ∙

MHD v± v∓ B ∙ ∇v∓ −PB ∫ T
0
(‖ω‖∞ + ‖J‖∞) dt

Mixing u δ` δ` ∙ ∇u −Pδ` ∫ T
0
(‖ω‖∞ + ‖δ`‖∞) dt

With J = curlB, the BKM-result for ideal MHD,
∫ T

0

(‖ω‖∞ + ‖J‖∞) dt <∞ ,

is due to Caflisch, Klapper & Steel (1998).
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Application of quaternions to ‘Euler quartets’

Lord Kelvin (William Thompson) said :

“Quaternions came from Hamilton after his best work had been

done, & though beautifully ingenious, they have been an un-

mixed evil to those who have touched them in any way”

O’Connor & Robertson (1998), http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Hamilton.html

Kelvin was wrong because quaternions are now used in :

• the avionics & robotics industries to track objects undergoing sequences of

tumbling rotations ; see “Quaternions & rotation Sequences: a Primer with

Applications to Orbits, Aerospace & Virtual Reality”, by J. B. Kuipers, Prince-

ton Univ. Press, (1999).

• the computer animation/vision industry ; see “Visualizing quaternions”,

by A. J. Hanson, M. K. Elsevier (2006).
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What are quaternions? (Hamilton 1843)

Quaternions are constructed from a scalar p & a 3-vector q by forming the tetrad

p = [p, q] = pI − q ∙ σ , q ∙ σ =
3∑

i=1

qi σi

based on the Pauli spin matrices that obey the relations σiσj = −δij − εijkσk

σ1 =

(
0 i

i 0

)

σ2 =

(
0 1

−1 0

)

σ3 =

(
i 0

0 −i

)

.

Thus quaternions obey the multiplication rule (associative but non-commutative)

p1 ~ p2 = [p1p2 − q1 ∙ q2 , p1q2 + p2q1 + q1 × q2] .

Quaternions have inverses: let p̂ = [p, q] be a unit quaternion with p2 + q2 = 1

then its inverse is p̂∗ = [p, −q].
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then its inverse is p̂∗ = [p, −q].
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Quaternions, Cayley-Klein parameters & Rotations

Let p̂ = [p, q] be a unit quaternion; for a pure quaternion r = [0, r] the trans-

formation r→ R = [0, R]

R = p̂~ r~ p̂∗ = [0, (p2 − q2)r + 2p(q × r) + 2q(r ∙ q)] ≡ O(θ , n̂)r ,

gives the Euler-Rodrigues formula for the rotation O(θ , n̂) by an angle θ of r

about its normal n̂ . Cayley-Klein parameters (SU(2)) are the elements of

p̂ = ±[cos 12θ, n̂ sin 12θ]

If p̂ = p̂(t) then

Ṙ(t) = ( ˙̂p~ p̂∗)~R− (( ˙̂p~ p̂∗)~R)∗ ,

Ṙ = Ω0(t)×R as in rigid body result

The angular velocity is Ω0(t) = 2Im (
˙̂p~ p̂∗) : (see Whittaker (1944) & Marsden

& Ratiu 2003).
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It don’t mean a thing if it ain’t got that swing!
(Duke Ellington)

Consider the general Lagrangian evolution equation for a 3-vector w such that

Dw

Dt
= a(x, t)

D

Dt
=
∂

∂t
+ u ∙ ∇

transported by a velocity field u. Define the scalar αa the 3-vector χa as

αa = |w|
−1(ŵ ∙ a) , χa = |w|

−1(ŵ × a) ,

for |w| 6= 0 . The parallel/perp decomposition a = αaw + χa ×w means that

D|w|
Dt

= αa|w| ,
Dŵ

Dt
= χa × ŵ .

• αa is the ‘growth rate’ (Constantin 1994).

• χa is the ‘swing’ rate : χa = 0 when w and a align.

• For Euler when w = ω aligns with Sω (straight tube/sheet)⇒ χ = 0.
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−1(ŵ × a) ,

for |w| 6= 0 . The parallel/perp decomposition a = αaw + χa ×w means that

D|w|
Dt

= αa|w| ,
Dŵ
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How quaternions apply to quartets

Based on the quartet {u, w, a, b} define the quaternions

qa = [αa, χa] w = [0, w]

The parallel/perp decomposition allows us to re-write Dw/Dt = a as

Dw

Dt
= qa ~w ,

with the ortho-normal “quaternion frame” as : {ŵ , χ̂a , (ŵ × χ̂a)}

t1

•

ŵ

χ̂a

ŵ × χ̂a

t2

•

ŵ
ŵ × χ̂a
χ̂a

The frame orientation is a visual diagnostic in addition to the path.
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Result : (JDG/Holm 06) If the members of the quartet {u, w, a, b} satisfy

Dw

Dt
= a(x, t)

Da

Dt
= b(x, t)

(i) qa and qb satisfy the Riccati equation (|w| 6= 0),

Dqa

Dt
+ qa ~ qa = qb ;

(ii) the ortho-normal frame {ŵ , χ̂a , (ŵ × χ̂a)} satisfies

Dŵ

Dt
= Dab × ŵ ,

D(ŵ × χ̂a)
Dt

= Dab × (ŵ × χ̂a) ,

Dχ̂a
Dt

= Dab × χ̂a ,

where the Darboux angular velocity vector Dab is defined as

Dab = χa +
cb

χa
ŵ , cb = ŵ ∙ (χ̂a × χb) .
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3-dim Euler: frame dynamics of an Euler fluid particle

t1

•

ω̂

χ̂
ω̂ × χ̂

t2

•

ω̂
ω̂ × χ̂
χ̂

Quartet : (u, ω, Sω, −Pω)

Dq

Dt
+ q~ q + qp = 0 , T rP = 1

2ω
2 − TrS2 .

Stationary values – Burgers’ vortices (Moffatt, Kida, Ohkitani 1994).

α = γ0 = const , χ = 0 , αp = −γ
2
0

Off-diagonal elements of P change rapidly near regions of high curva-

ture across which χp and αp change rapidly.
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Restricted Euler equations : modelling the Hessian P

The gradient matrix Mij = ∂uj/∂x
i satisfies (trP = −tr (M 2))

DM

Dt
+M 2 + P = 0 , trM = 0 .

Several attempts have been made to model the Lagrangian averaged pressure

Hessian by introducing a constitutive closure. This idea goes back to

Léorat (1975); Vieillefosse (1984); Cantwell (1992)

who assumed that the Eulerian pressure Hessian P is isotropic. This results in

the restricted Euler equations with

P = − 1
3I tr (M

2) , tr I = 3 .

• Constantin’s distorted Euler equations (1986) : Euler can be written as
∂M

∂t
+M 2 +Q(t)Tr(M 2) = 0 ,
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where Q(t) is a matrix Qij = RiRj with the Riesz transforms Ri = (−Δ)−1/2∂i.

‘Distorted Euler equns’ appear by replacing Q(t) by Q(0)⇒ rigorous blow up.

• Tetrad model of Chertkov, Pumir & Shraiman (1999), recently developed by

Chevillard & Meneveau (2006). Underlying its mean flow features is the assump-

tion that the Lagrangian pressure Hessian is isotropic.

For P to transform as a Riemannian metric and satisfy trP = −tr (M 2)

P = −
G

trG
tr (M 2) , G(t) = I ⇒ restricted Euler .

trP = −tr (M 2) is satisfied for any choice of G = GT

P = −

[ N∑

β=1

cβ
Gβ
trGβ

]

tr (M 2) , with
N∑

β=1

cβ = 1 ,

so long as an evolutionary flow law is provided for each of the symmetric tensors

Gβ = G
T
β with β = 1, . . . , N . Any choice of flow laws for G would also determine

the evolution of the driving term qb in the Riccati equation.
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Related talks/posters/discussions at this meeting

1. For analytic work on The Euler blow-up problem see the talk of Peter Con-

stantin on Thursday at 09.30–10.00.

2. For numerical work see:

• the poster of Miguel Bustamente & Bob Kerr, Tuesday 17:00-18:00.

• the talk Blow-up or no blow-up? The interplay between theory and numerics

by Tom Hou on Thursday at 10.00–10.30.

• the talk A geometrical study of 3D incompressible Euler flows with Clebsch

potentials by K. Ohkitani on Thursday at 11:00-11:30.

3. Discussion Session: Singularities: what do we care? moderated by Claude

Bardos & Edriss Titi, Thursday 17:00-18:00.

4. For Onsager’s conjecture Dissipative anomalies in singular Euler flows, see the

talk by Greg Eyink, Thursday 08:30-09:20.

5. For work on vortex sheets see the talk of Sijue Wu on Wednesday 15:50-16:20

Recent progress in the mathematical analysis of vortex sheets.
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[75] P. Vieillefosse, Internal motion of a small element of fluid in an inviscid flow, Physica, 125A, 150-162,

1984.

[76] B. J. Cantwell, Exact solution of a restricted Euler equation for the velocity gradient tensor, Phys. Fluids,

4, 782-793, 1992.

[77] P. Constantin, Note on loss of regularity for solutions of the 3D incompressible Euler and related equations,

Comm. Math. Phys., 311-326, 104, 1986.

[78] M. Chertkov, A. Pumir and B. I. Shraiman, Lagrangian tetrad dynamics and phenomenology of turbulence,

Phys. Fluids, 11, 2394, 1999.

[79] L. Chevillard and C. Meneveau, Lagrangian Dynamics and Statistical Geometric Structure of Turbulence,

Phys. Rev. Lett., 97, 174501, 2006.

[80] P. Constantin, P. Lax and A. J. Majda, A simple one-dimensional model for the three-dimensional vorticity

equation, Comm. Pure Appl. Math., 38, 715-724, 1985.

J. D. Gibbon, EE250; 19th June 2007 33



Imperial College London

Figure 1: u-field is Arter-flow: Computation by Matthew Dixon.
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