THE MICROSCOPE MISSION: TWO YEARS BEFORE THE LAUNCH

Pierre Touboul,
on behalf of the MICROSCOPE Team

ONERA, The French Aerospace Lab, BP 80100, F-91123 Palaiseau
pierre.touboul@onera.fr
ESA Copernicus programme’s Sentinel satellites!

- Copernicus programme: Global Monitoring for Environment (EC with ESA partnership)
- Five families of Sentinel satellites
- Sentinel-1 is a two satellites constellation with prime objectives of Land and Ocean monitoring: C-Band SAR data (accurate imaging in all weathers) following ERS-2 and Envisat.
- Sentinel 1a ready for launch in spring 2014: heliosynchronous orbit at 786 km
- Sentinel 1b to be ready for launch as soon as sept. 2015 with Soyuz (object: end of 2015)
Copernicus programme : Global Monitoring for Environment (EC with ESA partnership)

Five families of Sentinel satellites

Sentinel-1 is a two satellites constellation with prime objectives of Land and Ocean monitoring:
C-Band SAR data (accurate imaging in all weathers) following ERS-2 and Envisat.

Sentinel 1a ready for launch in spring 2014: heliosynchronous orbit at 786 km

Sentinel 1b to be ready for launch as soon as sept. 2015 with Soyouz (object: end of 2015)
Physics is not completely understood → new Physics
 → New experiments
 → New type of results

UFF violation → one of the invariance of the EEP (UFF, LPI, LLI) violated!

$$\delta_{i2} = 2 \frac{m_x^1 - m_x^2}{m_i^1 m_i^2} = \frac{m_x^1}{m_i^1} - \frac{m_x^2}{m_i^2} = 0 ?$$

MICROSCOPE Objective: 10^{-15} accuracy

MICROSCOPE is the first accurate UFF test in space

Scientific results + Return on Space technology limitations

- Thermal, magnetic, structural, acceleration stabilities @ picometer/s2
- On board calibration with satellite control
- Accurate pointing with SST and Angular Accelerometer
- Scientific Mission Center with Mission Scenario Management
Reference scenario

Before the launch, a reference scenario is established. It includes the following steps:

- **Commissioning step 1:** 29 days, operation of all sub-systems & payload verified.
- **Commissioning step 2:** 20 days, drag free and calibration operation validated.
- **Preliminary tests and Performance tests:** 25 + 29 days.
- **EP tests:** 92 + 52 days.

 \[(\text{Calibrations} + 2 \text{ spins} + 2 \text{ inertial orientations} + 2 \text{ test mass centring}) \times (\text{EP} + \text{REF})\]
- **Complementary EP tests:** 71 days.

Breaks periods with satellite in operating mode without thrusters & gas consumption are scheduled and can be added (used to take advantage of the obtained results).

Working scenario

A working scenario is to be executed:

- **Cover 1 month**
- **Is updated every week and validated through Drag-free Expertise and Control Center**
- **Sequences mentioned as:**

 \[
 \begin{align*}
 \text{AE} &= \text{to be Executed} \quad (Q = \text{qualified or AQ= to be qualified}) \\
 \text{AC} &= \text{to be confirmed} \\
 \text{C} &= \text{confirmed} \\
 \text{EC} &= \text{Running} \\
 \text{E} &= \text{Executed or EI = Executed but non successful,}
 \end{align*}
 \]

- Executed scenario updates the reference scenario of the whole mission to compute the whole gas consumption and predict the offered possibilities.
UFF and MICROSCOPE space experiment...

- 2 test masses made of different composition
- Gravitational Source: the Earth
- Kinematic Acceleration: the orbital motion
- Identical initial conditions of motion

<table>
<thead>
<tr>
<th></th>
<th>B/µ</th>
<th>Z/µ</th>
<th>(N-Z)/µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1.008009</td>
<td>0.40286</td>
<td>0.20208</td>
</tr>
<tr>
<td>Ti</td>
<td>1.008911</td>
<td>0.46309</td>
<td>0.08273</td>
</tr>
</tbody>
</table>

- Permanent pico-meter control of the 2 masses
- Measurement = Necessary forces to control the same orbital motion
- No fluctuations of the mass environment due to relative motion
- Centring: 20 µm when the mass are levitated
 → Gravity Gradients corrected or centring controlled @ 0.1 µm in orbital plane (X,Z)
- Satellite imposes the common motion: reduced → instrument better operation
UFF and MICROSCOPE space experiment...

- 2 test masses made of different composition
- Gravitational Source: the Earth
- Kinematic Acceleration: the orbital motion
- Identical initial conditions of motion

<table>
<thead>
<tr>
<th></th>
<th>B/μ</th>
<th>Z/μ</th>
<th>(N-Z)/μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1.008009</td>
<td>0.40286</td>
<td>0.20208</td>
</tr>
<tr>
<td>Ti</td>
<td>1.008911</td>
<td>0.46309</td>
<td>0.08273</td>
</tr>
</tbody>
</table>

- Permanent pico-meter control of the 2 masses
- Measurement = Necessary forces to control the same orbital motion
- No fluctuations of the mass environment due to relative motion
- Centring: 20 µm when the mass are levitated

→ Gravity Gradients corrected or centring controlled @ 0.1 µm in orbital plane (X,Z)
- Satellite imposes the common motion: reduced → instrument better operation
UFF and MICROSCOPE space experiment...

- 2 test masses made of different composition
- Gravitational Source: the Earth
- Kinematic Acceleration: the orbital motion
- Identical initial conditions of motion

<table>
<thead>
<tr>
<th></th>
<th>B/µ</th>
<th>Z/µ</th>
<th>(N-Z)/µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1.008009</td>
<td>0.40286</td>
<td>0.20208</td>
</tr>
<tr>
<td>Ti</td>
<td>1.008911</td>
<td>0.46309</td>
<td>0.08273</td>
</tr>
</tbody>
</table>

- Permanent pico-meter control of the 2 masses
- Measurement = Necessary forces to control the same orbital motion
- No fluctuations of the mass environment due to relative motion
- Centring: 20 µm when the mass are levitated
- Gravity Gradients corrected or centring controlled @ 0.1 µm in orbital plane (X,Z)
- Satellite imposes the common motion: reduced → instrument better operation
UFF and MICROSCOPE space experiment...

- 2 test masses made of different composition
- Gravitational Source: the Earth
- Kinematic Acceleration: the orbital motion
- Identical initial conditions of motion

<table>
<thead>
<tr>
<th></th>
<th>B/μ</th>
<th>Z/μ</th>
<th>$(N-Z)/\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1.008009</td>
<td>0.40286</td>
<td>0.20208</td>
</tr>
<tr>
<td>Ti</td>
<td>1.008911</td>
<td>0.46309</td>
<td>0.08273</td>
</tr>
</tbody>
</table>

- Permanent pico-meter control of the 2 masses
- Measurement = Necessary forces to control the same orbital motion
- No fluctuations of the mass environment due to relative motion
- Centring: 20 µm when the mass are levitated
 - Gravity Gradients corrected or centring controlled @ 0.1 µm in orbital plane (X,Z)
- Satellite imposes the common motion: reduced \rightarrow instrument better operation
UFF and MICROSCOPE space experiment...

- 2 test masses made of different composition
- Gravitational Source: the Earth
- Kinematic Acceleration: the orbital motion
- Identical initial conditions of motion

<table>
<thead>
<tr>
<th></th>
<th>B/µ</th>
<th>Z/µ</th>
<th>(N-Z)/µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1.008009</td>
<td>0.40286</td>
<td>0.020208</td>
</tr>
<tr>
<td>Ti</td>
<td>1.008911</td>
<td>0.46309</td>
<td>0.08273</td>
</tr>
</tbody>
</table>

- Permanent pico-meter control of the 2 masses
- Measurement = Necessary forces to control the same orbital motion
- No fluctuations of the mass environment due to relative motion
- Centring: 20 µm when the mass are levitated
 - Gravity Gradients corrected or centring controlled @ 0.1 µm in orbital plane (X,Z)
- Satellite imposes the common motion: reduced → instrument better operation
UFF and MICROSCOPE space experiment...

- 2 test masses made of different composition
- Gravitational Source: the Earth
- Kinematic Acceleration: the orbital motion
- Identical initial conditions of motion

<table>
<thead>
<tr>
<th></th>
<th>B/µ</th>
<th>Z/µ</th>
<th>(N-Z)/µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1.008009</td>
<td>0.40286</td>
<td>0.20208</td>
</tr>
<tr>
<td>Ti</td>
<td>1.008911</td>
<td>0.46309</td>
<td>0.08273</td>
</tr>
</tbody>
</table>

- Permanent pico-meter control of the 2 masses
- Measurement = Necessary forces to control the same orbital motion
- No fluctuations of the mass environment due to relative motion
- Centring: 20 µm when the mass are levitated
 → Gravity Gradients corrected or centring controlled @ 0.1 µm in orbital plane (X,Z)
- Satellite imposes the common motion: reduced → instrument better operation

Galileo Galilei

« Free fall » in space

Microscope
MICROSCOPE PROVIDED MEASUREMENTS

\[
\frac{\ddot{F}}{m_{i}^{el}} - \frac{\ddot{F}}{m_{j}^{el}} = (\delta_{j} - \delta_{i}) \bar{g}(O_{j}) + (1 + \delta_{i}) T \overrightarrow{O_{i}O_{j}} - R_{in, COR} \left(\overrightarrow{O_{i}O_{j}} \right) - \frac{\ddot{F}}{m_{i}^{pa}} + \frac{\ddot{F}}{m_{j}^{pa}}
\]

\[
\bar{g}(O_{j}) - \bar{g}(O_{i}) = [T] \overrightarrow{O_{i}O_{j}} + O(T^2)
\]

- centering
- shape: spherical inertia, multipoles
- material density homogeneity

- Angular acceleration & centrifugal acceleration: to be controlled
- Coriolis & Cinematic relative acceleration
 ⇒ stability of the ULE configuration and electrostatic servo-control

2 years mission duration: fine survey of gas consumption
Heliosynchronous orbit ~ 710 km → 1.7 × 10^-4 Hz
Passive temperature stabilities

Compensation of the drag by GAIA type thrusters
Attitude control without gyro. and wheels
Inertial and rotating pointing → 1 mHz

No moving masses and structural motions @ f_{EP}
Position and attitude sufficiently well known

Payload contributes to s/c motion control
S/C contributes to Payload outputs
MICROSCOPE Satellite: a space lab.

2 differential electrostatic accelerometers in thermal cocoon
MICROSCOPE Satellite: a space lab.

2 differential electrostatic accelerometers in thermal cocoon

Magnetic cocoon

Payload at the center of the satellite:
- for thermal stability
- for spin mode
- for self gravity
MICROSCOPE Satellite: a space lab.

- 2 differential electrostatic accelerometers in thermal cocoon
- Magnetic cocoon
- Payload at the center of the satellite:
 - for thermal stability
 - for spin mode
 - for self gravity
- Payload and star sensor for attitude & orbit control
 And for calibration
MICROSCOPE Satellite: a space lab.

2 differential electrostatic accelerometers in thermal cocoon

magnetic cocoon

payload at the center of the satellite:
- for thermal stability
- for spin mode
- for self gravity

payload and star sensor for attitude & orbit control
And for calibration
MICROSCOPE Space Lab. with 6 DoF Controlled to the benefit of the environment stability

Earth Gravity Gradient \Rightarrow eccentricity $< 5 \times 10^{-3}$
S/C position tracking (Doppler): $< 7m, < 14m, 100m \text{ @ fep}$
Pointing: 10^{-3} rad with variations $< 10 \mu\text{rad (inertial)}$ & $10 \mu\text{rad (spin)} \text{ @ fep}$

Mass Off-Centering \Rightarrow Angular velocity variations $< 10^{-9} \text{ rad/s (spin)} \text{ @ fep}$
Angular accelerations variations $< 10^{-11} \text{ rad/s}^2 \text{ (inertial)}$ & $5.10^{-12} \text{ rad/s}^2 \text{ (spin)} \text{ @ fep}$

Sensitivity Matching \Rightarrow Drag-Free Control $< 3.10^{-10} \text{ ms}^2\text{Hz}^{1/2}$ and $< 10^{-12} \text{ ms}^2 \text{ @ fep}$
Space Electrostatic accelerometers for Earth gravity field recovery

- **GRACE (NASA-JPL), March 2002 – 2015**
 - altitude ~500km
 - $\Gamma_n: 1.0 \times 10^{-10} \text{ms}^{-2}/\text{Hz}^{1/2}$
 - $\Gamma_{\text{max}}: 510^5 \text{ms}^{-2}$
 - $[0.1 \times 10^{-3}; 10^{-1}] \text{Hz}$

Today: 3971 days in orbit

- **GOCE (ESA), March 2009 – October 2013**
 - altitude ~260km
 - $\Gamma_n: 2.0 \times 10^{-12} \text{ms}^{-2}/\text{Hz}^{1/2}$
 - $\Gamma_{\text{max}}: 610^6 \text{ms}^{-2}$
 - $[5 \times 10^{-3}; 10^{-1}] \text{Hz}$

Courtesy TAS-F
Space Electrostatic accelerometers for Earth gravity field recovery

GRACE (NASA-JPL), March 2002 – 2015

- Altitude: ~500 km
- \(\Gamma_n: 1.0 \times 10^{-10} \text{ ms}^{-2}/\text{Hz}^{1/2} \)
- \(\Gamma_{\text{max}}: 510 \times 10^{-5} \text{ ms}^{-2} \)
- [0.1 \times 10^{-3}; 10^{-1}] \text{ Hz}

Today: 3971 days in orbit

GOCE (ESA), March 2009 – October 2013

- Altitude: ~260 km
- \(\Gamma_n: 2.0 \times 10^{-12} \text{ ms}^{-2}/\text{Hz}^{1/2} \)
- \(\Gamma_{\text{max}}: 610 \times 10^{-6} \text{ ms}^{-2} \)
- [5 \times 10^{-8}; 10^{-1}] \text{ Hz}

Accelerometer PSD in 40-100 mHz
- \(\text{ASH}_{3,6}: 6.7 \times 10^{-12} \text{ m/s}^2/\text{Hz}^{1/2} \)
- \(\text{ASH}_{1,4}: 3.9 \times 10^{-12} \text{ m/s}^2/\text{Hz}^{1/2} \)
- \(\text{ASH}_{2,5}: 3.1 \times 10^{-12} \text{ m/s}^2/\text{Hz}^{1/2} \)

GOCE
- Gold wire: \(\varnothing=5 \mu m \)
- PT-Rh Proof mass: \(m=320 g \)
- Gap Y,Z: \(e=299 \mu m \)
- PM Polarisation: \(V_p=7.5 \text{ V} \)
- Detection: \(V_d=7.6 \text{ V @ 100 KHz} \)
- Detector gain: \(1.7 \text{ mV / nano-m} \)
- Scale factor:
 - Science data: \(1.10^{-3} \text{ms}^3/\text{V} \)
 - DFACS data: \(17.10^4 \text{ ms}^3/\text{V} \)
 - Range: \(\pm 6.5 \times 10^{-8} \text{ ms}^2 \)
 - Expected Res. < \(2 \times 10^{-12} \text{ ms}^2/\text{Hz}^{1/2} \)

MicroSCOPE
- Gold wire: \(\varnothing=7.5 \mu m \)
- m=1400 - 307 g
- \(e=600 \mu m \)
- \(V_p=5 \text{ V} \)
- \(V_d=7.07 \text{ V @ 100 KHz} \)
- Detector gain: \(0.3 - 0.26 \text{ mV / nano-m} \)
- Scale factor:
 - Science data: \(1.8 - 2.1 \times 10^{-7} \text{ ms}^3/\text{V} \)
 - DFACS data: \(0.7 - 1.7 \times 10^{-4} \text{ ms}^3/\text{V} \)
 - Range: \(\pm 4.8 - 4.6 \times 10^{-8} \text{ ms}^2 \)
 - Expected Res. < \(2 \times 10^{-12} \text{ ms}^2/\text{Hz}^{1/2} \)
MICROSCOPE: A dedicated instrument

- 6 servo-channels and associated electrode sets
- Sensing and actuations
- Very steady and accurate configuration
- Cylindrical configuration
- Concentric masses
- Overlapping electrodes along X → Linearity

One differential accelerometer = 2 inertial sensors
Each inertial sensors exploits:
Electrostatic concept & Technology similar to GOCE
Instrument Design

2 Sensor Units mounted on reference plate
(2 concentric Test-Masses Pt-Rh / Pt-Rh or Ti / Pt-Rh)

SU’sQM

36 cm x 34.8 cm x 18 cm - 25 kg

MQV

2 x { 28 cm x 17 cm x 9 cm - 3.5 kg - 7 W }

MQV1 MV2

Test-Masses

Silica cylinders for electrodes set

Vacuum system

Circuit boards for coax. connections

Hermetic connectors

Base plate assembly for high accurate positioning

Blocking system

24 bars chamber

Electro-valves

Test-Masses

Silica cylinders for electrodes set
Instrument Design

2 Sensor Units mounted on reference plate
(2 concentric Test-Masses Pt-Rh / Pt-Rh or Ti / Pt-Rh)

30 cm x 25 cm x 11 cm – 5.5kg – 2 x 11W

36 cm x 34.8 cm x 18 cm -25kg

2 Sensor Units mounted on reference plate
(2 concentric Test-Masses Pt-Rh / Pt-Rh or Ti / Pt-Rh)

30 cm x 25 cm x 11 cm – 5.5kg – 2 x 11W

MU'sQM

Front End Electronics Unit (FEEU)
One for two masses, Low noise analog electronics with high stability:
Reference voltages
+ 2 times 6 electrostatic channels (analog part +ADC +DAC)
+ 2 times read out circuits
Instrument Design

2 Sensor Units mounted on reference plate
(2 concentric Test-Masses Pt-Rh / Pt-Rh or Ti / Pt-Rh)

Front End Electronics Unit (FEEU)
One for two masses, Low noise analog electronics with high stability:
Reference voltages
+ 2 times 6 electrostatic channels (analog part +ADC +DAC)
+ 2 times read out circuits

Interface Control Unit (ICU)
2 stacked ICU (1 per FEEU), including each:
1 DSP + 1 FPGA for test-mass control and data conditioning/interfaces,
2 Power Control Units (1 nominal + 1 redundant): very stable secondary voltages (+/-48V, +/-15V, +5V, +3.3V)
INTEGRATION FM 2 : Platinum / Titanium (1/4)
INTEGRATION FM 2 : Platinum / Titanium (1/4)

Reference plate with silica top hat and fingers
INTEGRATION FM 2 : Platinum / Titanium (1/4)

Reference plate with silica top hat and fingers
INTEGRATION FM 2 : Platinum / Titanium (1/4)

Reference plate with silica top hat and fingers
INTEGRATION FM 2 : Platinum / Titanium (2/4)
The two masses are integrated inside their electrode rods;
Geometric control have been performed
Electrical board with connectors and getter pumping element to be mounted
INTEGRATION FM 2 : Platinum / Titanium (3/4)
INTEGRATION FM 2: Platinum / Titanium (4/4)
The 3 FEEU FM, successfully tested in performance:

- noise + bias + linearity + bandwidth + thermal sensitivity
- Interface with FM ICUs

Now, under potting after increase of the read-out range, Qualification under vibrations and thermal cycles are scheduled in Dec. 2013.
1 DSP board per differential accelerometer (No redundancy):
1 DSP \rightarrow 1 SU \rightarrow 12 servo-loops channels
1 DSP = 1 Oslink customer

Architecture on TSC21020F:
• Rad-tolerant FPGA
• SEL immune SRAM (SEU protected by EDAC)
• PROM containing the master (Boot) software (IMSW)
• EEPROM containing the application software (ASW) and the parameter tables.

Software and Hardware tested, accuracy verified.

• DSP hardware now compliant (more robust chronogram):
 ➢ With the whole range of operating temperature
 ➢ And with the 2 years duration of the mission
• Tests have been successfully performed
• Software 2.6 to be delivered at end of November.
Instrument status and performance verification

- **Sensors:**
 Qualification, now performed with demonstration of resistance to launch vibrations, chocks, aging (gold wire); FM 2, integrated and under tests; FM 1, integration running;
 To be delivered in March 2014

- **Analog electronics:**
 FM Tested and being potted after full range adjustment;
 To be delivered in Feb. 2014

- **Digital electronics:**
 Robustness to increase of temperature now insured;
 Software to be up-dated;
 To be delivered in Feb. 2014

- **Documentation:**
 In progress

- **Error budget**
 Now performed with QM actual values and satellite expected environment
 Spin mode : 1.12×10^{-15} over 20 orbits and 0.66×10^{-15} over 120 orbits
 Inertial mode : 1.42×10^{-15} over 120 orbits
 Both limited by the sensor noise, the SU gradients of temperature variations, the SU and FEEU temperature variations.
Instrument status and performance verification

Performance test session: 29 days

- Verification of acceleration output linearity
- Sensibility of output linearity to static TM position (along the 3 axes)
- Variation of the electrostatic configuration
 - through test mass DC potential
 - observation of bias and noise
 - through test-mass sine motion: change of geometry
 - through S/C sine motion: change of electrode voltages
- Evaluation of couplings and TM self gravity
- Evaluation of Magnetic sensitivity through magneto-torque actuations
- Evaluation of thermal sensitivity of SU and FEEU with dedicated thermistances

Calibration: 3 phases of 14 days

- Before and after
- EP and REF

Error budget

Now performed with QM actual values and satellite expected environment
Spin mode: 1.12×10^{-15} over 20 orbits and 0.66×10^{-15} over 120 orbits
Inertial mode: 1.42×10^{-15} over 120 orbits
Both limited by the sensor noise, the SU gradients of temperature variations, the SU and FEEU temperature variations.
CALIBRATION: 2 servo-loops to generate well known acceleration outputs

- Drag compensation loop → To excite the linear satellite motion
 → Common excitation → Differential outputs vs drag-free point
- Attitude S/C control through SST and angular accelerometer
 → To oscillate the S/C → Differential outputs vs eccentricity or instrument attitude vs SST
- Proof-mass oscillation → Elect. Conf. modif. Or Coriolis effects
Operational & scientific organization

3 levels

- permanent activity for data processing
- monthly meetings
- weekly potential request for mission scenario & operation
- biannual meetings or quarterly for data processing organization and validation
- monthly potential requests for mission scenario

The MICROSCOPE Science Working Group promotes the exploitation of the data & is responsible in particular for:
- Supervising and approving the evaluation and the validation of the performance
- Approving the final scientific data products to be distributed to the community,
- Promoting the exploitation of the data and the diffusion of the information (colloquia...).
Approving the final scientific data products to be distributed to the community,
Supervising and approving the evaluation and the validation of the performance

3 levels

Members of the SWG:
- The PI (ONERA) and the co-PI (OCA), Pierre Touboul, Gilles Mètris,
- The ZARM co-I for Space Physics and the DLR co-I, Claus Lämmerzhal, Hans Dittus,
- Five representatives of the already envisaged scientific themes, i.e.:
 - General Relativity and Gravitation, Thibault Damour,
 - Fundamental Interactions, Pierre Fayet,
 - Interdisciplinary Physics, Serge Reynaud,
 - Earth gravity field, Isabelle Planet,
 - Aeronomy, Peter Visser,
- One representative of similar space missions, Tim Sumner,

Guests: the CNES Fundamental Physics coordinator, Project manager, CECT chairman, Sylvie Léon-Hirtz, Michel Bach, Alain Robert and the CMS manager, Manuel Rodrigues.

- permanent activity for data processing
- monthly meetings
- weekly potential request for mission scenario & operation
- biannual meetings or quarterly for data processing organization and validation
- monthly potential requests for mission scenario

The MICROSCOPE Science Working Group promotes the exploitation of the data & is responsible in particular for:
- Supervising and approving the evaluation and the validation of the performance
- Approving the final scientific data products to be distributed to the community,
- Promoting the exploitation of the data and the diffusion of the information (colloquia...).
Thanks to MICROSCOPE present partners

Calibrated centring
Non Calibrated
1E-15 EP signal @ 730km

Different Acceleration (m/s²)

Calibrated centring
Non Calibrated
1E-15 EP signal @ 730km

Different Acceleration (m/s²)
THANK YOU FOR YOUR ATTENTION

QUESTIONS ?