High Accuracy Astrometry and fundamental physics with Gaia

> F. Mignard Univ. Nice Sophia-Antipolis

Observatory of the Côte de Azur

å

design: S. Kliøner

What is meant by Astrometry ?

- Astrometry deals with the measurement of the positions and motions of astronomical objects on the celestial sphere.
- Astrometry relies on specialized instrumentation, observational and analysis techniques.
- It is fundamental to all other fields of astronomy
- It is as old as astronomy !
- The field is totally renewed by access to space
 - Hipparcos and soon Gaia

Q2C6, Nice, 15 October 2013

Earth satellites

QSOs, CMB, SN1a

Stellar system in the MW

Solar System

Local group

3

Fundamental Physics

Relevant topics

- Very variable according to historical periods
 - dominated by the law of motion, covariance of physical laws under reference frame transformation
- Closely associated to astrometric accuracy
 but not only
 → eg COBE/WMAPS/PLANCK

Astronomy can provide clues only on large distance scale

- 100 -1000 km
- 10⁸ 10⁹ km
- pc kpc
- Mpc
- Gpc

Fundamental Physics

Relevant topics

- Very variable according to historical periods
 - dominated by the law of motion, covariance of physical laws under reference frame transformation
- Closely associated to astrometric accuracy •but not only → eg COBE/WMAPS/PLANCK
- Astronomy can provide clues only on large distance scale

- 100 -1000 km	Earth satellites	
- 10 ⁸ - 10 ⁹ km	Solar System	G
- pc - kpc	Stellar system in the MW	۵
- Mpc	Local group	i i
- Gpc	QSOs, CMB, SN1a	a

 \bigcirc

Astrometry -> Fundamental laws

•	Kepler Laws	1610	Kepler
•	Finite speed of light	1676	Roemer
•	Gravitation theory – 1/r² law	1700	Newton
•	Aberration of Light	1727	Bradley
•	Universal Gravitation	1827	Savary
•	Orbit of Mercury	1850	LeVerrier
•	Light deflection by the Sun	1919	Eddington
•	Recession of galaxies	1925	Hubble
•	Radar echo delay	1970	复新期间
•	Superluminuous radiation	1980	
•	Einstein rings and lensing.	1980	
•	Orbital evolution of the binary pulsar	1982	
•	Strong Equivalence Principle (LLR)	1990	
•	Dark matter in Galactic clusters	1990	

Assumptions in Newtonian Gravity

Laws of motion

$$m_a \frac{d^2 \mathbf{x}_a}{dt^2} = -\sum_{b \neq a} Gm_a m_b \frac{\mathbf{x}_a - \mathbf{x}_b}{\left|\mathbf{x}_a - \mathbf{x}_b\right|^3}$$

• ... few subtleties

Assumptions in Newtonian Gravity

Laws of motion

$$m_a \frac{d^2 \mathbf{x}_a}{dt^2} = -\sum_{b \neq a} Gm_a m_b \frac{\mathbf{x}_a - \mathbf{x}_b}{\left|\mathbf{x}_a - \mathbf{x}_b\right|^3}$$

• ... few subtleties

$$m_{a}^{I} \frac{d^{2} x_{a}}{dt^{2}} = -\sum_{b \neq a} G m_{a}^{G} m_{b}^{G} \frac{x_{a} - x_{b}}{|x_{a} - x_{b}|^{2}}$$

- There is an inertial frame
 - F = mg
- There is an absolute time
 - t is absolute and 'flows uniformly'
- Equivalence principle

 $m_a^{I} = m_a^{G}$

• G is a fundamental coupling constant

$G \neq G(t) \qquad G \neq G(\mathbf{x})$

Astronomy can help check these assumptions in the large scale domain

Gaia

A dual relationship with mutual benefit

 Astronomy has been the source of early thinking about space and time fundamental properties

A dual relationship with mutual benefit

 Astronomy has been the source of early thinking about space and time fundamental properties

 Fundamental physics provides astronomers with tools to model space-time observations

A dual relationship with mutual benefit

 Astronomy has been the source of early thinking about space and time fundamental properties

 Fundamental physics provides astronomers with tools to model space-time observations

 Accurate astronomy is a playground to put physical theories under tests

Space Astrometry with Gaia

Gaia quick fact sheet

- Main goal : astrometry and photometric survey to V = 20
 - ~ 10^9 sources
 - •stars, QSOs, Solar system, galaxies
- Accuracy in astrometry : 25 μas @ V = 15 for paralla
 - 10 µas V < 13 300 µas V = 20

10 µas = 1human hair at 1000 km!

- Regular scan of sky over 5 yrs
 - each source observed about ~75 times
 - internal autonomous detection system
- Launch 20 November 2013 from Kourou
- Five year nominal mission + 1 yr possible extension

Driven by Astrometry,

designed for astrophysics

The Gaia Sky

Gaia DPAC

- All-sky survey to 20 mag
- 70 observations per source, 5 years

- > 1 billion stars
- 600,000 quasars
- 350,000 asteroids
- 1-10 million galaxies
- >10,000 exoplanets

Observation principles

• Gaia is a scanning mission

- no pointing, no change in the schedule

6h

Sources are reasonably regularly measured during the mission

- orbit reconstruction
- light curves

Industry/ESA CSG/ESOC/ESAC

(20/11/2013)

Industry/ESA CSG/ESOC/ESAC

(20/11/2013)

One consortium for the Processing: the DPAC

Astrometric accuracy: single observation

- Small field accuracy with final attitude
- - one field transit, final attitude
 - point source

Astrometric accuracy: single observation

- Small field accuracy with final attitude
- - one field transit, final attitude
 - point source

Gaia Accuracy at mean epoch

Gaia DPAC

• Five year mission, sky -averaged

- reference value: σ_{ω} = 25 μ as @ G = 15
- based on data from J. De Bruijne (ESA)

Q2C6, Nice, 15 October 2013

What Gaia will deliver

Q2C6, Nice, 15 October 2013

Q2C6, Nice, 15 October 2013

F. Mignard

Relativity in Astrometry : when and where ?

Effects due to motion

 $v/c = 10^{-4} \sim 20''$ $v^2/c^2 = 10^{-8} \sim 1 \text{ mas}$ $v^3/c^3 = 10^{-12} \sim 0.1 \mu \text{as}$

-v/c Astrometry ~ 1700

- Ground based astrometry < 1980 🔶
- -v²/c² Hipparcos (~ 1mas)
- v³/c³ Gaia, (~ 1-10 μas)

- → 20" = discovery of aberration
 - Newtonian aberration
- \rightarrow v²/c² terms
- → full relativistic formulation

Test of Local Lorentz Invariance ?

Spacetime curvature effects

Spacetime curvature effects

Spacetime curvature effects

Q2C6, Nice, 15 October 2013

Astrometric modeling

- Newtonian models cannot describe high-accuracy observations:
 - many relativistic effects are several orders of magnitude larger than the observational accuracy
 - space astrometry missions would not work without relativistic modelling
 - •both for space and time \rightarrow 4D modelling
- The simplest theory which successfully describes all available observational data:

GENERAL RELATIVITY

" Astrometry is the measurement of space-time coordinates of photon events "

A. Murray

Implementation for Gaia

Gaia DPAC

- The astrometric model is a key element in the DP
 - a modeling accuracy of 0.1 μas is the requirement
- Two independent models have been developed
 - GREM by Klioner et al.
 - RAMOD by Vecchiato, Crosta et al.
- They will be used in different context in the data processing
 - GREM is the baseline for the pipeline reduction
 - it is implemented in the Gaia Tool library
 - it has a direct (\rightarrow proper directions) and a reverse mode
 - both stellar and solar system sources
 - accuracy can be controlled by the user \rightarrow CPU-effective
 - partial derivatives are optional
- Solar system ephemeris (INPOP) are consistent with the model
- Timescale transformations done in accordance with GR

Q2C6, Nice, 15 October 2013

F. Mignard

Relativity tests with astrometry

Q2C6, Nice, 15 October 2013

Gaia ambitions for testing relativity

Solar Light deflection

$$\sigma_{\gamma} < 1 \times 10^{-6}$$

Orbits of minor planets

$$\sigma_{\beta} < 5 \times 10^{-4}$$

Orbits of minor planets

$$\sigma_{\dot{G}/G} < 5 \times 10^{-13} \, \mathrm{yr}^{-1}$$

Jupiter light deflection

$$Q_{\rm deflect} > 5\sigma$$

Relativity tests with accurate astrometry

Gaia : Core tests - good results expected

Gaia: complementary tests with parameter fitting

Gaia: tests on residuals

Einstein Light Bending

Einstein Light Bending

Solar light deflection

Gaia DPAC

- Most precise test on γ with Gaia
 - Preliminary analysis (ESA, 2000- Mignard, 2001 Vecchiato et al., 2003)
- Advantages of Gaia experiment
 - Optical with accurate astrometry
 - One individual observation at 90° from the Sun \Rightarrow γ to 0.02 accuracy
 - Deflection (not time delay involving nearly sun grazing)
 - Wide range of angular coverage \rightarrow mapping of the deflection
 - Test of alternate deflection law
 - No problem with solar corona
 - Full-scale simulation of the experiments

sensitivity analysis, systematic effects

- Testing could be wider than PPN formulation

Photon path in a gravitational field

σ

$$g_{00} = -1 + \frac{2}{c^2} w(x,t) - \frac{2}{c^4} \beta w^2(x,t)$$

$$g_{0i} = -\frac{4}{c^3} w^i(x,t)$$

$$g_{ij} = \left(1 + \frac{2}{c^2} \gamma w(x,t)\right) \delta_{ij}$$

$$\mathbf{x}(t) = \mathbf{x}_0(t) + \mathbf{\sigma}(t - t_0) + \Delta \mathbf{x}(t) / c$$

$$\mathbf{u} = \mathbf{u}_0 + \frac{(1 + \gamma) GM}{c^2} \frac{[1 + (\mathbf{u}_0 \cdot \mathbf{r}) / r]\mathbf{h}}{b^2}$$

$$\delta \phi = \frac{(1 + \gamma) GM}{c^2} \frac{1 + \cos \chi}{b^2}$$

b

 c^2

M

r

 \mathbf{u}_{0}

b

2

Relativity Experiments

- 2 x 10⁷ stars V < 14
- 75 observations per star
- measurable effect even at 135° from the Sun
- but large correlation with zero-point parallax (~ -0.85) $\sigma_{\nu} \approx 2 \times 10^{-6} \text{ to } 6 \times 10^{-7}$

r

χ

Potential problems

Special problems related to the procedure

- many measurements are used and averaged out to get gamma
 - improvement in $1/n^{1/2}$ if no other unknown instrumental or physical effect is correlated with the deflection
 - very hard to establish at this level of accuracy
- but these effects become significant only if constant over five years
- Known effects already identified
 - global parallax shift strongly correlated with γ
 - •itself linked to instrument thermo-mechanical behaviour
 - relation with the velocity and aberration correction

But remember the lessons from GPB !

Beyond plain γ

- Observations over five years
 - processing over independent time intervals
 - check for systematic effects
- Repeated observations over many stars
 - Stability check: dependence of γ on various parameters

brightness, color, geometry

- Sampling of the angular distance to the Sun
 - mapping of the actual angular dependence

blind decomposition on spherical harmonics

Higher order PPN terms could be included

Light deflection by giant planets

		Monopole	Quadrupole
		mas	μας
	1R _j	16	240
-	2R _j	8	30
Contraction of the second seco	5R _j	3	2
	$10R_j$	2	0.2
	1R _s	6	95
	2R _s	3	12
Ø	5R _s	1	0.8
	10R _s	0.6	0.01

Light bending by Jupiter quadrupole

Jupiter among the stars 2014-2019

Q2C6, Nice, 15 October 2013

Jupiter relativity experiment with Gaia

- Objectives
 - Evidence the quadrupole light deflection on stars seen around Jupiter
- Stars can be observed very close to the limb of Jupiter
 - d_{min} < 5 arcsec
- Same stars are observed at other epochs without Jupiter
- Astrometric effect is included in the data modelling
 - it is superimposed to the monopole deflection

$$\delta\phi_M = \frac{4GM_J}{c^2 b} \frac{1+\gamma}{2} \qquad \qquad \delta\phi_Q = \frac{4GM_J}{c^2} \frac{J_2 R_J^2}{b^3} \qquad \text{(simplified formula)}$$

Some mission parameters are optimised for this experiment

We hope to detect the deflection to 5σ

Selection of free scan parameters

- Two free initial conditions
- Extensive simulations of Jupiter observation
- Analysis of the nearby starfield

Gaia

- Proper motions seen as a vector field on S₂
- Applicable to stars and QSOs
- * Expansion in Vector Spherical Harmonics T_{lm} , S_{lm}

$$\mathbf{V}(\alpha, \delta) = V_{\alpha} \mathbf{e}_{\alpha} + V_{\delta} \mathbf{e}_{\delta} = \sum_{l=1}^{l=L} \sum_{m=-l}^{m=l} (t_{lm} \mathbf{T}_{lm} + s_{lm} \mathbf{S}_{lm})$$

 $l = 1 - \mathbf{S}_{1m}$ Global rotation $l = 1 - \mathbf{T}_{1m}$ Solar system acceleration $l > 1 - \mathbf{S}_{1m} \& \mathbf{T}_{1m}$ Stochastic field of GW

• Inertial system materialised to 0.2 µas/yr

$$\mu_{\alpha} \cos \delta = \omega_{x} \sin \delta \cos \alpha + \omega_{y} \sin \delta \sin \alpha - \omega_{z} \cos \delta$$
$$\mu_{\delta} = -\omega_{x} \sin \alpha + \omega_{y} \cos \alpha$$

Acceleration of the solar system - T_{1m}

• Γ/c to 0.2 μ as/yr - Γ to 1x10⁻¹¹ m/s² ~ 1/100 of Pioneer acceleration

$$\mu_{\alpha} \cos \delta = -\frac{\Gamma_{x}}{c} \sin \alpha + \frac{\Gamma_{y}}{c} \cos \alpha$$
$$\mu_{\delta} = -\frac{\Gamma_{x}}{c} \sin \delta \cos \alpha - \frac{\Gamma_{y}}{c} \sin \delta \sin \alpha + \frac{\Gamma_{z}}{c} \cos \delta$$

• A GW of strain h and frequency ω propagating in the direction δ = 90°

$$\vec{\mu} = \frac{1}{2}\omega h \sin \omega T \cos \delta \left(\cos 2\alpha \, \vec{\mathbf{e}}_{\delta} + \sin 2\alpha \, \vec{\mathbf{e}}_{\alpha} \right)$$

• Gaia can constrain the flux at very low frequencies (<10⁻⁸ Hz)

credit : S. Klioner

Equations of Motion for a test body

Gaia DPAC

- * EIH equations with $M_s \gg M_p$, $V_s \ll V_p$
 - Heliocentric form
 - good for gravitation on asteroids and comets

Determination of β : Orbits of minor planets

- About 350,000 planets observable with Gaia
- Accurate astrometry corrected for phase effect
- ~ 60 observations each over 5 years
- Accurate orbits determined with Gaia data
- Perihelion precession included in the dynamical model

$$\Delta \varpi = \frac{6\pi\lambda \, GM}{a(1-e^2)c^2} + \frac{3\pi \, J_2 R^2}{a^2 (1-e^2)^2}$$

$$\lambda = (2\gamma - \beta + 2)/3$$

$$\dot{\omega} = \frac{38\lambda}{a^{5/2}(1-e^2)} + \frac{0.04(J_2/10^{-6})}{a^{7/2}(1-e^2)^2}$$

mas/yr (a in AU)

Perihelion precession : edm/dt

- Parameters fitted with Gaia
 - PPN β , Solar J2, $\$ G/G
- Expected precision $\sigma(\beta) \sim 10^{-3}$ to 5 x 10⁻⁴ (Hestroffer et al.)

Q2C6, Nice, 15 October 2013

F. Mignard

Summary: Promises with Gaia

Deflection of Light

- Monopole from the Sun : $\sigma_{\gamma}~$ ~ 10^{-6} factor 20 improvement
- First detection around planets of relativistic effect
 - •Monopole from Jupiter to 10^{-3} , quadrupole light deflection to S/N~ 5
- Precession of perihelion of minor planets
 - several 10s planets with large eccentricity
 - $\sigma_{\beta} \sim 10^{-3}$ $\sigma_{J2/sun} \sim 10^{-7}$ $G/G \sim 10^{-12} / yr$
- Global pattern with proper motion of quasars
 - acceleration of the solar system wrt QSOs $\rightarrow \sigma_a/a < 0.1$
 - improved estimates of the stochastic background of low frequency GW : a 100 times improvement to best estimates
- Astrometry of relevant source for relativistic modeling
 - QSOs, CygX1

Gaia launch: 20 November 2013

@ 08:57:30 UTC

<u>http://www.esa.int/esatv/Television</u> + web streaming