

STATUS OF GAP: AN ELECTROSTATIC ACCELEROMETER FOR INTERPLANETARY FUNDAMENTAL PHYSICS

Françoise Liorzou, ONERA/DMPH

return on innovation

GAP (Gravity Advance Package) instrument purpose

General Relativity shall be deeply tested to find deviation allowing unification of the four fundamental forces.

Some tests could be done through accurate navigation of S/C in the Solar system, with an DC accelerometer on board.

GAP (3.5kg, 3W), electrostatic accelerometer based on heritage of Earth gravity mission adapted for interplanetary mission

Content of the presentation

ONERA is currently developping a GAP prototype

• GAP prototype

- Principle of electrostatic accelerometer
- Heritage
- Principle of the bias rejection
- Accelerometer Design
- Manufacturing, Integration and Testing
- GAP prototype status

GAP - Description of the instrument

ONERA ULTRA SENSITIVE ACCELEROMETER : a specific concept for micro-gravity range and high resolution

To measure weak acceleration in space environment :

- One inertial mass, in free fall, quasi free of any motion
- \rightarrow Very high capacitive position sensing accuracy : < 0.1 Angström
- → Very weak electrostatic forces, servo-controlled and finely measured

Gold wire

Glue spot and gold wire

Electrostatic levitation of the inertial mass (6 axes) :

Six channels with capacitive position sensing & electrostatic actuators using same electrodes

- ightarrow Very steady and accurate geometrical and electrical configuration : gold coated silica glass
- \rightarrow All 6 DoF servo-controlled to maintain the mass motionless wrt the electrode cage
- \rightarrow Measurement of all electrical potentials surrounding the mass
- ightarrow 6 delivered accelerations

ONERA ULTRA SENSITIVE ACCELEROMETER Recent space missions

GRACE (March 02-->) GRACE-FO (2017 →)

2 Accelerometers to measure the non gravitational S/C accel.

- + GPS receiver
- + Doppler radio link

Earth field seasonal variations → hydro., ice, geophysics, clim. 10⁻¹⁰ms-2/sqrt(Hz) 1µms⁻¹

GOCE (March09-->)

- **6** Accelerometers to measure the
- Gravity Gradient Tensor
- non gravitational S/C accel.
- -S/C attitude motion
- + GPS receiver

Earth field high harmonics → accurate mean ref. model 2.10⁻¹²ms-2/sqrt(Hz) 6 mE

MICROSCOPE (2016-->)

Equivalence principle test → accurate of 10⁻¹⁵

Bias rejection principle

Frequential Domain

The bias rejection system is based on the well known heterodyne principle.

GAP - Precision of the measurement

B. Lenoir, B. Christophe & S. Reynaud, 2011. Unbiased acceleration measurements with an electrostatic accelerometer. arXiv:1105.4979.

Precision = 1 pm.s⁻² for a modulation period of 10 min and an integration time of 3 hours.

But the final performance depends also on the integration in the S/C

GAP - Description of the Microstar accelerometer

GAP – Microstar Characteristics

Mechanical characteristic : Prototype testable on ground

	Х	Y	Z
Proof mass dimension	20.400 mm ±0.002	20.900 mm ±0.002	20.900 mm ±0.002
Mass	22.5 g (Zerodur, density 2.53)		
Gap	300 μm	50 µm	50 µm
Free motion	\pm 30 μ m	±15 μm	$\pm 15 \mu m$
Electrode surface	0.94 cm^2	0.94 cm^2	0.94 cm^2
Electrode capacitance	2.7pF	16.6pF	16.6pF
Gold wire	Length 17 mm, diameter 5 µm		

Electrical characteristics:

	Х	Y	Z
Detection polarisation (Vd)		5 Vrms	
Polarisation voltage (Vp)		10 V	
detector Gain	12 V/pF	0.67 V/pF	0.67 V/pF
	15 V	15 V	15 V
Maximum control voltage	(7.5 V linear et	(7.5 V linear et	(7.5 V linear et
	7.5 V angular)	7.5 V angular)	7.5 V angular)
Control laws	PID	PID	PID
Control range	$1.75 \ 10^{-4} \mathrm{m/s^2}$	$4.4 \ 10^{-3} \mathrm{m/s^2}$	$4.4 \ 10^{-3} \ \mathrm{m/s^2}$

Consumption: 1.19W

	Nombre de circuits	Consommation / circuit	Consommation totale
Détecteurs	6	31 mW	186 mW
PID	6	50 mW	300 mW
Mesures scientifiques	8	15 mW	120 mW
Mesures auxiliaires	2 (8 mesures / circuit)	30 mW	60 mW
Générateur Vp/Vd	1	529 mW	529 mW
		Total	1.19 W

Microstar accelerometer - Realisation

1. ULE plate on ultra-sonic machine (ONERA patent)

3. Gold coating

4. Gold cutting for isolating electrodes

2. Control

5. Integration in clean room

GAP - integration of Microstar

Electrodes plate

Accelerometer core

Electrodes internal

Electronic integration

Final packaging

Quantum to Cosmos 6 – 17/10/2013

13/

Microstar accelerometer – Testing on drop tower

Bremen Drop tower

The measurement of the acceleration along the drop axis coupled with the analysis of the capsule trajectory offers a practical way of assessing the sensor bias¹.

¹« MICROSCOPE on-ground and in-orbit calibration » Vincent Josselin, Pierre Touboul, Manuel Rodrigues, Françoise Liorzou

Conclusion

GAP (3.5kg, 3W), electrostatic accelerometer based on heritage of Earth gravity mission adapted for interplanetary mission

Bias of GAP is rejected, leading to an accuracy of 1 pm/s² at low-frequency ([0 – 10⁻⁴ Hz]

• GAP accelerometer prototype status

- All procurements are achieved
- The mechanical core is under manufacturing
- The electronic is ready
 - Test of the accelerometer prototype foreseen in 2014
 - Test of the accelerometer prototype with the bias rejection system foreseen in 2015

=> Proposal for participation for missions towards Uranus and Neptune (ESA Call for Science Themes – 2013)

