

Cometary volatiles *Les Houches 2017*

Dominique Bockelée-Morvan

aboratoire d'Études Spatiales et d'Instrumentation en Astrophysique.

Comets

Primitive icy bodies :

remnants of the small bodies which formed the outer planets

Chemical composition :

that of the solar nebula, the Solar proto-planetary disk

Clues to :

- Solar System formation and evolution
- Origin of the volatiles in telluric planets
- Origin of Earth oceans

Two reservoirs of comets:

- Oort cloud
- Kuiper Belt

152 years of comet spectroscopy

Space exploration of comets

Comet	Mission	Date	Distance	Velocity
21P/Giacobini-Zinner	ICE	11 Sep.1985	7800 km	21 km/s
1P/Halley	VEGA 1	6 Mar.1986	8890 km	79 km/s
1P/Halley	Suisei	8 Mar.1986	150 000 km	
1P/Halley	VEGA 2	9 Mar.1986	8030 km	77 km/s
1P/Halley	Sakigake	11 Mar.1986	7 000 000 km	
1P/Halley	Giotto	14 Mar.1986	596 km	68 km/s
26P/Grigg-Skjellerup	Giotto	10 July 1992	200 km	14 km/s
19P/Borrelly	Deep Space 1	22 Sep.2001	2170 km	17 km/s
81P/Wild 2	Stardust	2 Jan.2004	236 km	6 km/s
9P/Tempel 1	Deep Impact	4 July 2005	30-500 km	11 km/s
103P/Hartley 2	EPOXI	4 Nov.2010	694 km	12 km/s
9P/Tempel 1	Stardust-NEXT	15 Feb. 2011	181 km	11 km/s

67P/Churymov-Gerasimenko Rosetta	2014-2016	0- 50 km	< 0.1 km/s

Outline

Review cometary ice molecular composition

- ✓ Volatile composition from spectroscopy
- ✓ Chemical diversity
- ✓ New findings from Rosetta
- ✓ Formation mechanisms of cometary volatiles
- Isotopic composition : H, N, O

Spectroscopic investigations of cometary volatiles

('est ld & I (F.B)

Zu 1488 d. Astr. Nachr. T. SPECTRE DE LA COMETE IL DU 1864. 8 B A a B G F Ъ SPECTRE SOLAIRE.

First comet spectrum observed by G. B. Donati

C/1864 N1 (Tempel)

Donati, 1864, Astron. Nachr., 62, 375

Giovanni Donati (1826-1873)

C/2001 A2 (LINEAR) réseau + caméra CCD © C. Buil

D

Spectroscopy of cometary atmospheres

From the UV to the radio

Main excitation/emission processes

- Fluorescence emission pumped by Solar Radiation parent & daughter species
- Prompt emission : e.g. O¹D (visible), OH* (IR)
- Electron impact excitation
- Collisional excitation

Visible spectroscopy

Hutsemekers et al. 2005

UV spectroscopy

OAO-2/NASA: First UV spectrum of a comet

Code et al. 1972

International Ultraviolet Explorer: 1978-1996

HST: C/1996 B2 (Hyakutake)

FUSE: C/2001 A2 (LINEAR)

Weaver et al. 1981

IUE

Weaver et al. 1998

radicals	OH, CH, NH, NH ₂
	CN, C_2, C_3, CS, NS, SO
	$CN, C^{13}C, C^{15}N, C^{34}S$
atoms	H, O, C, S
	Na, K*, Cr*, Ca*, Mn*
	Fe*, Ni*, Cu*, Co*, V*
ions	O ⁺ , C ⁺ , Ca ^{+*}
	H ₂ O ⁺ , H ₃ O ⁺ , OH ⁺
	CO ₂ ⁺ , CO ⁺ , HCO ⁺
	CH+, N ₂ +

* only in sungrazing comets

Infrared spectroscopy

RANSMITTANCE

(Relative

75 50

25

0

 CH_3OH : main contributor of 3.4 μm band

Infrared spectroscopy (High Res)

IRTF and 10-m class telescopes

Kawakita et al. 2009, Keck II, C/2004 Q2

Detected molecules in near IR: H_2O , OH^* CH_4 , C_2H_2 , C_2H_6 CO, CH_3OH , H_2CO NH_3 , HCN

Rosetta/VIRTIS-H spectra at perihelion

Millimeter/Submillimeter spectroscopy

23 molecules detected starting with HCN in comet Kohoutek

Bockelée-Morvan et al. 2000

Bockelée-Morvan et al. 2008

Millimeter/Submillimeter spectroscopy Observation of water vapor

Submillimeter, far-IR : SWAS, Odin, Herschel, MIRO/Rosetta

Bockelée-Morvan et al. 2012

Molecular composition

Comet composition based on spectroscopy

- 28 molecules detected
- Several complex organics now detected in several comets
- Complex molecules are abundant
- Diversity in relative abundances for both Oort cloud & Kuiper-Belt comets

Composition diversity in cometary atmospheres

- Plot based on mm/submm measurements
- Similar results for molecules observed in the IR

For most molecules:

- same diversity and mean abundances in the diverse dynamical populations
- Suggest formation in the same regions of the early solar system

Bockelée-Morvan & Biver, 2016, Phil. Tr.

Composition diversity : CO, CO₂

CO₂ : AKARI infrared observations

Ootsubo et al. 2012

CO : Ground based IR observations

Paganini et al. 2014

Distributed sources of gases

Relative abundances increase with decreasing heliocentric distance: HNC, H2CO, NH3, CH3OH, CS
Spatial distribution not consistent with release from the nucleus: HNC, H2CO
Thermal degradation of macro organic molecules :

Experiments on H₂CO and HCN polymers

Dello Russo et al. 2016

Lis et al. 2007

Distributed sources of H₂CO and HNC

Cordiner et al. 2014

ALMA observations

New findings from Rosetta on cometary volatiles

Gas phase compounds detected by the Rosina mass spectrometer onboard Rosetta Copyright: ESA/Rosina team

Detection of glycine and amines in comet 67P

- Glycine (C₂H₅NO₂)
- Methylamine (CH₅N)
- Ethylamine (C₂H₇N)

Abundance ratios: Meth/Gly= 1 + - 0.5Eth/Glyc = 0.3 + - 0.2

- Glycine radial distrib. consistent with production from heated grains
- Other amino acids (as alanine) not found
- Amino acids other than glycine need liquid water to form
- Formation of glycine by radical addition mechanisms on icy grains in the solar nebula or presolar cloud

Sulfur chemistry in comet 67P

- Detection of atomic sulfur, unknown origin
- SO present as parent species
- Detection of S₂, S₃, S₄
 - S₂ has very short lifetime: if formed in the pre-solar cloud, this implies that interstellar ices in condensed form were incorporated in comets
 - Formed by radiolysis of H₂S? But high amounts of S₂H & H₂S₂ are formed during radiolysis contrarily to what is measured

Large abundance of O₂

Species	Relative Abundance 1P/Halley	Relative Abundance 67P/Churyumov–Gerasimenko
H ₂ O	100% ^a	100% ^a
O ₂	$3.7 \pm 1.7\%^{b}$	$3.80 \pm 0.85\%^{\circ}$

- Unexpected discovery
- O₂ abundance of 4% in 67P (Bieler et al. 2015)
- O₂ found in 1P/Halley from a reanalysis of Giotto data (Rubin et al. 2015)
- \bullet O_2 production correlated with water production
- Uncorrelated with highly-volatile species (N₂, CO, CO₂)
- Proposed formation mechanism
 - through radiolysis of H₂O ice by cosmic rays in the presolar cloud (Mousis et al. 2016) (radiolysis is not fast enough for formation in the solar nebula)
 - **dark cloud chemistry** (gas-phase + grain chemistry) with moderate T, and high H/O and density conditions (Taquet et al. 2016)
 - through dismutation of H₂O₂ (Dulieu et al. 2016) : 2x H₂O₂->O₂+2xH₂O

Origin of cometary volatiles

About 180 interstellar/circumstellar identified molecules

Number of Atoms										
2	3	4	5	6	7	8	9	10	11	12+
H ₂ AIF AICI C ₂ CH CH CH CN CO CO CO CO CO CO CO CO CO CO CO CO CO	C ₃ C ₂ H C ₂ O C ₅ S CH ₂ HCN HCO HCO ⁺ HCC ⁺ HOC ⁺ HOC ⁺ HOC [*] HNC HNO MgCN MgNC N ₂ H [*] N ₂ O NaCN OCS SO ₂ c-SiC ₂ CO ₂ NH ₂ H ₃ [*] H ₂ C	e-C ₃ H I-C ₃ H C ₃ N C ₃ O C ₃ S C ₂ H ₂ • CH ₂ D*? HCCN HCNH ⁺ HNCO • HNCS HOCO ⁺ H ₂ CO • H ₂ CN H ₂ CS • H ₃ O ⁺ • NH ₃ • SiC ₃ CH ₃	C ₃ C ₄ H C ₄ Si 1-C ₃ H ₂ c-C ₃ H ₂ CH ₂ CN CH ₄ HC ₃ N HC ₂ NC HCOOH H ₂ CHN H ₂ C ₂ O H ₃ NCN HNC ₃ SiH ₄ H ₂ COH ⁺	C ₃ H I-H ₂ C ₄ C ₂ H ₄ CH ₃ CN CH ₃ NC CH ₃ OH HC ₃ NH ⁺ HC ₂ CHO NH ₂ CHO C ₃ N	C4H CH2CHCN CH3C2H HC3N HCOCH3 NH2CH3 e-C2H4O	CH ₃ C ₃ N HCOOCH ₃ • CH ₃ COOH? C ₇ H H ₂ C ₆ HOCH ₂ CHO	CH,C,H CH,CH,CN (CH,);O CH,CH,OH HC:N C,H CH2OHCHO	CH-C-N? (CH-)-CO NH-CH-COOH HOCH ₂ CH ₂ OH	HC ₉ N	C ₆ H ₆ HC ₁₁ N PAHs C ₆₀ *?

A Typical Interstellar Ice Absorption Spectrum as Measured by the ISO Satellite

Ice Abundances in the ISM and in Comets

<u>Species</u>	Protostars	Comets
H ₂ O	100	100
OO	1-15 (polar)	5-20
	1-50 (apolar)	
CO_2	15-40	2-10
CH₄	1-4	0.2-1.2
CH ₃ OH	1-35	0.3-2
H ₂ ČO	3	0.2-1
OCS .	0.05-0.18	0.5
NH ₃	3-10	0.6-1.8
$C_2 H_6$	<0.4	0.4-1.2
HOOOH	3	0.05
N ₂	?	?
OCN⁻	0.3-2.9	-
HCN	<3	0.2

Cometary molecules : the ISM connexion

Bockelée-Morvan et al. 2000

Cometary molecules : the ISM connexion

Biver et al. 2015

Synthesis of organic molecules

Grain surface reactions

Charnley, 2008

Formation processes for cometary molecules

- Similarity between ISM and cometary ices \rightarrow same formation pathways
- Laboratory experiments : direct evidence of complex species formation by H-atom addition, H-abstraction followed by radical recombination

Isotopic composition of cometary volatiles

D/H ratio in comets and the Solar System

Ocean-like water in the Jupiter-family comet 103P/Hartley 2

Paul Hartogh¹, Dariusz C. Lis², Dominique Bockelée-Morvan³, Miguel de Val-Borro¹, Nicolas Biver³, Michael Küppers⁴, Martin Emprechtinger², Edwin A. Bergin⁵, Jacques Crovisier³, Miriam Rengel¹, Raphael Moreno³, Slawomira Szutowicz⁶ & Geoffrey A. Blake²

Published online 5 October 2011 | Nature | doi:10.1038/news.2011.579

News

Comets take pole position as water bearers

Matching chemical signatures indicate that Kuiper comets brought water to Earth.

Detection of HDO in an Oort cloud comet

Bockelée-Morvan et al. 2012

D/H ratios in molecules other than water

	D/H		ISM	C/Hale-Bopp
HCN	0.0023	Meier et al. 1998	0.01-0.1	DCN 5-4
NH₂D	< 0.04	Crovisier et al. 2004		
HDCO	< 0.05	Crovisier et al. 2004	0.035-0.15	
CH₃OD	< 0.03	Crovisier et al. 2004	0.01-0.06	Velocity relative to nucleus (km s ⁻¹) Meier et al. 1998
CH ₂ DOH	< 0.008	Crovisier et al. 2004	0.01	
HDS	< 0.2	Crovisier et al. 2004	0.005-0.05	
	<0.007	Biver et al. 2008	0.005-0.05	D ₂ O & HDS measured in 67P
CH ₃ D	< 0.0025	Gibb et al. 2008	< 0.03	•D/H in H ₂ S ~ 10 ⁻³
	< 0.006	Kawakita & Kobayashi 2008		
	< 0.005	Bonev et al. 2009		

Model Predictions for D/H in comets

- isotopic exchange between H₂O and HD and turbulent mixing in an evolving Solar Nebula
- the Solar Nebula is here not anymore accreting mass from the presolar cloud

Kaveelars et al. (2011)

Model Predictions for D/H in comets

Unlike previous models, the solar nebula is continuously accreting D/H-enriched material

Diversity is consistent with radial mixing of planesimals – Grand Tack model

- Grand Tack: inward then outward migration of Jupiter and Saturn
- Type 2 "inward migration" in gaseous nebula
- Explain Mars mass and distribution of S/C/D asteroids in the main belt
- TNOs on eccentric Earth-crossing orbits

Isotopic ratios from UV or Visible spectroscopy

A section of the UVES spectrum of the CN (0,0) violet band in comet 88P/Howell (m, ~ 8.0).

Thick (black) line: mean observed spectrum (total of 12 hrs exptime);

Thin (red) line: synthetic spectrum of ${}^{12}C^{14}N$, ${}^{12}C^{16}N$ and ${}^{13}C^{14}N$ with the adopted isotopic abundances. The lines of ${}^{12}C^{16}N$ are identified by the *short ticks* and those of ${}^{13}C^{14}N$ by the *tall ticks*. The quantum numbers of the R lines of ${}^{12}C^{14}N$ are also indicated.

Hutsemékers et al. A&A 2005

Isotopic ratios in volatiles : nitrogen

Measurements in CN from UV spectroscopy

(different colors correspond to different dynamical classes and Tisserand parameter)

• Isotopic anomalies in the ¹⁴N/¹⁵N ratio : enrichment by a factor of 2 in ¹⁵N wrt the terrestrial value (=272) measured in 18 comets (mean = 148+/-6)

• ¹⁴N/¹⁵N identical in JFCs and OCCs, but one comet (73P) is less ¹⁵N-enriched

• no variation with heliocentric distance: if there are several sources of CN, they share the same isotopic ratio

Isotopic ratios in volatiles: nitrogen

• HCN and other major parents of CN are equally enriched in ¹⁵N

Same ¹⁵N enrichment in HCN and NH₃

Interpretations of ¹⁵N enrichment

- In proto-stellar sources : dichotomy between CN-bearing (¹⁵N-rich) and NH₃ (no fract.)
- Gas-phase chemical models of the ISM : two pathways for ¹⁵N fractionation (Rodgers & Charnley , 2008)
 - to N_2 and NH_3 (slow: 10^6 yr)
 - from N to HCN and other nitriles (rapid: 10⁵ yr)
- ✓ consistent with ISM sources
- ✓ comet material : longer time scales ?
- Grain-surface chemistry : formation of ammonia from ¹⁵N-rich atomic N ?
- Models considering self-shielding of N₂ photodissociation (Heays et al. 2014)
- ✓ explain ¹⁵N enrichment in HCN
- \checkmark less clear for NH₃

Wirstrom et al. (2012)

Comparison with prestellar cores

Hily-Brandt et al. 2013

Source	Type	$\rm NH_3$	$\mathrm{N_{2}H^{+\$}}$	HCN	HNC	CN	Ref.
L1544	dark core	>700	1000 ± 200 1000 ± 200	69-154 140-360	>27	500 ± 75	4,1,3,3,9
L1498	dark core	619 ± 100		>75 >813	> 90	500 ± 75	3,3,3,9
L1521E	dark core			151 ± 16			5
L1521F	dark core	539 ± 118		>51	24 - 31		3,3,3
L1262-core	dark core	356 ± 107	>297 175 $+79$				3,3 3
L183	dark core	$530\pm^{570}_{180}$		140-250			4,2
NGC 1333- DCO^+	dark core	$360\pm^{260}_{110}$					4
NGC 1333-4A	Class 0 protostar	344 ± 173 >270					$6\\4$
B1	Class 0 protostar	$\begin{array}{r} 300\pm^{55}_{40}\\ 334\pm50\\ 470\pm^{170}_{100} \end{array}$	$>600 \\ 400 \pm ^{100}_{65}$	$165\pm^{30}_{25}$	$75\pm^{25}_{15}$	240	10,10,10,10,9 6,10 4
L1689N	Class 0 protostar	$810 \pm \frac{600}{250}$					4
Cha-MMS1	Class 0 protostar		$729 \pm \frac{212}{105}$		135		16.7
IRAS 16293A	Class 0 protostar		-135	163 ± 20	242 ± 32		13
R Cr A IRS7B	Class 0 protostar			287 ± 36	259 ± 34		13
OMC-3 MMS6	Class 0 protostar			366 ± 86	460 ± 65		13
L1262-YSO	Class I protostar	453 ± 247	>410 >410				$^{3,3}_{3}$
Several	Massive starless cores		65-1100			330-400	15,15
Several	Massive protostars		180-1445" 190-1000			190-450	$15 \\ 15,15$
Several	UC HII regions		180-1300 320-900 350-700			230-430	$15 \\ 15,15 \\ 15$
Comets	JFC & Oort Cloud	127 [‡]		139 ± 26		135-170 [†]	11,12,8

Table 1. Interstellar Nitrogen Isotope Ratios

References: (1) Bizzocchi et al. (2013); (2) Hily-Blant et al. (2013a); (3) Milam & Charnley (2012), Adande et al. (2015); (4) Gerin et al. (2009); (5) Ikeda et al. (2002); (6) Lis et al. (2010); (7) Tennekes et al. (2006); (8) Hutsemékers et al. (2008); (9) Hily-Blant et al. (2013b); (10) Daniel et al. (2013); (11) Rousselot et al. (2014); (12) Bockelée-Morvan et al. (2008); (13) Wampfler et al. (2014); (15) Fontani et al. (2015); (16) Cordiner et al. (2016) al., private communication.

Isotopic ratios in volatiles : oxygen

 $H_{2}^{18}O$

$^{16}O/^{18}O$ in H₂O only

Only a few measurements available :

- From the Giotto NMS in 1P/Halley : 518 ± 45, 470 ± 40 (Balsiger et al. 1995, Eberhardt et al. 1995)
- •Detection of $H_2^{18}O$ in the submillimeter in 4 comets (*Biver et al. 2007*) using the Odin satellite 530 ± 60, 530 ± 70, 550 ± 75, 508 ± 33
- Measurements with Herschel in C/2009P1 : 523 ± 32 (Bockelée-Morvan et al. 2012)
- •Rosina/Rosetta in comet 67P: terrestrial (Altwegg et al. 2015)

McKeegan et al. 2011

0.2

Wavelength shift (Å)

¹⁸OH

Values consistent or slightly higher than the terrestrial value (=499)

Detection of ¹⁸OH in the UV at VLT
 ¹⁶O/¹⁸O = 425 ± 55 in C/2002 T7, 300 ± 150 in C/2012 FF
 (Hutsemekers et al. 2008, Decock, this conf)

Here, slightly lower than the Earth value

•¹⁸O excess consistent with self-shielding models (Yurimoto& Kuramoto 2004) isotopic anomalies in H_2O due to selective dissociation

Summary

- Remote sensing spectroscopy provided important results concerning comet composition
- ✤ ≥ 20 molecules can be routinely detected in bright comets (> 10²⁹ mol/s)
- Sensitivity allows isotopic ratios to be measured
- Origin of chemical diversity still elusive but seems to be in part primordial
- * Major steps done by the Rosetta mission : measurements still under analyses
- New identifications also expected with available or next-generation instrumentation (especially if extraordinarly bright comets are passing)
- Comet ice composition shows strong similarities with interstellar clouds
- Differences exists, e.g., regarding isotopic ratios D/H, ¹⁴N/¹⁵N
- Cometary molecules formed in very cold environments, likely in the presolar cloud
- However comets contain also material formed in the solar nebula, even close to the star