Presolar Stardust in the Solar System

Lecture II

Larry R. Nittler

Department of Terrestrial Magnetism Carnegie Institution of Washington

Les Houches Winter School, February 2017

Outline

 Presolar Grain Implications for stellar evolution, nucleosynthesis, and Galactic Chemical Evolution

• Mineralogy of Presolar Grains

 Presolar Grains and the early Solar System

C-rich AGB Stardust

lu

μm

AGB origin of ~50% of presolar graphite

- Enriched in ¹²C and s-process elements (*e.g.*, sub-grains of ZrC, MoC, etc)
- Data imply origin in lowmetallicity AGB stars
 - Higher ¹²C/¹³C than SiC

0.2 µm non-central Zr carbides

Croat et al (2005); Zinner et al. (2006)

AGB s-process nucleosynthesis

- Neutrons mainly from ${}^{13}C(\alpha,n){}^{16}O$; some from ${}^{22}Ne(\alpha,n){}^{25}Mg$
- Origin of ¹³C thought to be from p mixed below H shell, but poorly constrained

AGB s-process nucleosynthesis

s-process not that wellunderstood; precise results depend on many parameters (stellar mass, metallicity, poorly understood mixing processes)

Grains can constrain model parameters, improve understanding of how s-process works in stars

Liu et al., ApJ 2014

CHILI Fe, Ni data in AGB SiC

 AGB models broadly agree with trends, but important differences in detail
 – FRUITY underpredict ⁶⁴Ni

Davis, Treppitsch, Stephan+

⁶⁴Ni/⁵⁸Ni (rel. solar)

2.5

2.0

1.5

 $\begin{array}{c|c} & & & Z_{\odot}, \ 0 \text{ km/s} \\ \hline & & & Z_{\odot}, \ 10 \text{ km/s} \\ \hline & & & Z_{\odot}, \ 30 \text{ km/s} \\ \hline & & & Z_{\odot}, \ 60 \text{ km/s} \end{array}$ 0

Changing rotation rate in FRUITY models doesn't help with ⁶⁴Ni problem

1.0-----

0.6 0.8 1.0 1.2 1.4 ⁵⁸Fe/⁵⁶Fe (rel. solar)

courtesy A. Davis

 \odot

Silicon in Presolar SiC

- Si isotopes do not match AGB models
- Data form linear array, but slope steeper than predicted for nuclear processes in AGB stars
 - Also true of Ti

Silicon in Presolar SiC

- Si isotopes do not match AGB models
- Data form linear array, but slope steeper than predicted for nuclear processes in AGB stars
 - Also true of Ti

 Both Si, Ti isotopes believed to reflect *initial* compositions of parent stars: Galactic Chemical Evolution

- Elemental/isotopic ratios change with time because:
 - Different timescales for different nucleosynthesis sites
 - SNII: Evolve quickly, enrich early Galaxy with r-process, " α -elements"
 - Low-mass stars evolve more slowly, sprocess from AGB stars and Fe from SN-Ia delayed
 - Key Parameter: *Metallicity*:
 - Mass fraction of elements heavier than He
 - Z_{sun}~1.4%
 - $[Fe/H] = log(Fe/H) log (Fe/H)_{Sun}$

• Different nucleosynthetic character:

"Primary" isotopes: synthesis independent of metallicity –¹²C, ¹⁶O, α-elements, Fe
"Secondary": synthesis depends on prior presence of metals –¹³C, ¹⁷O, ¹⁸O, s-process, etc.
Secondary/Primary ~ Z

Figure 7 Observed evolution of the calcium to iron abundance ratio with metallicity (▲: Hartmann and Gehren (1998); ■: Zhao and Magain (1990); ●: Gratton and Sneden (1991); ★: Edvardsson *et al.*, (1993)).

Isotopic gradients seem to confirm GCE idea

Milam et al (2005)

Time

Kobayashi & Nakasato, 2011

- Some AGB stardust isotopes reflect starting compositions of parent stars: GCE
- Parent stars of mass ~1.2M_☉ to ~4M_☉ and thus formed from 4.6 to ~12 Gyr ago (Nittler+ 1997)
 - Complementary sample to stellar compositions for GCE studies – snapshot of solar neighborhood 4.6 Gyr ago

GCE and Presolar SiC

GCE and Presolar SiC

Presolar Galactic Merger (D. D. Clayton 2003)

- Explains SiC Si and Ti isotopic correlation lines (DDC 2003)
- Slope on Si plot can be explained (Hoppe et al. 2010)

Presolar Galactic Merger (D. D. Clayton 2003)

- Explains SiC Si and Ti isotopic correlation lines (DDC 2003)
- Slope on Si plot can be explained (Hoppe et al. 2010)
- Induced starburst qualitatively can explain "inverse" GCE and dominance of low-mass AGBs among SiC parents (Nittler 2013)

Potential to probe Galactic processes ~5-6 Gyr ago!

- ²⁹Si/²⁸Si, ⁵⁴Fe/⁵⁶Fe, and ⁶⁰Ni/⁵⁶Ni are dominated by GCE
- signs of slopes agree with predictions of Kobayashi et al. (2011), but SNII models underproduce ²⁹Si (an old problem)

O-rich stardust

O-rich stardust

O-rich stardust

¹⁸**O**/¹⁶**O**

Extinct radioactivities

 Can detect extinct radioactive isotopes by excesses of daughter isotopes. In some grains Mg is monoisotopic ²⁶Mg

O-rich AGB presolar stardust

Minor-element data can constrain models

Nittler et al. ApJ 2008

¹⁸O-poor grains

- Large ¹⁸O depletions indicate CNO-cycle H burning in envelope
 - Hot-bottom burning? >4 M_{\odot} AGB stars
 - Cool-bottom processing ("extra mixing")?
 - $<2 M_{\odot}$ AGB stars

¹⁸O-poor grains

- Large ¹⁸O depletions indicate CNO-cycle H burning in envelope
 - Hot-bottom burning? >4 M_{\odot} AGB stars
 - Cool-bottom processing ("extra mixing")?
 <2 M_☉ AGB stars

CBP favored because HBB predicts too high ¹⁷O/¹⁶O

Wasserburg +1995; Nittler+1997; Nollett+ 2003; Lugaro+ 2007; Palmerini+ 2011

Presolar O-rich Stardust Grains

Nittler, PASA, 2009

Main distribution of grains well explained by AGB with range of mass and metallicity (simple GCE) ~10% from supernovae

Presolar O-rich Stardust Grains

Nittler, PASA, 2009

- New underground measurement of ¹⁷O(p,α)¹⁴N rate 2x higher than previous accepted value (Brune+, *PRL* 2017)
 - Predicts lower ¹⁷O/¹⁶O in HBB

- New underground measurement of ¹⁷O(p,α)¹⁴N rate 2x higher than previous accepted value (Brune+, *PRL* 2017)
 - Predicts lower ¹⁷O/¹⁶O in HBB

- New reaction rate implies larger fraction of presolar grains from massive AGB stars than previously thought
 - Requires mixing of HBB signature with more normal material: binary interactions?
 - More consistent with galactic evolution/ dust processing models that predict large fraction of presolar grains should be from massive AGBs (Gail+ 2009)

- New reaction rate implies larger fraction of presolar grains from massive AGB stars than previously thought
 - Requires mixing of HBB signature with more normal material: binary interactions?
 - More consistent with galactic evolution/ dust processing models that predict large fraction of presolar grains should be from massive AGBs (Gail+ 2009)
- Highlights interface of nuclear physics, astrophysics and laboratory cosmochemistry for presolar grains

Supernova Dust

 How much dust and what types produced by SNe hotly debated in astronomical community

ALMA detection of cold dust in SN 1987A (Indebetouw et al. 2014)
Supernova presolar grains

- ~2% of SiC, <50% of graphite, ~10% of oxides/silicates originated in Type II supernovae
- "Smoking gun" is extinct ⁴⁴Ti – 60y half-life; SN product

"Bonanza"

- 30 micron SiC X-grain!
- Giant aggregate, isotopically homogeneous in Si, C, N

Supernova dust can be BIG

Zinner + 2011; Gyngard+ submitted

Presolar Supernova Stardust

- C burning: ¹⁶O, ²⁴Mg

- He burning: ¹²C, ¹⁵N, ¹⁸O

H burning: ¹³C, ¹⁴N,¹⁷O, ²⁶AI

Grain compositions point to contributions from different shells
 Mixing!

Supernova Mixing

Explosive burning: 0.5%

Nittler et al. ApJ 2008

Supernova Mixing

 Observations and theory both indicate extensive mixing of SN ejecta, due to hydrodynamic instabilities

 But neither can yet probe microscopic scales required to explain grains

2-d hydrodynamic simulation by Kifonidis et al. (A&A 2003)

Supernova Graphite

- SN graphites lower density, incorporate more trace elements (O, Si ...) than AGB grains
- Like AGB grains, can reach >10 μm in size
- Abundant TiC and Fe-Ni metal sub-grains
 - sputtered rims
 - wide range of O isotopic compositions and Ti/V ratios

Croat et al. 2003

Supernova Graphite

- One SN graphite with nanocrystalline core, mantled by graphite shells (Groopman+2014)
 - Structure/chemistry indicates changing chemical/physical conditions during grain growth

C-edge X-ray Absorption Spectra

⁵⁴Cr-rich grains

- Extreme ⁵⁴Cr-rich sub-μm oxides in Orgueil meteorite (Dauphas *et al.*, 2010; Qin et al. 2011)
 - <100 nm
 - Inferred ⁵⁴Cr/⁵²Cr may be >20 times solar, but measurements not resolved
 - Most likely formed in ¹⁶O-rich Cburning shells of Type II Supernovae

Supernova dust can be SMALL!

Nova Cygni 1992 (HST)

- High-temperature Hburning (e.g., Gehrz et al. 1998)
 - Low ¹²C/¹³C, ¹⁶O/¹⁷O, ¹⁶O/¹⁸O
 - Production of ²²Ne , ²⁶Al
 - Modification of isotopes of other light elements (up to S, possibly higher, Jose et al. 2007)

Nova SiC Grains?

- Measured 14 new "nova" grains Minorelement isotopes point to supernovae (!) for several grains
 - Requires H ingestion into He-burning shell during explosion – explosive H-burning (Pignatari *et al.* 2015)
 - Nova origin compatible with some grains but not required (SN may be preferred)

Liu et al. 2016

Presolar Grain Mineralogy

- Presolar grains condensed in stellar environments, were subjected to processes in the ISM (collisions, radiation ...) and in the early SS (heating, water ,...)
- Structures and compositions can provide info on all stages of grain histories

AGB star chemistry/mineralogy

- Mixing ("dredge-up") of ¹²C from He-shell gradually increases C/O ratio; when >1 chemistry drastically changes
 - C/O<1 : silicates/oxides condense</p>
 - C/O>1: SiC, C condense

http://www.stsci.edu/~volk/

Equilibrium Condensation

- As hot gas in stellar outflow cools, molecules and then dust condense.
- With laboratory thermodynamic data, can compute condensation sequences of what minerals should form in equilibrium under given gas composition, pressure, etc

Equilibrium Condensation

What about Grains?

Lodders & Fegley (1995)

Presolar Grains and Equilibrium Condensation?

- Identified high-T phases from AGB stars are predicted
 - O-rich: Al_2O_3 , $CaAl_{12}O_{19}$, $MgAl_2O_4$, TiO_2 , Mg_2SiO_4 ...

- C-rich: Graphite, SiC, TiC

Presolar Grains and Equilibrium Condensation?

- Identified high-T phases from AGB stars are predicted
 - O-rich: Al_2O_3 , $CaAl_{12}O_{19}$, $MgAl_2O_4$, TiO_2 ...
 - C-rich: Graphite, SiC, TiC
- Internal carbides in graphite imply sequential formation (Bernatowicz et al. 1996)

Presolar Grains and Equilibrium Condensation?

- Identified high-T phases from AGB stars are predicted
 - O-rich: Al₂O₃, CaAl₁₂O₁₉, MgAl₂O₄, TiO₂ ...
 - C-rich: Graphite, SiC, TiC
- TiC before graphite requires relatively high pressures, low C/O ratio
- (Bernatowicz *et al.* 1996)

SiC microstructures

- In laboratory, SiC forms in >100 distinct structures (polytypes)
- >500 SiC grains previously studied by TEM (Daulton et al, 2002, 2004)
 - Isotopes not known, but most grains from AGB stars
 - Most grains either cubic (3C) or hexagonal (2H); generally single crystals with many defects
 - Two lowest-T polytypes
 - A few grains with more unusual structures found (Li, Stroud+ submitted)

• Equilibrium condensation:

C/O = 0.5 $P_{Total} = 1 \times 10^{-5}$ Corundum (Al₂O₃) **1633 K** Hibonite (CaAl₁₂O₁₉) **1562 K** Perovskite (CaTiO₃) 1537 K Melilite (Ca Al sil.) 1472 K Spinel (MgAl₂O₄) **1351K** Plagioclase (Ca Al sil.) **1320 K** Forsterite (Mg₂SiO₄) **1305 K 1287 K** Fe Metal 1252 K Ti₄O₇ Enstatite (MgSiO₃) **1246 K**

Yoneda and Grossman (1995) GCA

Identified Presolar Stardust Phases

Lodders & Fegley (1995)

- Oxides:
- Many O-rich AGB stars have broad 11μm feature attrib. to amorphous Al₂O₃, 13μm feature attrib. crystalline Al₂O₃ and/or MgAl₂O₄, 20μm feature from Mg,Fe oxides.

Lebzelter, et al. (2006)

- Silicates:
- Amorphous
 - broad features, attrib. to olivine [(Mg,Fe)₂SiO₄] stoichiometry
- Crystalline
 - Sharp features
 - Mg-rich olivine/pyroxene

Gielen et al. (2008) Difficulty: spectral features for phases depends on chemistry, grain size, shape, temperature, crystal structure, etc. highly non-unique problem!

Mineralogy of Presolar AGB oxides

- ~30 presolar oxides (Al₂O₃, MgAl₂O₄, CaAl₁₂O₁₉) analyzed by TEM (Stroud+ 2004; Zega+ 2011,2014, Takigawa+ 2014
 - Most crystalline
 - One amorphous Al_2O_3
 - Confirms astronomical result that both amorphous and crystalline Al₂O₃ forms

Mineralogy of Presolar AGB silicates

- Large number of silicate grains now identified, but small sizes (<500 nm) make mineralogical determination difficult
- Auger e- spectroscopy reveals diversity of chemical compositions

Wide range of Fe/Mg, Ca and/or Al-rich phases, pure SiO₂

 TEM data available for ~54 presolar silicates (Messenger, Stroud, Nguyen, Vollmer, etc)

- ~2/3 are amorphous or finely nanocrystalline, nonstoichiometric and chemically heterogeneous on <50nm scale
- Need IR measurements!!
- 1/3 crystalline grains, many are Mg₂SiO₄ but others present

- Highest-T phases:
 - Include single crystals, phases predicted by equilibrium (Al₂O₃, Mg₂SiO₄, ...)
- Lower-T phases
 - Include non-stoichiometric amorphous silicates, unusual Cr-oxides
- Implications:
 - Many silicate grains form in AGB stars under highly dynamic, probably non-equilibrium conditions
 - Huge diversity in compositions, many nonstoichiometric (makes life harder for IR spectroscopists)

Presolar (?) Nanodiamonds

- Tiny (2nm), abundant (500 ppm)
- Isotopically anomalous in N, Xe, and Te, but C normal.
 - Measurements only possible in bulk (millions of grains at a time)
 - Xe, Te point to supernova source, but only tiny fraction of grains contain these (1in 10⁶ has a Xe atom!)
 - N isotopes match composition of Sun (based on Jupiter, lunar soils, Genesis samples)
- Possible that vast majority formed in Solar System (Dai et al., *Nature*, 2002)
 - Possibly observed in protoplanetary disks (Van Kerckhoven et al. 2002)

TEM micrograph: Tyrone Daulton

Aberration corrected STEM of nanodiamond residue

Stroud et al., ApJ 2011

Atom-probe analysis of single nanodiamonds

- Towards single-grain isotope analysis
 - (Heck et al.,2012, 2014; Lewis et al. 2012)

Presolar grains and interstellar dust

- All presolar grains were once (>4.6 Gyr ago) interstellar grains (e.g., Dartois+Leroux lectures)
- What can they tell us about ISD?
 –Grain sizes?
 - Lifetimes?
 - -Processing?
 - -Crystallinity?

Presolar Grain size

- SiC:
 - power-law dist
 (<100-nm to >20
 μm)
- Silicates:
 - -<1 μm; typical size~300-nm
 - But high-res imaging indicates 2x as many at small sizes (Hoppe+ 2015)
 Similar to ISD

Amari et al 1994

Lifetimes of IS Dust

- Not yet possible to directly age-date presolar grains (e.g., U)
- SiC ages

 estimated from
 cosmogenic Ne,
 Xe, Li isotopes
 - Large grains, large uncertainties
 - Unrepresentative?

Gyngard et al. (2009)
IS grain destruction?

 Grains destroyed by SN shock waves (grain-grain, grain-gas collisions, e.g., A. Jones)

-Evidence in presolar grain data?

IS grain destruction?

Lewis et al. (1994)

 SiC grains of different sizes show distinct nucleosynthetic signatures
No evidence of fragmentation

IS grain destruction?

- Transmission Electron Microscopy of presolar Al₂O₃
- Possible evidence of interstellar shock processing (cracks, microcraters)

Takigawa+ 2014, in preparation

Crystallinity of circumstellar/interstellar dust

- IR observations indicate (Kemper+ 2004):
 - AGB star silicates: ~10-20% crystalline
 - Interstellar silicates: <2% crystalline</p>
- Presolar grains: ~1/3 crystalline
 ~similar to circumstellar
- Either:
 - 1) Low-crystallinity of ISD reflects amorphization and amorph. grains selectively destroyed in early SS (crys. fraction coincident)
 - 2) Most amorphous silciates in ISM formed there

Interstellar origin of IS dust

- Long argued on the basis of production/destruction timescales
 - And consistent with presolar grain crystallinity
- Destruction by SN shocks observed
- Support from gas-phase depletions in diffuse ISM:
 - Most Fe produced in Type IA supernovae that do not produce dust (i.e. injected as atoms)
 - Fe is 99% depleted onto dust in ISM
 - Fe thus somehow condenses onto/into dust in the ISM
- But, mechanism not known

Presolar grains and the early Solar System

COMETS

ASTEROIDS

Asteroidal meteorites: inner solar system, variable processing

Presolar grains and the early Solar System

COMETS

ASTEROIDS

Use presolar grain abundances as tracers of early SS (disk/planetary) processing

Asteroidal meteorites: inner solar system, variable processing

Evidence for SN injection?

- Many ideas for SS formation involve interaction with one or more supernovae (Cameron, Boss, Gounelle, ...)
 - e.g., triggered core collapse+ injection of short-lived radioactivities; sequential enrichment of molecular cloud; ...
- Evidence in presolar grain record?
 - Most grains from large number of AGB stars
 - 10% of silicates, 2% SiC, 50% graphite from SNe – evidence for few sources?

Supernova oxides/silicates

 'Group 4' (¹⁸O-rich) grains from SNe (Nittler+ 2008)

Supernova oxides/silicates

 O isotopes of many lie on arbitrary mixing line -> evidence for single source??

Supernova SiC/Si₃N₄

Lin et al. ApJ 2010

- Si isotopes of many fall on single (mixing) line on Si 3-isotope plot
- If SN models correct, ²⁸Si-rich end-member requires special mixing
 - Again: evidence for single source?
 - Not good correlation with other isotopes

Supernova/AGB silicate ratio

- Presolar silicates found in meteorites, interplanetary dust particles, Antarctic micrometeorites, and comet Wild-2 samples.
 - Last three argued to come form comets, sample outer disk, whereas meteorites sample inner disk
 - Same mix of supernova and AGB presolar grains throughout SS?

 No! Evidence that SN grains are more abundant in cometary samples (Qin+ 2011; Floss+Haenencour 2016)

Floss+Haenencour 2016

⁵⁴Cr anomalies

Bulk Chondrites (Qin+2010; see Burkardt talk)

Heterogeneous distribution of 54Cr carriers among planetary bodies/meteorite parent bodies?

- Both presolar silicate and ⁵⁴Cr data suggest heterogeneous distribution of supernova grains in protosolar disk. If real, what does it mean?
 - Direct SN injection into an already-formed disk (Ouelette+2010)?
 - Variable processing of SN versus AGB grains throughout disk?
 - Unlikely explanation: no difference in mineralogy between SN/AGB silicates
 - Size-sorting?
 - Might work for tiny ⁵⁴Cr-rich grains, but same size range for AGB/SN silicates

Presolar Grain Abundances

Matrix-forming region of ESS was well-mixed (in terms of presolar grains) Variations seen in heated meteorites (Gary Huss et al.), but SiC not strongly affected by aqueous processing

Presolar Grain Abundances

O-anomalous grains (silicates + oxides):

- Sensitive tracers of disk and parent body processes (e.g., hydrothermal)
- Highest in cometary IDPs IDPs more primitive than even most primitive meteorites
 - But still tiny fraction of bulk comet

Davidson *et al., LPSC* (2014). Previous data: Nguyen & Zinner (2004), Floss et al. (2006), Floss & Stadermann (2009, 2012), Nguyen et al. (2010), Zhao et al. (2011, 2013), Leitner et al. (2012), Nittler et al. (2013).

Conclusions

- Presolar grains of stardust are preserved in primitive meteorites and cometary dust
- As direct condensates from stellar outflows and explosions, presolar grains are unique tools to probe wide variety of stellar/interstellar/protosolar processes
 - Confirm AGB stars as sources of s-process heavy elements and improve understanding of nuclear processes
 - Indicate extensive and heterogeneous mixing in supernova ejecta
 - Indicate Milky Way dust dominated by AGB stardust
 - Probe small degrees of parent-body processing in asteroids early in solar system history

Thanks!

- Conel Alexander, Jemma Davidson, Aki Takigawa, Nan Liu, Andrew Steele (CIW)
- Rhonda Stroud (Naval Research Lab)
- Frank Gyngard (Washington Univ.)
- Marco Pignatari (Univ. of Hull)
- Maria Lugaro (Konkoly Observatory, Budapest)

