Ultracarbonaceous Antarctic Micrometeorites (UCAMMs) « Samples from the external regions of the protoplanetary disk »

<u>Cécile Engrand¹ and colleagues²...</u>

¹CSNSM, Bât. 104, CRNS/Univ. Paris-Sud, Université Paris-Saclay Bat. 104, F-91405 Orsay, France (cecile.engrand@csnsm.in2p3.fr)

²next slide...

...colleagues

- CSNSM: E. Charon, J. Duprat, N. Bardin, G. Slodzian, L. Delauche, M. Godard
- IAS: E. Dartois
- Institut Curie: T.D. Wu, J.-L. Guerquin-Kern
- UMET: H. Leroux
- IMPMC: K. Benzerara, L. Remusat
- IPAG: E. Quirico, L. Bonal, F.R. Orthous-Daunay, V. Vuitton
- GANIL: B. Augé et al.
- Univ. New Mexico: E. Dobrica
- Univ. Hawai'i: J.P. Bradley, H. Ishii

Composition of the solar nebula?

- Carbonaceous chondrites have the solar photosphere's composition
- They only represent ~ 5% of the meteorites
- The light elements are depleted wrt solar values
- Organic matter in extraterrestrial material?
- Comets?

Primitive organic matter in the Solar System

- ⇒« insoluble organic matter »
- OM in meterites
 - Origin in Solar nebula vs ISM (presolar molecular cloud)
- OM in comets
 - remote sensing and in situ measurements (Stardust, Rosetta)
- OM in cometary* dust : IDPs and UCAMMs
 - Laboratory measurements of samples collected on Earth

IOM in meteorites

Alexander+2007, 2010, 2014

- CCs : decrease of δD with thermal metamorphism
- UOCs: increase of δD with thermal metamorphism
- Correlation $\delta D \delta^{15} N$?

A unique IOM precursor?

- CR-like IOM precursor + aqueous alteration? (Alexander+2014)
- D fractionation from reduction of H₂O by Fe ?

Ice-OM accretion? (CR meteorite)

Link OM – water? (OM – hydrated minerals association)

Two IOM phases in UOCs

Bimodal distribution of D/H in UOCs

D/H and thermal metamorphism

Remusat+2016

- Heating : Similar structural and molecular evolution for UOC and CC IOMs (structural reorganization and increase of aromatic/aliphatic carbon ratio).
- Heating : increase D/H for UOC; decrease D/H for Murchison (CC)
- Not the same IOM precursor?
- ISM component in UOC IOM? (or preferential H loss?)

Origin of N isotopic anomalies

- <u>interstellar</u> or <u>cold molecular cloud</u> origin via low-temperature ion—molecule reactions (Terzieva & Herbst 2000, Rodgers & Charnley 2008, Aléon 2010)
 - ¹⁵N enhancements in two dense prestellar cores (Hily-Blant+2013)
 - variations in N isotopic ratio across the Galaxy (Adande &Ziurys 2012)
- <u>solar system origin</u> via photochemical selfshielding (Clayton 2002; Lyons+2009)
 - Experimental reproduction of ¹⁵N enrichements by VUV photolysis (Chakraborty+2013)

Mostly solar origin for CC and UOC IOM

- UOCs: Mixing at the molecular level? (no hotspot with D/H = $0.1 > 0.1 \mu m$)
- Some hotspots for 2 UOCs on the IMR-fl (presolar cloud or outer regions)

IOM in meteorites

- UOC IOM :
 - only D-rich organics
 - homogeneous δ¹⁵N ~ 0
 - very few ¹⁵N anomalies w/ large D-enrichments (IMR)
 - 2 origins? (solar system + ~ 1% presolar cloud?)
- CC IOM:
 - Accretion and mixing of both D- and ¹⁵N-rich organics
 - Ion—molecule or grain surface chemistry in cold environments could explain both D- and ¹⁵Nenrichments
- Comets?

Spatial exploration of comets

Langevin+2016

Comet 81P/Wild 2 (6 jan. 2004) Distance 500 km Stardust/NASA

Giotto/ESA

Cometary dust collected on Earth?

- Cosmic Dust flux ~ 30 000 ton/year
 - (Mass max ~ 200 µm)
- Theorical dual origin : comets and asteroid
- … ~ 90% from JF comets (Nesvorny+2010, Poppe2016…)
- Collection in stratosphere (IDPs) and Antarctica (MMs)
- Enstatite whisker <u>1 µm</u> GEMS

Cometary dust:

 IDPs : CP-IDPs & Timed collection (26P/G-S, 21P/ G-Z)

UCAMMs

CP-IDPs are C-rich & Px-dominated

A cometary origin of CP-IDPs is proposed

French Micrometeorite collections

Maurette+ Nature 1987, 1991 Duprat+ ASR 2007

Micrometeorites @ CONCORDIA Micrometeorites from central Antarctic snow

CONCORDIA Collection (CSNSM)

- > 5000 interplanetary dust particles CONCORDIA (75°S, 123°E) (IPEV-CNRS)
- Very good preservation

CSNSM

 2000, 2002, 2006, 2014 & 2016 field campaigns

- size range: 20-250 μm
- Average size ~45 μm

The CONCORDIA MM collection

- Two new families of particles:
- Friable MMs (FgF, Fine-Grained Fluffy) = CP-IDPs?
 - Ultracarbonaceous Antarctic MMs (UCAMMs)

Nakamura+2005, Dobrică+2009, 2011, 2012, Duprat+ Science 2010

11 CONCORDIA UCAMMs

11 CONCORDIA UCAMMs (cont'd)

UCAMMS for IR and SIMS

UCAMMs – Hydrogen isotopes (NanoSIMS)

Duprat+2010 Science

- A globally D-rich carbonaceous phase (D/Hbulk ~ 5 to 10 times SMOW)
- Maximum D/H ratios up to 30x terrestrial value (i.e. 4.6 ± 0.5 x 10⁻³)

(Bardin+ MetSoc 2015)

• DC94 fragment has heterogeneous N and H isotopic compositions

Search for spatial correlations between $\delta^{15}N$ and δD

- (Bardin+ MetSoc 2015)
- main OM : large variations in δD and moderate variations in δ¹⁵N
- No clear correlation between δD and δ¹⁵N for most of the grain

Caveat : comparing D/H in water and organics

D/H ratios

Altwegg+2015, Meier+1998, Engrand+1999, Duprat+2010

Caveat : comparing D/H in water and organics

giotto

esa

(PIA data) (Kissel et al. 1986)

UCAMMs : a N-rich « CHON »...

Intimate OM-minerals mixing in UCAMMs

Dobrică+2012

100 nm FIB sections – no epoxy

Engrand+2015 LPSC

(FIB Sections : D. Troadec IEMN Lille)

Engrand+2015 LPSC

Engrand+2015 LPSC

UCAMM DC43 : a unique sample

- 3 types of OM :
- smooth : N-rich, mineral-poor (#2)
- smooth: N-poor, mineral-poor (#1)
- granular: N-poor, mineral-rich (#3)

Nanoglobules

(Nakamura-Messenger+2003)

(Charon+2017)

(Maurette+ LPSC1995)

- D and N isotopic anomalies
 - δD from 1800 to 8100‰ in Tagish Lake
 - δ^{15} N from 200-1000‰ in Tagish Lake
- Present in many primitive materials
- Origin unclear : low T (outer regions or presolar cloud), processed ice coating?

UCMM (Japan)

Fig. 2. (a) Tungsten strap of 1.3 μ m thickness deposited on the surface of UCMM for FIB extraction, (b) An SEM image of the FIB section, (c) Carbon- and (d) Nitrogen- distribution maps obtained by STXM, and (e) Carbon- and (f) Nitrogen-XANES spectra of the regions 1, 2, and 3 indicated in (d). Peak assignments are based on [4] ; A (285.1 eV): C*=C, B (286.6 eV): C=C-C*=O, C (286.6 eV): C*= N, D: NHx(C*=O)C (~288.3 eV) or OR(C*=O)C (~288.6 eV), E (398.8 eV): C=N*, F (399.7 eV): C=N*, G (~401.5 eV): N*Hx(C=O)C.

Yabuta+2012

Formation of N-rich OM by irradiation?

Dartois+2013

- UCAMMs : material from beyond the nitrogen snow-line
- Formation of N-rich OM by GCR irradiation at surface of a Kuiper belt or Oort cloud icy objet ?

Ices stability Volatiles lost

Radiative environments

Irradiation de GLaces d'Intérêt Astrophysique (IGLIAS) – GANIL Caen

- P chamber : 1.5 10⁻¹⁰ mbar @ 8 K
- Brucker Vertex 70v (6000-700 cm⁻¹)
- Perkin Elmer λ 650 (800-200 nm)
- 3 substrates (CsI, SiO₂, MgF₂ -20*2 mm)

Formation of N-rich OM by irradiation?

- UCAMMs : material from beyond the nitrogen snow-line
- Formation of N-rich OM by GCR irradiation at surface of a Kuiper belt or Oort cloud icy objet ?

New Horizons – Pluto's Surface diversity

Grundy+2016

N-rich and N-poor OM in UCAMMs Intimate mixing with minerals

DC18 -TEM

C-XANES

N-XANES

Engrand+ LPSC 2015 Yabuta+ LPSC 2012 Charon+ LPSC 2017

UCAMMs : Mineral complexity

Px/OI ratio (in numbers) ~ 1

FeS Silicate

Ol Px Ca-rich Px

Glassy phases : GEMS

Engrand+2015 LPSC

CP-IDPs contain abundant GEMS : an interstellar signature?

Messenger+2003

Bradley+1999

GEMS composition in IDPs/(UC)AMMs

Formation of GEMS?

Fig. 1. TEM micrograph of annealed sample **a**) at 870 K for 780 h and **b**) at 1020 K for 3 h. Rounded metallic nano-particles enclosed in the amorphous silicate. They formed by a reduction reaction and further precipitation since metallic Fe is immiscible in silicates. The microstructure closely ressembles to those to GEMS found in IDPs.

Fig. 2. TEM micrograph of sample annealed at 970 K (55 h) showing a forsterite crystal (Fo) embedded in a amorphous matrix. Note the dentritic structure at the edge of the grains. Some metal particles are also present in the amorphous phase (some of them are arrowed).

Davoisne+2006

annealing (<1000K) of amorphous olivine under vaccum?

Formation of GEMS? Low energy irradiation of olivine

- Disordered rim (40-90 nm)
- Change of composition (O, Mg)

Formation of GEMS? Irradiation of amorphous silicates?

 Amorphous nanometer-sized Mg-Fe and Mg silicate of olivine-type stoichiometry (LA of metal targets (Mg-Fe-Si) in He/O₂ or of Mg-Fe silicates in 4 mbar He atmosphere)

Jäger+2016

Metal – Fe sulfides

Mineral condensates : enstatite whiskers

AMM

Dobrica+2009

Bradley+1983

Chondrules – « Nanochondrules »

UCAMM Olivines & Pyroxenes

Crystallinity > 25%

Minerals: ISM vs protoplanetary disks

- Circumstellar environments:
 - Minerals crystalline, very small
- Diffuse ISM :
 - > 98% minerals amorphous
 - Silicates ~ 50% OI 50% Px
 - Size < 100 nm
- Disks :
 - 10-95% crystalline minerals
 - Sizes 0.1 2 µm
 - Silicates ~ 50% OI 50% Px
 - Mineralogical zonation

A controversial mineralogical zoning in PPD

Herbig Ae/Ab

Table 1 Dust properties in the inner and outer disk						
	Crystallinity (%)		Fraction of large grains (%)		Crystalline olivine to pyroxene ratio	
	Inner disk	Outer disk	Inner disk	Outer disk	Inner disk	Outer disk
HD 163296	40 ⁺²⁰ -20	15^{+10}_{-10}	95^{+5}_{-10}	65^{+20}_{-20}	$2.3^{+3.7}_{-0.5}$	-
HD 144432	55^{+30}_{-20}	10^{+10}_{-5}	90^{+10}_{-10}	35^{+20}_{-20}	$2.0^{+1.8}_{-0.6}$	-
HD 142527	95^{+5}_{-15}	40^{+20}_{-15}	65^{+15}_{-10}	80 ⁺¹⁰ -30	$2.1^{+1.3}_{-0.7}$	$0.9^{+0.2}_{-0.1}$

(Van Boekel+2004)

- Would agree with tendency observed in CP-IDPs, UCAMMs, Wild 2...
- But for T-Tauri...

Mineralogical zoning in PPD

- Crystalline OI/Px ~ 1.5 in inner regions (1 AU)
- Crystalline OI/Px > 5 in outer regions (5-15 AU)
- Enstatite grains (~ 1 μm) larger than Fo grains (~ 0.1 μm)
- (Amorphous silicates ~ 6 μm)

Mineralogical zoning in PPD

- Enstatite grains (~ 1 μm) larger than Fo grains (~ 0.1 μm)
- (Amorphous silicates ~ 6 μm)

Outward transport

- All minerals/CAIs in cosmic dust particles (IDPs/MMs) and Stardust samples (comet 81P/Wild2) are miniature compared to their meteorite counterparts
- A consequence of radial transport ?

Zonation of OI and Px in PPDisk

- Annealing of amorphous MgSiO₃ (Px) precursor ?
 - Formation of cristalline Fo
 - Then formation of cristalline Px
 - Silica formation as by-product

- Crystalline phases in CP-IDPs/Wild2/UCAMMs preserved inner S.S. mineralogy during transport?
- But not meteorites?

Presolar grains in UCAMMs

Abundance of presolar grains ~ 0.5%

Stardust Presolar grains

- Stardust mission (81P/Wild2)
- anomalous silicates or oxides
 - corrected abundance (destruction impact) = 600-830 ppm
- SiC : 45 ppm

Structure of the protoplanetary disk ?

⁽Scott, 2007)

Structure of the protoplanetary disk ?

⁽Scott, 2007)

Summary (1/2)

- UCAMMs provide informations on the outer regions of the protoplanetary disk
- 2 C-rich phases (at least) in UCAMMs: N-rich and N-poor (see also Yabuta et al., 2012)
 - N-rich carbonaceous phase is smooth, no minerals
 - N-poor carbonaceous phase is associated with minerals (and GEMS)
- Different origins/formation mechanismes for Nrich and N-poor phases
 - Genetic link to meteorite IOM for N-poor phase? (but contains GEMS...)
 - Formation by irradiation of CH₄-N₂ ices for N-rich phase? (Dartois+2013; Augé+2016)

Summary (2/2)

- Large D enrichments (low T chemistry) no direct correlation with N isotopes
- « Large » abundance of presolar silicates (~0.5%) and C-rich anomalous grains
- Inner solar system material transported to the outer regions
 - Incomplete mixing from the inside out. OK with models (Shu et al. 1997, Bockelée-Morvan et al. 2002, Ciesla 2007, Vinković 2009...).
 - Mineral sizes usually smaller size sorting effect?
 - Mineralogical gradient in the PPdisk ?

Open Questions

- Wild2 CP-IDPs UCAMMs :
 - Differences...=> ?
- Formation of GEMS ISM or not ISM?
- Zonation of the PPD : CP-IDPs& UCAMMs richer in px than meteorites... signature? altertion effect?
- Atmospheric entry models: UCAMMs (outer S.S.) do not know evidence for heating above ~300°C?