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    In order to progress, one needs:  
 
   ^ A deeper understanding of underlying fundamental 
   processes (minimalist approach) 
 
    ^ Combining enhanced resolutions, in space and time, 

observationally, experimentally & numerically (expensive) 
 
    ^ A hierarchy of models, adapted to scale of problem 
 

    ^ An added complexity in modeling (maximalist: Physics, 
Chemistry, Biology, Socio-economics, …)       

 

Weather, climate and all that … 



VORTEX 2 (2009-2010) 
Verifications of the Origin of Rotation in Tornadoes EXperiments 

Current warnings have an only 13 minute average lead time,  
and a 70% false alarm rate.  

* How, when, and why  
  do tornadoes form?  
 
•  Why some are violent and  
  long lasting, while others  
  are weak and short lived? 
 
• What is their structure? 

* How strong are the winds  
  near the ground? 
  
* How do they do damage? 

 



Seamless predictions across scales, from hourly to decadal 

By how much is the sea level going to rise? 



Seamless predictions across scales, from hourly to decadal 

+ chemistry, biology, society, … 



After Ian Foster, Argonne 

One modeling example of societal complexity: wiring 
diagrams 



Bodenschatz et al., Science, 2010

Can we understand clouds w/o turbulence?



Geophysical	High	Order	Suite	for	Turbulence	(D.	Gomez	&	P.	Mininni)	
 
§  Pseudo-spectral DNS, periodic BC cubic (also 2D), single/double 

precision; Runge-Kutta for incompressible Navier-Stokes, SQG & 
Boussinesq. Includes rotation, passive scalar(s), MHD + Hall term 

§  GHOST, from laptop to high-performance, parallelizes linearly up to 130,000 
processors, using hybrid MPI/Open-MP (Mininni et al. 2011, Parallel Comp. 37) 

§  LES: alpha model & variants (Clark, Leray) for fluids & MHD 
§  Helical spectral (EDQNM) model for eddy viscosity & eddy noise 
§  Lagrangian particles (w. A. Pumir) 

§  Gross-Pitaevskii & Ginzburg-Landau (PM+M. Brachet) 
§  Data, forced: 20483 Navier-Stokes and 15363 & 30723 with rotation, both w. 

or w/o helicity. Rotating stratified turbulence w. 20483 grids forced at 
intermediate scale 

§  Data, spin-down MHD:15363 random + 61443 ideal & 20483 w. T-Green 
symmetry 

§  Decaying rotating stratified flow, N/f~5, Re=5.5 104, 20483 , 30723 & 40963 grids. 
§  Decaying rotating stratified flow, 2.5<N/f<300, Re up to 1.8 104,  RB up to 105, 10243 grid. 
                       mininni@df.uba.ar, duaner62@gmail.com, marino@ucar.edu  



    Some ``hero’’ runs in turbulence 

•  40963 points ~6.8 1010 , out of which ~ 200 millions in the last 
10 Fourier shells alone in the dissipation range: homogeneous 
isotropic (HIT): Japan (‘03), US (PKY, ‘12); MHD: Germany 
(Homann~ ‘10); supersonic: Australia (Federrath ~ ‘13) 

•  Purely stratified run 81922*4096 (ONR, deBruyn-Kops, 2015) 

•  HIT, Japan K-computer (& NSF’s goal for HIT): 122883 or ~ 1.8 
1012 grid points  ~ \sqrt(A) 

 
^  40963 points rotation + stratification, N/f=5, RB ~ 32   (NSF+DOE) 
 
                                                                                                                      A: Avogadro nb. ~ 6 1023  



Slide after John Wyngaard 

The problem(s) 

The trend 

1 km



Can we go beyond Moore’s law? 

Doubling of speed of processors every 18 months 
--> doubling of resolution for DNS in 3D every 6 years … 

à Develop models of turbulent flows (RANS, LES, closures, 
Lagrangian-averaged, …) 

 
à Improve numerical techniques 

à Develop numerical models 

à Be patient 
 
§  Is Adaptive Mesh Refinement (AMR) a solution? 

 If so, how do we adapt? How much accuracy do we need? 



Example of 3D AMR 

Hairpin vortex,  
Euler case 
Grauer et al. PRL 80 (1998) 
 
 
 



The need for Adaptive Mesh 
Refinement (AMR) 
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1 and the Ng ? 1 runs, we should have D1 p 4, correspond-
ing to the average ratio of the number of points in the
shell centered on k(1)

max and in the shell next to it, an effect
superimposed to the local (intrinsic) variation of the energy
spectrum. For example, in run M6, this discrepancy is
largest at t p 1.15 (with D1 p 4.06) and lowest at t p 3.4
(with D1 p 1.73), with an average value around p3. The
fact that this average value is less than 4 shows that there
is backscattering, a phenomenon which is linked to the
issue of loss of predictability in turbulent flows, since the
small scales can act as an eddy-force for the large scales
through a beating mechanism. Let ma(k) be the actual
number of points in a given Fourier shell k, mt(k) the

FIG. 4. Temporal variation of the total enstrophy (left) and the total theoretical number of points in this shell (in two dimen-
energy (right) for two-dimensional MHD; test run M1 (solid line) and sions, mt(k) 5 2fk) and r(k) their ratio; it is clear that
sparse run M2 (dashed line). The nomenclature of runs is given in Table r(k(1)

max/r(k(1)
max 1 1) p 4, hence the problems visible onI. Note the close similarities between the two runs.

the spectra.
In Figs. 6 the energy spectra for runs M5 (a) and M7

(b) are displayed in log–log coordinates. The small gaps
tion D T is finite or not is an open problem of great interest at high wavenumber for the spectrum (6a) are due to the
in astrophysics, in particular in the context of solar flares fact that some of the unit-width shells defined in (2) are
and the heating of the solar corona, a problem that requires somewhat depleted. This effect is more strongly felt in run
huge numerical resolutions in view of the large Reynolds M6 (not shown) after the third cutoff (k . k(3)

max 5 128)
numbers to be considered [20] and for which the present for which only one mode in 64 is actually followed in time.
algorithm may be useful. We choose here to represent data in identical ways for

All these global quantities are very similar for both runs, multigrid runs and for test runs, so that this depletion is
including the enstrophies which stress the small-scale dy- clearly seen. On the other hand, four adjacent shells might
namics, with in particular a secondary maxima around t p in fact be added in plotting spectra in the first reduced
3.5 linked to reconnection processes of magnetic field lines grid, 16 shells in the next grid, etc. to avoid such holes; a
[15]. The time-scale of Alfvénic oscillations between ki- weighing algorithm taking into account the ratio of the
netic and magnetic energy (not shown) is also well repro- actual to the theoretical number of points 2fk in a two-
duced. Almost identical results obtain for run M3. A similar dimensional shell of mean radius k and width Dk 5 1 might
conclusion concerning averaged quantities can be drawn also be used.
when comparing the higher resolution runs M4–M7. The correlation between the velocity and magnetic field

However, a more detailed inspection of individual modal is defined as
energies E(k) as defined in Eqs. (2) alters somewhat this
conclusion. Figures 5 display for run M6 (a, c) and the test E C(x, y) 5 v(x, y) ? b(x, y).
run M4 (b, d) the temporal variation of E(k 5 20) (a, b)
and E(k 5 40) (c, d) on either side of the first grid cutoff Integrated over the whole domain, E C is an invariant of
k(1)

max 5 32. Whereas in the former case, little alteration the nondissipative (n 5 0, h 5 0) MHD equations. Its
due to the proximity of the onset of the first decimation Fourier spectrum is E C(k). We define as well the correla-
grid is visible, the effect of the decimation is strongly felt tion coefficient
in the latter, both in the overall temporal variation and in
the actual amplitudes of the modal energy. This is not r(x, y) 5 v(x, y) ? b(x, y)/(uv(x, y)u2 1 ub(x, y)u2). (6)
surprising, since for an equivalent dissipation of energy,
this dissipation occurs through a substantially smaller num- With this definition, it is bounded by 60.5, as, for example,
ber of modes which individually must be more efficient in when the flow consists of a pure spectrum of Alfvén waves
removing the energy coming from the inertial range at a v 5 6b; in this case the nonlinear terms of the MHD
rate ´ fixed by the initial conditions. equations are identically zero, as immediately seen in Eqs.

Let us define the discrepancy factor: (5). We plot in Figs. 7 at t 5 1.2 the fourth-order moment
of that spectrum, i.e., k4E C(k), in order to emphasize the

D1 5 E(k(1)
max)/E(k(1)

max 1 1). effect of small scales, for runs M7 (a) and M6 (b). No
serious discrepancy can be seen in such curves. However,
the Fourier spectrum r̂(k) of the correlation coefficientWith definition (2) of the shells unchanged for the Ng 5

solid: DNS, 
 kmax=128 
dash: 3 grids, 
 kmax

1=32,  
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FIG. 5. Temporal variation of modal energies defined in (2) for (a, b) k 5 20 and (c, d) k 5 40 for the MHD runs M6 (a, c) for which k(1)
max 5

32, and the test run M4 (b, d).

(Figs. 7c for the test run M7, and 7d for run M6) is very sensi-
tive to the depletion in wavenumbers as we go from one grid
to the next; the effect is particularly conspicuous at k 5
k(1)

max . We checked that this was not a systematic effect; the
difference in the computed values of r̂(k) between the test
run and the multigrid run varying wildly around zero from
individual mode to individual mode within a given Fourier
shell (not shown). In fact, in the fully aliased run M4 a similar
error arises close to the cutoff wavenumber kmax 5 256. This
simply shows that this variable is very sensitive to the veloc-
ity and magnetic fields being close to zero. We should also
recall that it is expected both from analytical studies and
closure models of turbulence (see, for example, [21]) that
the spectrum of the correlation coefficient changes sign in
the vicinity of the dissipative wavenumber kD [22], once the
flow has reached the small scales. This would be a further
argument to set k(1)

max p kD .
In Figs. 8 probability distribution functions for the test

run M7 (a, c) and the sparse run M6 (b, d) at t 5 1.4 forFIG. 6. Total energy spectra at t 5 1.2 for the sparse run M5 (a) and
the derivatives ≠yvx (a, b) and ≠ybx (c, d) of the velocitythe test run M7 (b). Some shells are depleted for the multigrid run (see

text). and the magnetic field are displayed. Values on the x-
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MHD flows, July 1988, edited by M. Meneguzzi, A. Pouquet, and
P. L. Sulem (North-Holland, Amsterdam, 1989).

17. H. Politano, P. L. Sulem, and A. Pouquet, Topological Fluid Mechan-
ics, edited by H. K. Moffatt and A. Tsinober (Cambridge Univ. Press
Cambridge, 1990).

18. D. Biskamp, H. Welter, and M. Walter, Phys. Fluids B 2, 3024 (1990).

19. W. H. Matthaeus and D. Montgomery, Ann. N.Y. Acad Sci. 357,
203 (1980).FIG. 13. Scatter plot of the xx-component of the tensor pi pj , where

p 5 v 1 b. The test case (run M7) is in abscissa, and the sparse-model 20. G. Einaudi, C. Chiuderi, and F. Califano, Adv. Space Res. 13, 85
case (run M6) is on the ordinate; (a) the full data; (b) data in which (1993).
large scales have been filtered out. The straight lines are best fit to the 21. A. Pouquet, in Magnetohydrodynamic Turbulence, Les Houches Ses-
scatter plots. sion XLVII, edited by J. P. Zahn and J. Zinn-Justin (Elsevier, Amster-

dam, 1993), p. 139.

22. R. Grappin, Phys. Fluids 29, 2433 (1986).
An obvious application of the method is the simulation 23. X. Jimenez, J. Fluid Mech. 279, 169 (1994).

of three-dimensional turbulence, in order to study issues 24. S. Lele, J. Comput. Phys. 103, 16 (1992).
such as the small-scale structures of Euler and Navier– 25. A. Vincent and M. Meneguzzi, J. Fluid Mech. 225, 1 (1991).
Stokes flows [25] and intermittency [26], and in particular 26. Z. S. She, S. Chen, G. Doolen, R. H. Kraichnan, and S. A. Orszag,

Phys. Rev. Lett. 70, 3521 (1993).the stability and dynamical interactions of vortex tubes.

Meneguzzi+ 1996 

SPARSE-MODE SPECTRAL METHOD FOR TURBULENT FLOWS 37

1 and the Ng ? 1 runs, we should have D1 p 4, correspond-
ing to the average ratio of the number of points in the
shell centered on k(1)

max and in the shell next to it, an effect
superimposed to the local (intrinsic) variation of the energy
spectrum. For example, in run M6, this discrepancy is
largest at t p 1.15 (with D1 p 4.06) and lowest at t p 3.4
(with D1 p 1.73), with an average value around p3. The
fact that this average value is less than 4 shows that there
is backscattering, a phenomenon which is linked to the
issue of loss of predictability in turbulent flows, since the
small scales can act as an eddy-force for the large scales
through a beating mechanism. Let ma(k) be the actual
number of points in a given Fourier shell k, mt(k) the

FIG. 4. Temporal variation of the total enstrophy (left) and the total theoretical number of points in this shell (in two dimen-
energy (right) for two-dimensional MHD; test run M1 (solid line) and sions, mt(k) 5 2fk) and r(k) their ratio; it is clear that
sparse run M2 (dashed line). The nomenclature of runs is given in Table r(k(1)

max/r(k(1)
max 1 1) p 4, hence the problems visible onI. Note the close similarities between the two runs.

the spectra.
In Figs. 6 the energy spectra for runs M5 (a) and M7

(b) are displayed in log–log coordinates. The small gaps
tion D T is finite or not is an open problem of great interest at high wavenumber for the spectrum (6a) are due to the
in astrophysics, in particular in the context of solar flares fact that some of the unit-width shells defined in (2) are
and the heating of the solar corona, a problem that requires somewhat depleted. This effect is more strongly felt in run
huge numerical resolutions in view of the large Reynolds M6 (not shown) after the third cutoff (k . k(3)

max 5 128)
numbers to be considered [20] and for which the present for which only one mode in 64 is actually followed in time.
algorithm may be useful. We choose here to represent data in identical ways for

All these global quantities are very similar for both runs, multigrid runs and for test runs, so that this depletion is
including the enstrophies which stress the small-scale dy- clearly seen. On the other hand, four adjacent shells might
namics, with in particular a secondary maxima around t p in fact be added in plotting spectra in the first reduced
3.5 linked to reconnection processes of magnetic field lines grid, 16 shells in the next grid, etc. to avoid such holes; a
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Small-scales 
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 kmax=128 
dash: 3 grids, 
 kmax
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In Figs. 6 the energy spectra for runs M5 (a) and M7

(b) are displayed in log–log coordinates. The small gaps
tion D T is finite or not is an open problem of great interest at high wavenumber for the spectrum (6a) are due to the
in astrophysics, in particular in the context of solar flares fact that some of the unit-width shells defined in (2) are
and the heating of the solar corona, a problem that requires somewhat depleted. This effect is more strongly felt in run
huge numerical resolutions in view of the large Reynolds M6 (not shown) after the third cutoff (k . k(3)

max 5 128)
numbers to be considered [20] and for which the present for which only one mode in 64 is actually followed in time.
algorithm may be useful. We choose here to represent data in identical ways for

All these global quantities are very similar for both runs, multigrid runs and for test runs, so that this depletion is
including the enstrophies which stress the small-scale dy- clearly seen. On the other hand, four adjacent shells might
namics, with in particular a secondary maxima around t p in fact be added in plotting spectra in the first reduced
3.5 linked to reconnection processes of magnetic field lines grid, 16 shells in the next grid, etc. to avoid such holes; a
[15]. The time-scale of Alfvénic oscillations between ki- weighing algorithm taking into account the ratio of the
netic and magnetic energy (not shown) is also well repro- actual to the theoretical number of points 2fk in a two-
duced. Almost identical results obtain for run M3. A similar dimensional shell of mean radius k and width Dk 5 1 might
conclusion concerning averaged quantities can be drawn also be used.
when comparing the higher resolution runs M4–M7. The correlation between the velocity and magnetic field

However, a more detailed inspection of individual modal is defined as
energies E(k) as defined in Eqs. (2) alters somewhat this
conclusion. Figures 5 display for run M6 (a, c) and the test E C(x, y) 5 v(x, y) ? b(x, y).
run M4 (b, d) the temporal variation of E(k 5 20) (a, b)
and E(k 5 40) (c, d) on either side of the first grid cutoff Integrated over the whole domain, E C is an invariant of
k(1)

max 5 32. Whereas in the former case, little alteration the nondissipative (n 5 0, h 5 0) MHD equations. Its
due to the proximity of the onset of the first decimation Fourier spectrum is E C(k). We define as well the correla-
grid is visible, the effect of the decimation is strongly felt tion coefficient
in the latter, both in the overall temporal variation and in
the actual amplitudes of the modal energy. This is not r(x, y) 5 v(x, y) ? b(x, y)/(uv(x, y)u2 1 ub(x, y)u2). (6)
surprising, since for an equivalent dissipation of energy,
this dissipation occurs through a substantially smaller num- With this definition, it is bounded by 60.5, as, for example,
ber of modes which individually must be more efficient in when the flow consists of a pure spectrum of Alfvén waves
removing the energy coming from the inertial range at a v 5 6b; in this case the nonlinear terms of the MHD
rate ´ fixed by the initial conditions. equations are identically zero, as immediately seen in Eqs.

Let us define the discrepancy factor: (5). We plot in Figs. 7 at t 5 1.2 the fourth-order moment
of that spectrum, i.e., k4E C(k), in order to emphasize the

D1 5 E(k(1)
max)/E(k(1)

max 1 1). effect of small scales, for runs M7 (a) and M6 (b). No
serious discrepancy can be seen in such curves. However,
the Fourier spectrum r̂(k) of the correlation coefficientWith definition (2) of the shells unchanged for the Ng 5

Full data 
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dash: 3 grids, 
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Number of modes in k-shell in  
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Helicity dynamics in HIT

 
§  Evolution equation for the local helicity density in HIT 

(Matthaeus+ 2008): 

 
∂t(v. ω) + v. grad(v. ω) =  ω.grad(v2/2 - P)  + νΔ (v. ω)  
                                        
à  v. ω (x) can grow locally on a fast (nonlinear) time-scale even 
     though it is conserved globally 
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Molinari & Vollaro, 2008

just east of the center (downshear at this time; see Fig.
1). During the following 2 h (Figs. 5b,c), the cell grew
dramatically. Sondes D9 and D10 contained the largest
helicity. Cell growth occurred in the same region of the
storm as these two large helicity values. Helicity values
were also elevated in the region upwind of the deepest
cells (sondes D12 and D13). The remaining sondes on
24–25 August (Fig. 5a) were located outside of the deep
convection and generally contained much smaller he-
licity values. Taken together, Figs. 2, 4, and 5 show that
the largest helicity occurred in the four soundings clos-
est to the deep cells on the two days (D2, D5, D9, and
D10).

Table 1 gives the typical values of helicity over a
3-km layer from operational analyses in middle-latitude
severe weather (Thompson et al. 2003). Included are
mean values for three types of convection: without su-
percells, with nontornadic supercells, and with signifi-
cant tornadic events. Table 1 compares Thompson et
al.’s (2003) helicity values with the upshear mean and

downshear mean values over 3, 6, and 12 km in this
study, as well as with the mean over the four sondes
closest to the deep convection. In addition, the magni-
tude of 0–6-km vertical wind shear is shown for the
same cases.

The mean upshear helicity in Hurricane Bonnie is
similar to the nontornadic supercell values of Thomp-
son et al. (2003). The mean downshear helicity is nearly
3 times as large, and more than double the value from
the strong tornadic events of Thompson et al. (2003). In
the four near-convection soundings in the hurricane,
the mean helicity reaches extreme values that are three
times the strong tornadic supercell values in middle lati-
tudes. Downshear sondes were released at a mean ra-
dius of 192 km, upshear sondes at 177 km. As a result,
the differences between upshear and downshear sondes
did not relate to a notable variation in their mean dis-
tance from the center.

The helicity values in Table 1 reach even greater ex-
tremes over 6- and 12-km layers, with mean values as

FIG. 4. Infrared satellite image at 2200 UTC 23 Aug, showing an intense local cell with a new
cell forming upwind. The color bar represents brightness temperature (°C). Helicity values
and mean winds over 0–6 km from sondes D1–D6 (released between 1845 and 2136 UTC 23
Aug) are also shown, plotted with respect to the moving center. These are shown in black or
white depending on the background. Vertical wind shear was from the northwest at this time.
The hurricane symbol represents the best-track center location.

4362 M O N T H L Y W E A T H E R R E V I E W VOLUME 136

Fig 4 live 4/C

Hurricane Bonnie (1998) (V~50m/s, shear 12m/s): helicity, winds and 
brightness temperature from tropospheric dropsondes
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    Helicity in other geophysical flows 
 
à Secondary currents in river bends, effect on salt distribution 

à Mixing in estuaries and interactions with tidal flows 

à Isopycnals are helical surfaces when eq. of state is nonlinear 
                                                                                                             
 

à Helicity and large-scale instabilities, as in hurricanes 
 

à Production of large-scale helical magnetic fields     (& shear) 
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Figure 5.6 Oblique aerial photograph of the junction of the Rı́o Paraná and Rı́o Paraguay. Note the contrast produced by the higher suspended
sediment concentrations of the Rı́o Paraguay and the vorticity present along the mixing interface.
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Figure 5.1 Bed morphology at the confluence of the Jamuna and Ganges rivers, Bangladesh. Plots
show morphology of confluence at various times (a–e) and a difference map of bed elevation (f).
Reproduced from Nature, 387: 275–277 (1997).
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤
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FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν ̸= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

Boussinesq equations

+ F

curl (GB) à thermal vshw winds:  f ∂zu = N∂yb, f ∂zv = - N∂xb

dot w. Coriolis force & spatial averageà  

3

2-eps-converted-to.pdf temperature2_025r05-eps-converted-to.pdf

FIG. 2: Buoyancy b, 5123 grid, Fr = 0.11, Ro = 0.40 (left) and Fr = 0.025, Ro = 0.05 (right); vertical is given by blue arrow;
blue and green strata represent ± variations in b, with sizable fluctuations and structuring, and with more turbulence at higher
Froude number.

suming stationarity, weak nonlinearities and small dissi-
pation at large scales, one can show that helicity produc-
tion in rotating stratified turbulence is proportional to
N/f and to the correlation between buoyancy and verti-
cal shear [17]. One starts from geostrophic balance (i.e.,
with the rhs of eq. (1) set equal to 0); taking its curl leads
to the usual thermal wind equations governing the verti-
cally sheared horizontal motions resulting from buoyancy
gradients. We finally take the dot product of the result-
ing equation with the Coriolis force. Only u? appears in
this expression, and thus we are led to decompose the he-
licity, writing H

V

⌘ H?+H+. We finally take horizontal
averages (denoted h.i?), and arrive at [17]:

hH?i? ⌘ hu? ·r⇥ u?i? =
N

f
hb @w

@z
i? . (4)

The full expression for the perpendicular-averaged helic-
ity includes not only the term on the lhs of eq.(4), but
also that portion that is proportional to the verical veloc-
ity, namely H+(uz

) = u
x

@
y

u
z

� u
y

@
x

u
z

+ u
z

!
z

. In some
cases, H? � H+, and H? alone essentially determines
the total helicity. For example, measurements of hH?i?,z

found in modeling simulations of hurricanes are seen to be
two orders of magnitude larger than the terms involving
the vertical component of the velocity [22]. Note that the
H? density is proportional to the so-called (cell-relative)
environmental helicity, when integrated over the vertical,
(see e.g. [19]). We thus conclude that the production of
helicity in rotating stratified turbulence is directly pro-
portional to N/f , and results from a balance between
rotation and stratification.

N/f scaling has also been advocated, for example, in
the context of statistical mechanics of non-dissipative
geophysical flows [23]. As N/f (proportional to the
Rossby deformation radius) increases, stratification dom-
inates and the Coriolis force is no longer available to
balance gravity, although in this case another balance
involving dissipation may be written instead, which de-
scribes well the preservation of helicity [24]. Indeed, dis-
sipation is known to play a role in the overall dynamics,
e.g. in the changes of potential vorticity once gravity
waves start to break [25].

B. Parametric study

We have performed nine runs on grids of 5123 points,
and 36 on 2563 grids, up to past the peak of dissipa-
tion, with similar (but not identical) initial conditions
and N/f 2 [1/2, 16.7].
Fig. 1 gives the temporal evolution of helicity (top)

and enstrophy (bottom) for several flows at fixed Fr;
the potential enstrophy Z

P

shows a behavior similar to
Z
V

, with slightly smaller values. Note that the oscilla-
tions are proportional to N and correspond to gravity
waves. Across all runs, the maximum of Z

V

varies from
30 (for weak waves) to ⇠ 2.5, corresponding to the small-
est Froude number. The time to reach this maximum
varies from 6.3 to 13.3 ⌧

NL

. The overall structures in
this type of flows are shown in Fig 2 which displays vol-
ume rendering of buoyancy at late time for a run with
Fr = 0.11, N/f = 4 (left) and Fr = 0.025, N/f = 2

Hide, 1976

f=2Ω

= 0

Geostrophic Balance 
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FIG. 1: kpEV (k), where EV (k) is the kinetic energy spectrum, averaged for one eddy turn-over time after the peak of enstrophy,
and p is chosen to compensate for either a weak turbulence law (p = 2, dashed line) or a Kolmogorov law (p = 5/3, solid line);
k is the isotropic wavenumber. Runs were computed on grids of 5123 points with initial conditions for k0 2 [1, 2], and Reynolds
numbers Re ⇡ 6000. [CHECK] The dash-dot line indicates the best fit in the inertial range. Left: N/f = 2.99,RR =
ReRo2 ⇡ 2.78,RB = ReFr2 ⇡ 0.31, with Fr ⇡ 0.006, Ro ⇡ 0.018. Right: N/f = 4.0, ReRo2 ⇡ 963, ReFr2 ⇡ 60, with
Fr ⇡ 0.1, Ro ⇡ 0.398. Note the steeper spectrum for moderate N/f and low RB,R, and a scaling close to a Kolmogorov law
for larger N/f and substantially larger RB,R.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation of Fourier space
used in any spectral method; however, the nonlinear term
! ·rb can be neglected in the presence of strong rotation
and stratification [26].

B. The GHOST code and the runs

The numerical simulations have been carried out us-
ing the Geophysical High-Order Suite for Turbulence
(GHOST) code. GHOST is a pseudo-spectral framework
that hosts a variety of partial di↵erential equation (PDE)
solvers optimized for studying turbulence in a [0, 2⇡]3 tri-
periodic box, and with a 2nd–4th-order explicit Runge-
Kutta time stepping scheme. Using a cubic box and an
explicit time stepping method allows in principle, given
the parameters are right, for resolving all scales includ-
ing the Ozmidov scale and beyond, when isotropy re-
covers (see, e.g., [27] for the purely rotating case). A
classical 2/3 de-aliasing rule is used, meaning that for a
given resolution of n

p

points per dimension, the maxi-
mum available wavenumber is k

max

= n
p

/3. The code
uses a hybrid MPI/OpenMP parallelization scheme [28],
and also has a third level of parallelization with the recent

addition of GPU/accelerator support for the Fast Fourier
Transforms (FFTs). Note that the MPI communication
required to complete the multidimensional Fourier trans-
forms is all-to-all. The code uses a “slab” (1D) domain
decomposition among MPI tasks, and the OpenMP pro-
vides a second level of parallelization within each slab
or MPI task. The code can compute in double or sin-
gle precision based on resolution. GHOST performance
has been tested on a variety of platforms, and has been
shown to scale linearly up to 98304 processors, with grids
up to 61443 points. Data is stored at regular intervals and
post-processed, both for quantitative analysis and visu-
alization, the latter being performed using the VAPOR
freeware [29].

Finally, we give in Table I the major parameters of
the simulations used in this paper. Note that we have
restricted our analysis to moderate values of N/f , in
particular we have for all cases N/f � 1/2. This is be-
cause, in the purely rotating case (N ! 0), helicity is ex-
actly conserved and thus as one goes into that parameter
regime, the creation of helicity has to become negligible
with decreasing N at fixed f ; furthermore, many geo-
physical flows are dominated by gravity waves, except at
the largest scales. Note also that in all cases, we assume
that either the Rossby number or the Froude number is

Fr ~ 0.11, Ro ~ 0.39, RB ~ 70                  Fr ~ 0.006, Ro ~ 0.018, RB ~ 0.3

               E(k) ~ k-5/3                                                                            E(k) ~ k-2

         Buoyancy scale LB resolved in both cases
         LOzmidov resolved here only

                                                                                                                              Marino et al., 2013 

2 different compensations of total energy spectra
N/f ~ 3, Re~ 7000

k-5/3 k-5/3

3

100 101 102

10−2

10−1

100

k

E
(k

)/
kp

 

 
p=−5/3
p=−2

100 101 102

10−2

10−1

100

k

E
(k

)/
kp

 

 
p=−5/3
p=−2

FIG. 1: kpEV (k), where EV (k) is the kinetic energy spectrum, averaged for one eddy turn-over time after the peak of enstrophy,
and p is chosen to compensate for either a weak turbulence law (p = 2, dashed line) or a Kolmogorov law (p = 5/3, solid line);
k is the isotropic wavenumber. Runs were computed on grids of 5123 points with initial conditions for k0 2 [1, 2], and Reynolds
numbers Re ⇡ 6000. [CHECK] The dash-dot line indicates the best fit in the inertial range. Left: N/f = 2.99,RR =
ReRo2 ⇡ 2.78,RB = ReFr2 ⇡ 0.31, with Fr ⇡ 0.006, Ro ⇡ 0.018. Right: N/f = 4.0, ReRo2 ⇡ 963, ReFr2 ⇡ 60, with
Fr ⇡ 0.1, Ro ⇡ 0.398. Note the steeper spectrum for moderate N/f and low RB,R, and a scaling close to a Kolmogorov law
for larger N/f and substantially larger RB,R.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation of Fourier space
used in any spectral method; however, the nonlinear term
! ·rb can be neglected in the presence of strong rotation
and stratification [26].

B. The GHOST code and the runs

The numerical simulations have been carried out us-
ing the Geophysical High-Order Suite for Turbulence
(GHOST) code. GHOST is a pseudo-spectral framework
that hosts a variety of partial di↵erential equation (PDE)
solvers optimized for studying turbulence in a [0, 2⇡]3 tri-
periodic box, and with a 2nd–4th-order explicit Runge-
Kutta time stepping scheme. Using a cubic box and an
explicit time stepping method allows in principle, given
the parameters are right, for resolving all scales includ-
ing the Ozmidov scale and beyond, when isotropy re-
covers (see, e.g., [27] for the purely rotating case). A
classical 2/3 de-aliasing rule is used, meaning that for a
given resolution of n

p

points per dimension, the maxi-
mum available wavenumber is k

max

= n
p

/3. The code
uses a hybrid MPI/OpenMP parallelization scheme [28],
and also has a third level of parallelization with the recent

addition of GPU/accelerator support for the Fast Fourier
Transforms (FFTs). Note that the MPI communication
required to complete the multidimensional Fourier trans-
forms is all-to-all. The code uses a “slab” (1D) domain
decomposition among MPI tasks, and the OpenMP pro-
vides a second level of parallelization within each slab
or MPI task. The code can compute in double or sin-
gle precision based on resolution. GHOST performance
has been tested on a variety of platforms, and has been
shown to scale linearly up to 98304 processors, with grids
up to 61443 points. Data is stored at regular intervals and
post-processed, both for quantitative analysis and visu-
alization, the latter being performed using the VAPOR
freeware [29].

Finally, we give in Table I the major parameters of
the simulations used in this paper. Note that we have
restricted our analysis to moderate values of N/f , in
particular we have for all cases N/f � 1/2. This is be-
cause, in the purely rotating case (N ! 0), helicity is ex-
actly conserved and thus as one goes into that parameter
regime, the creation of helicity has to become negligible
with decreasing N at fixed f ; furthermore, many geo-
physical flows are dominated by gravity waves, except at
the largest scales. Note also that in all cases, we assume
that either the Rossby number or the Froude number is

k-2



3

2-eps-converted-to.pdf temperature2_025r05-eps-converted-to.pdf

FIG. 2: Buoyancy b, 5123 grid, Fr = 0.11, Ro = 0.40 (left) and Fr = 0.025, Ro = 0.05 (right); vertical is given by blue arrow;
blue and green strata represent ± variations in b, with sizable fluctuations and structuring, and with more turbulence at higher
Froude number.

suming stationarity, weak nonlinearities and small dissi-
pation at large scales, one can show that helicity produc-
tion in rotating stratified turbulence is proportional to
N/f and to the correlation between buoyancy and verti-
cal shear [17]. One starts from geostrophic balance (i.e.,
with the rhs of eq. (1) set equal to 0); taking its curl leads
to the usual thermal wind equations governing the verti-
cally sheared horizontal motions resulting from buoyancy
gradients. We finally take the dot product of the result-
ing equation with the Coriolis force. Only u? appears in
this expression, and thus we are led to decompose the he-
licity, writing H

V

⌘ H?+H+. We finally take horizontal
averages (denoted h.i?), and arrive at [17]:

hH?i? ⌘ hu? ·r⇥ u?i? =
N

f
hb @w

@z
i? . (4)

The full expression for the perpendicular-averaged helic-
ity includes not only the term on the lhs of eq.(4), but
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. In some
cases, H? � H+, and H? alone essentially determines
the total helicity. For example, measurements of hH?i?,z

found in modeling simulations of hurricanes are seen to be
two orders of magnitude larger than the terms involving
the vertical component of the velocity [22]. Note that the
H? density is proportional to the so-called (cell-relative)
environmental helicity, when integrated over the vertical,
(see e.g. [19]). We thus conclude that the production of
helicity in rotating stratified turbulence is directly pro-
portional to N/f , and results from a balance between
rotation and stratification.

N/f scaling has also been advocated, for example, in
the context of statistical mechanics of non-dissipative
geophysical flows [23]. As N/f (proportional to the
Rossby deformation radius) increases, stratification dom-
inates and the Coriolis force is no longer available to
balance gravity, although in this case another balance
involving dissipation may be written instead, which de-
scribes well the preservation of helicity [24]. Indeed, dis-
sipation is known to play a role in the overall dynamics,
e.g. in the changes of potential vorticity once gravity
waves start to break [25].

B. Parametric study

We have performed nine runs on grids of 5123 points,
and 36 on 2563 grids, up to past the peak of dissipa-
tion, with similar (but not identical) initial conditions
and N/f 2 [1/2, 16.7].
Fig. 1 gives the temporal evolution of helicity (top)

and enstrophy (bottom) for several flows at fixed Fr;
the potential enstrophy Z

P

shows a behavior similar to
Z
V

, with slightly smaller values. Note that the oscilla-
tions are proportional to N and correspond to gravity
waves. Across all runs, the maximum of Z

V

varies from
30 (for weak waves) to ⇠ 2.5, corresponding to the small-
est Froude number. The time to reach this maximum
varies from 6.3 to 13.3 ⌧

NL

. The overall structures in
this type of flows are shown in Fig 2 which displays vol-
ume rendering of buoyancy at late time for a run with
Fr = 0.11, N/f = 4 (left) and Fr = 0.025, N/f = 2

      Selection of 
      data from 45
      runs, 9 on
      5123 grids 
      (filled symbols)

       Criterion:

       ReFr2 < 20 , 
       ReRo2 < 20

      

Shaded box: 
 all runs 

Marino et al., 2013 
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Numerical modeling 

Slide from Julien Baerenzung, 2008 



Modeling of helical flows 
§  Streaks in channel flow are strongly helical near 

the boundary, and in turn dissipation is weaker  

§   The Smagorinsky constant is adjusted to be half 
the value of the isotropic case: helicity decreases 
nonlinearities and thus eddy viscosity 
everywhere,  

   except perhaps 
                         in shear layers 

Problem of
Constant Adjustment

Smagorinsky constant
Isotropic flow

Mixing-layer flow

Channel flow

7

Contours of fluctuating
streamwise velocity

Contours of 
u’w’2 and u’w’3

(Robinson, Kline & Spalart 1988)

Near-Wall Structures

8

Robinson et al. 1988 (after Yokoi, 2012)



Modeling of helical flows 

 à la Chollet-Lesieur (1981),                       EDQNM-based closure, Baerenzung et al. 2008

à  νturbk2vk νHνturbk2vk 

[ν]~U*L    à   νH
turb

  ~ L3/U       (Yokoi, 2010)  



Modeling of helical flows 

 à la Chollet-Lesieur (1981),                       EDQNM-based closure, Baerenzung et al. 2008

à  νturbk2vk νHνturbk2vk 

[ν]~U*L    à   νH
turb

  ~ L3/U       (Yokoi, 2010)  

+ Eddy noise, or back-scatter 
(Rose 1977, Mason & Thomson 1992, Sura 2011, Palmer 2012), 

   depending again on helicity 



Validation of LES in spectral space 
using Direct Numerical Simulations (DNS) 

DNS 

Under-resolved DNS 



Validation of LES 

DNS 

LES PH 
Under-resolved DNS 

Chollet-Lesieur (1984) 

Savings in CPU : 0.5*[1536/96]4 ~ 30,000 (also for memory) 



Validation of LES 

DNS 

LES PH 
Under-resolved DNS 

Chollet-Lesieur (1984) 

Savings in CPU : 0.5*[1536/96]4 ~ 30,000 (also for memory) 

^ Include 
.anisotropy 

^ In the stratified case, include 
kinetic-potential energy exchanges 
(Osborn-Cox, Mellor-Yamada; Zilitinkevich+, Galperin+, …) 
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Rotating  
turbulence 

The Chollet and Lesieur (1981) model introduces an
eddy viscosity of the form

nCL(k, t) 5 Cn1(k, t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(kcut, t)/kcut

q
, (8)

where kcut 5 N/2 2 1 is the cutoff wavenumber. The
quantity n1(k, t) 5 1 1 3.58(k/kcut)

8 is a dimensionless
cusp function; nCL(k, t) replaces nt in Eq. (7) (with
~nt 5 0). The CL model was derived from the EDQNM
equations using the fact that C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(kcut, t)/kcut

p
is the

asymptotic expression of nonlocal transfer from subgrid
to resolved scales and assuming a Kolmogorov spec-
trum extending to infinity. Note that C in our runs was
adjusted with the Kolmogorov constant computed from
the ABC flow resolved by a DNS run using 5123 grid
points; C 5 0.14.

3. Testing of the helical model

We show in Fig. 1 a comparison of the temporal
evolution of the total energy (top), helicity (middle),
and enstrophy hv2i (bottom) for five runs that were done
specifically for comparison and validation purposes of
the LES models against the high-resolution DNS. They
correspond to three 963 LES runs (PH, P, and CL) and
an underresolved DNS with the same Re and Ro as the
15363 DNS; the reduced label stands for 15363 DNS data
filtered to 963 points. In all that follows, the DNS is
shown with a solid line, the LES with helical coefficients
with a thick dotted line and the LES without the helical
contributions with a thinner dashed–dotted line, the
Chollet–Lesieur model is shown with thin (gray) bars,
and finally the underresolved run is displayed with cir-
cles. The energy displays three distinct temporal phases,
all well reproduced by the models except for the un-
derresolved DNS, although to various degrees of accu-
racy. At first, the energy grows and then decays (up to
t 5 10) because of an initial adjustment as the Coriolis
force gets suddenly larger at t 5 0. Even though the
Coriolis force itself does not input energy in the sys-
tem, inertial wave resonances render the flow quasi-
bidimensional and, after t 5 10, the subsequent growth
of the energy is then attributed to the onset and fur-
ther development of an inverse cascade of energy with
a transfer to scales larger than the forcing scale LF. The
transition times between these phases are well repro-
duced by all models, and so is the growth rate in the in-
verse cascade, except for the LES-P model. As should be
expected, the underresolved run stands on its own: the
lack of small-scale dissipation produces an unphysical
growth of energy and its results, clearly unreliable, will
not be commented upon further other than to say that

with insufficient numerical resolution, a model indeed is
needed to mimic the effects of the unresolved scales.

The helical model LES-PH is the one closest to the
DNS, whereas the CL model is too dissipative because it
does not take into account the weaker nonlinearities due
in part to the partial Beltramization of the flow. The
temporal evolution of the total helicity follows the same
pattern, except that all the injected helicity undergoes
a direct cascade as can be verified by computing its flux
(Mininni and Pouquet 2010a), and therefore its total
value as a function of time attains a statistically steady

FIG. 1. Evolution of the (top) total energy, (middle) helicity, and
(bottom) enstrophy for several runs: DNS, 15363 grid points (solid
line); underresolved DNS, 1603 points (circles); and LES-CL
(dotted), LES-PH (dashed), and LES-P (crosses), all on 963 points.
In the bottom panel, the ‘‘DNS Red’’ (for ‘‘reduced’’) corresponds
to the data of the 15363 DNS filtered down to 963 grid points. As
a reference, the energy of the underresolved simulation at t 5 20 is
E 5 1.39, and at t 5 30 it is 1.69.
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Helical model 
is closer to DNS 

Baerenzung et al. 2011 

E(t) 

H(t) 



    Helicity 
 
•  Craya-Herring-Waleffe decomposition into ± circularly polarized waves 

•  Triad interactions (s,s’,s’’) where s,s’,s’’= ±

•  Restrict Navier-Stokes dynamics to one-sign interactions:
    (+++) à inverse cascade of energy in 3D NS (Biferale et al. 2012)
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Figure 4. Probability density function of the point-wise helicity, w(x) · v(x), in the real space
for the decimated Navier-Stokes case with helicity positive definite in Fourier space. Notice the
existence of localized events in real space with negative values.
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Figure 5. Results from a DNS of the dNS equations (2.7) at 5123 collocation points using a fully
dealiased pseudo-spectral method. Left: Spectrum obtained from a non-stationary evolution (no
sink of energy at large scales). Starting with energy at t = 0 only at high wavenumbers (dashed
line). Forcing is random and delta-correlated in time acting on kf ∈ [28 : 35]. Right: two spectra
obtained with forcing acting in two different windows, kf ∈ [28 : 35] and kf ∈ [42 : 50] with
large-scale removal of energy to obtain a stationary statistics at two effective Reynolds numbers.
The energy removal at large scale is obtained adding an inverse laplacian, ∝ k−β

u
+(k) in the

evolution of the k Fourier velocity component

3. Inverse Energy cascade

In Biferale, Musacchio & Toschi (2012) we have explored the dynamics of (2.7) by
forcing at small-scales, focusing on the inverse cascade regime. Doing that we have been
able to find a clean 5/3 inverse energy spectrum (see Fig.5), for both unstationary and
stationary statistics. In the latter case, a suitable sink of energy at small wavenumbers
was introduced in order to prevent an accumulation of fluctuations in the infrared range
(see caption of Fig. (5) for more details on the DNS). Concerning the scaling properties
in the real space, we show in Appendix (A) that it is possible to generalize the exact
relation known as the 4/5-law, Frisch (1995), for the third order correlation function of
the original NS case also for the dNS equations (2.7). In the dNS case, the third order
correlation function that satisfies an exact scaling relation in the limit of infinite extension
of the (inverse) energy cascade is given by:

Cj(r) = −[⟨v+
i (0)Fij(r)⟩ − ⟨v+

l (r)Fij(0)⟩], (3.1)
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3. Inverse Energy cascade

In Biferale, Musacchio & Toschi (2012) we have explored the dynamics of (2.7) by
forcing at small-scales, focusing on the inverse cascade regime. Doing that we have been
able to find a clean 5/3 inverse energy spectrum (see Fig.5), for both unstationary and
stationary statistics. In the latter case, a suitable sink of energy at small wavenumbers
was introduced in order to prevent an accumulation of fluctuations in the infrared range
(see caption of Fig. (5) for more details on the DNS). Concerning the scaling properties
in the real space, we show in Appendix (A) that it is possible to generalize the exact
relation known as the 4/5-law, Frisch (1995), for the third order correlation function of
the original NS case also for the dNS equations (2.7). In the dNS case, the third order
correlation function that satisfies an exact scaling relation in the limit of infinite extension
of the (inverse) energy cascade is given by:

Cj(r) = −[⟨v+
i (0)Fij(r)⟩ − ⟨v+

l (r)Fij(0)⟩], (3.1)

Also observed for 
rotating flows, forced  
with maximal helicity 
 
(Mininni & Pouquet, 2010) 



    Helicity 
 
•  Craya-Herring-Waleffe decomposition into ± circularly polarized waves 

•  Triad interactions (s,s’,s’’) where s,s’,s’’= ±

•  Restrict to one-sign interactions, say (+++) à inverse cascade of energy in 3D NS 
•  Kraichnan (1973): one-signed triad interactions are subdominant



    Helicity 
 
•  Craya-Herring-Waleffe decomposition into ± circularly polarized waves 

•  Triad interactions (s,s’,s’’) where s,s’,s’’= ±

•  Restrict to one-sign interactions, say (+++) à inverse cascade of energy in 3D NS  
•  Kraichnan (1973): one-signed triad interactions are subdominant 

•  Production of point-wise helicity (Matthaeus  et al. 2008)
•  Relative helicity σ(k)=H(k)/[kE(k)] ~ 1/k, but there are strongly helical vortex 

filaments in the dissipation range à local V determined by Biot-Savart (LIA)

•  Regularity of the NS eqs. when restricted to 1-sign interactions (Biferale &Titi, 2013)

``If the dynamics is restricted to the sub-set of modes with a well  
definite sign of helicity (i.e. positive), then the flow admits unique global weak 
solutions that depend continuously on the initial data.’’ 



        VAPOR freeware (John Clyne & Alan Norton, NCAR) What does  
grid resolution 
buy you? 
 
Navier-Stokes grids 

with N3 points 
 
      Re = UL/ν 
 
643        &        2563 
10243      &        20483  
 
 
 
 
 
 
 
 

          Multi-scale interactions & persistence 



Kaneda et al. 2003, 
 Ishihara et al. 2009 

ANRV365-FL41-10 ARI 12 November 2008 14:55

L
10 λ
100 η

Figure 1
Intense vorticity isosurfaces showing the region |ω| > ⟨ω⟩ + 4σω in direct numerical simulation with 40963

grid points and Rλ = 1131, where ω is the vorticity and ⟨ω⟩ and σω are the mean and standard deviation of
|ω|. The size of the display domain is 12267η × 12267η, periodic in the vertical and horizontal directions.
The black bars at the bottom indicate the integral length scale L ≡ π/(2U2)

∫ ∞
0 E(k)/kdk, the Taylor

microscale λ, and the Kolmogorov length scale η ≡ ν3/4/⟨ε⟩1/4, where E(k) is the energy spectrum
normalized so that

∫ ∞
0 E(k)dk = E. The field consists of clouds of a large number of small eddies and void

regions. Intermittency is observed from large to small scales.

1991; Vincent & Meneguzzi 1991; Yamamoto & Hosokawa 1988). Figure 1 shows regions of
intense vorticity in DNS-ES at the Taylor-microscale Reynolds number Rλ ≡ Uλ/ν = 1131,
where λ is the Taylor microscale defined by λ ≡ (15νU2/⟨ε⟩)1/2, ν is the kinematic viscosity, ⟨ε⟩ is
the mean rate of the kinetic energy dissipation per unit mass, and 3U2/2 = E is the kinetic energy
per unit mass of the fluctuating velocity.
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Turbulence at 40963 resolution, Rλ ~ 1200 
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Flow Turbulence Combust (2013) 91:895–929 897

(a)

(b) (c)

Fig. 1 a Intense vorticity isosurfaces showing the region |ω| > ⟨ω⟩ + 4σω in DNS of turbulence with
40963 grid points and Rλ = 1131, where ω is the vorticity and ⟨ω⟩ and σω are the mean and standard
deviation of |ω|. The size of the display domain is (5.76L)2 = (12267η)2, periodic in the vertical and
horizontal directions. (From IGK) b A closer view of the inner square region of (a); the size of the
display domain is (0.72L)2 = (1533η)2. (From [10]) c High vorticity regions where |ω| > ⟨ω⟩ + 4σω in
DNS of turbulence with 2563 grid points and Rλ = 94. The size of the display domain is (5.71L)2 =
(367η)2. (From [8])
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Fig. 5 Typical enstrophy and velocity profiles along lines (y/!, z/!) = (77, 320) and (77, 370) across
the layer in sub-domain S = {4, 6, 5}; a normalized enstrophy, b longitudinal x component u/uo and
c transverse z component w/uo. The x-coordinates of xL and xR for each value of z are indicated by
the arrows (see Section 2.3 for the definition of xL and xR). Note that along the line of z/! = 370,
the very big jump δw/uo(≈ 3.4) in the w/uo values due to existence of a strong vorticity (≈ 35ωrms)
occurs over small distances of order 10η(≈ 3!)

Fig. 6a). The boundaries, xR(z) and xL(z), of the layer-like region are not so clear
outside the range. Therefore a possible estimate of the size of the coherent layer-
like region is given by the difference 313! = 464! − 151! ≈ 0.42L. The mean of
the width xR(z) − xL(z) over the z range is approximately 70! ≈ 3.2λ, which gives
an estimate of the thickness of the layer. In the following analysis, we use the z
range given by 200! ≤ z ≤ 450!, because the boundaries, xR(z) and xL(z), of the
layer-like region inside this range are clear and roughly parallel to the z axis, and
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What is different in Rotating &/or Stratified Turbulence? 
(RST) 

 
•  Bi-directional constant-flux energy cascade (Marino’s talk) 
•  Anisotropy 

•  IA- Non-conservation of helicity (velocity-vorticity correlations) 

•  IB- Intermittency of the vertical velocity & temperature fields  [f=0] 

 
•  IIA- Bolgiano-Obukhov scaling and the role of potential energy 

•  IIB- Anomalous mixing, dissipation & the role of potential energy 
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤

 

−0.4

−0.2

0

0.2

0.4

 

H
T

 

 

N = 6.283    Fr  =  0.025
N = 1.256    Fr  =  0.12
N = 0.783    Fr  =  0.22

 

−0.4

−0.2

0

0.2

0.4

 

H
T

 

 

Fr = 0.012 N/f ~ 1.5    Ro  =  0.036
N/f ~ 3.0    Ro  =  0.073
N/f ~ 16.7  Ro  =  0.41

0 2 4 6 8 10 12
 
1

1.5
2

2.5
3

3.5
 

Fr = 0.012

N/f

eddy turnover time

En
st

ro
ph

y

 

 

1.0 1.5 2.0 2.5 3.0 4.0 8.0 16.7

FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν ̸= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

Homogeneous and isotropic case 
Incompressible Navier-Stokes equations

+ F

  Re = U0L0/ν   >> 1           Reynolds number
 

Tdissipation 
Tnonlinear 

0 

e.g., chemical tracer

Non-linear term      à convolution in Fourier space 
                               à coupling between scales 
 
                                          Modeling through both eddy viscosity & eddy noise 
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤

 

−0.4

−0.2

0

0.2

0.4

 

H
T

 

 

N = 6.283    Fr  =  0.025
N = 1.256    Fr  =  0.12
N = 0.783    Fr  =  0.22

 

−0.4

−0.2

0

0.2

0.4

 

H
T

 

 

Fr = 0.012 N/f ~ 1.5    Ro  =  0.036
N/f ~ 3.0    Ro  =  0.073
N/f ~ 16.7  Ro  =  0.41

0 2 4 6 8 10 12
 
1

1.5
2

2.5
3

3.5
 

Fr = 0.012

N/f

eddy turnover time

En
st

ro
ph

y

 

 

1.0 1.5 2.0 2.5 3.0 4.0 8.0 16.7

FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν ̸= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2
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is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤
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FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν ̸= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-
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III. SOLUTION ANALYSIS

The experimental path for the primary solution is demon-
strated in Fig. 1 as a function of the nondimensional time,
!!t/T , normalized by the turnover time T. The correspond-
ing histories of the energy components are shown in Fig. 3.
As R" increases, we see a sequence of regime transitions.
At moderate R" , less than #400, the pancake motions

are stable $i.e., the local Ri is everywhere large%, and the
vortical energy dominates all other energy components at all
wave numbers $Fig. 2%. The first transition occurs for R"
&400, and it is evident in the significant growth of energy in
the shear component, Es $Fig. 3%. The next transition, for
R"&500, is evident in the intermittent occurrence of regions
with small local values of Ri below the Kelvin-Helmholtz
critical inviscid stability value of 0.25 $Fig. 4%. A further
transition, for R"&700, is evident in local violations of the
inviscid gravitational stability critical value of Ri!0.0 $Fig.
4%. Finally, we see yet another transition for R"&900, evi-
dent in the growth of vertical kinetic energy Ez $Fig. 3%.
Interestingly, throughout all these transitions, the principal
measures of the internal-wave energy, Ew and Ep , show
little change relative to the vortical-mode energy Ev . Since

Ev itself remains reasonably constant with time and its hori-
zontal spectrum 'v(kh) maintains a similar shape and mag-
nitude at low wave numbers, we conclude that pancake mo-
tions are indeed persistent throughout the R" range we have
been able to explore, even though the structure and intensity
of the flow changes substantially at high wave numbers, in
the horizontally uniform vertical shear and in the vertical
velocity.

A. Growth of the vertical shear component

In Fig. 3, the vortical energy is nearly steady over the
entire simulation. The wave energy is more variable, but on
average it is steady as R" increases. However, the shear en-
ergy is a growing function of time. It represents an inverse
horizontal cascade of kinetic energy into kh!0. The inten-
sity of the inverse cascade of shear energy is probably a
function of the location of the energy peak in the horizontal
direction; in the present case, the forcing is imposed at kh
!1, and a substantial part of the energy is transformed into
pure vertical shear. To assess the degree of equilibration for
this inverse cascade, two additional simulations are made.
Both start from the primary simulation and thereafter hold
R" constant for several hundred turnover times, but their
starting (! ,R") values differ. Figure 5 shows that Es does
indeed equilibrate over a period of less than 100 turnover
times at a level that increases systematically with R" .
This growth of shear kinetic energy has been seen previ-

ously when the Froude number is below a critical value (22).
For the alternative Froude number defined by Frs
!(*kv

o2)1/3/N , our simulations have a value of approxi-
mately 0.025, more than an order of magnitude below the
identified critical value of 0.42. In this previous study, the
shear kinetic energy did not equilibrate even after more than
1000 turnover times. This may be due to its reliance on hy-
perdiffusion in all directions, which exerts only a weak
damping on the shear component.

B. Onset of overturning motions

Overturning occurs when an unstable shear layer rolls up,
pulling high-density fluid above low-density fluid. This in-

FIG. 2. Energy spectra with respect to horizontal and vertical
wave numbers averaged over more than 100 times at R"!200 for
the primary simulation.

FIG. 3. History of the energy components in the primary simu-
lation.

FIG. 4. Time evolution of R" $solid line% and the volume frac-
tion of the domain with local Ri"0.25 $filled gray area% and with
local Ri"0 $filled black area%. There was no occurrence of Ri
"0.25 for 0"!"300.

LAVAL, McWILLIAMS, AND DUBRULLE PHYSICAL REVIEW E 68, 036308 $2003%

036308-4

Laval et al. 2003 
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Fast growth of large scales in rotating stratified turbulence
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Fig. 4: (Colour on-line) Isotropic kinetic-energy spectra (top)
and normalized total energy fluxes (bottom) for three runs on
grids of 10243 points, with Re≈ 103, and Fr and Ro as indicated
by the labels. A −5/3 slope is given as a reference. The run
with pure stratification has a flat spectrum for k < kF . In the
inset are the kinetic-energy spectra: isotropic as a function of k,
parallel as a function of k∥, and perpendicular as a function of
k⊥) at a later time in the run with N/f = 2. Note the range
of wave numbers with negative flux for k < kF for some of the
runs, and that the run with pure stratification has flux close
to zero in the same range.

this can be easily verified as the dispersion relation of
inertial-gravity waves in (4) reduces to ωk =±N ; then, the
resonant condition ωk+ωp+ωq = 0 can never be fulfilled.
The generalization of this argument to the range 1/2!
N/f ! 2 is straightforward and can be found in [27]. The
absence of resonant interactions in this range may also
help coupling 2D and 3D modes (which, for the purely
rotating case, may be only weakly coupled or uncoupled,
see [34]), and can explain the enhanced transfer from 3D
to 2D modes observed in fig. 3. In that range, where
resonances are non-existent, only non-linear interactions
between eddies can operate, and they efficiently produce
an inverse cascade, unimpeded by waves.
Finally, in fig. 4, we show the isotropic kinetic-energy

spectra as well as the total energy flux at t/τNL = 26 in
several runs with 10243 grid points, kF ≈ 40, and N/f =
2, 4, and ∞ (no rotation). We also show a detail of
the isotropic, perpendicular, and parallel kinetic-energy

spectra for the run withN/f = 2 in the inset. The run with
N/f = 2 has larger scales (evidenced by the peak of the
energy spectrum at a smaller k), and in the case with pure
stratification the spectrum at large scales has flattened
out, a feature already observed by several authors and
attributed to the layering of the flow [20], as also observed
in the visualization (see fig. 1). Such a flat spectrum has
been obtained for purely stratified flows using, as a model
for the layered structure, a superposition of delta functions
in the vertical [20].
In the two runs with rotation, the inverse cascade

is present and it follows a clear −5/3 law, as would
be the case for a two-dimensional fluid [6]. However, it
cannot be discarded that this slope may be dependent on
the properties of the forcing, as for the purely rotating
case it has been observed that the energy scaling in the
inverse-cascade range depends, e.g., on the anisotropy of
the forcing [9] (note that in the present study we use
isotropic forcing). At late time, in the runs with moderate
N/f , there is a clear equipartition between the k⊥ and
k∥ dependencies, with all spectra displaying a ∼ k

−5/3

scaling.
The spectra at small scale (k > kF ) are steep, but insuf-

ficient resolution precludes us from making any assessment
as to what is the scaling law at these wave numbers. We
simply note that in the purely stratified case, there is more
energy at small scale than when rotation is present: at a
fixed energy input rate, if a measurable amount of energy
goes to large scales, less can be transferred to small scales.
The fluxes confirm what is observed in the energy

spectra. Again, the lack of adequate scale separation (i.e.,
the separation between kF and kmax = np/3) at small
scale leads to positive by not quite constant energy fluxes.
However, there is a measurable transfer to small scales
(represented by the positive flux), the lesser the stronger
the rotation. At large scales (k < kF ), the energy flux
is negative and tending toward being constant, specially
in the run with N/f = 2 . This range with negative
flux is shorter in the run with N/f = 4 (and smaller in
amplitude), while the purely stratified flow has only a
very short range of wave numbers with almost negligible
negative flux. As is apparent from the results shown above,
this small flux is not enough to give any measurable growth
in the overall scale of structures or in kinetic energy.
Similar results are obtained for the spectra and fluxes in
all the runs with grids of 5123 points and kF ≈ 22.

Conclusion. – We have shown, using 5123 and 10243

simulations of the incompressible Boussinesq equations,
that the inverse energy cascade in rotating and stably
stratified turbulence is non-monotonic in N/f , and that
the combination of rotation with weak stratification
(for 1/2!N/f ! 2) results in a faster growth of large
scales than in purely rotating flows. This results from an
enhanced coupling between 3D and 2D modes (associated
with a suppression of resonant interactions), which allows
for faster transfer of energy towards 2D motions.
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FIG. 3: (Color online) Visualization of the buoyancy b in runs with 5123 grids, for Re ⇡ 8000, Fr = 0.11, and Ro = 0.40 (left)
and for the same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and
light (green) strata represent respectively positive and negative variations in b around its mean, with sizable fluctuations and
structuring, and with more turbulent eddies at higher Froude number.

TABLE I: List of runs analyzed in this paper with some characteristics parameters: run number nR, resolution np, Reynolds Re,
Froude Fr and Rossby Ro numbers; ratio EP /EV , ratio

⌦
w2

↵
/
⌦
u2
?
↵
, enstrophy ZV , ratio ZP /ZV where ZP is the potential

enstrophy (see get), H? at peak of enstrophy Tp (or we could put the maximum time of the run), [... skewness Sk?,
Flatness?, Kolmogorov (dissipative0 scale ⌘? ...] A star in the “in” column indicates points that are in the scatter plot
with N/f < 3, and two stars for those in the plot with RB < 20 or RR < 20. [OR? AND?]

nR np Re Fr Ro EP /EV

⌦
w2

↵
/
⌦
u2
?
↵

ZV ZP /ZV H? Tp in Remarks
1 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157 – * –
2 256 256 – 2.07 5.59 4.60 12857 1.22 –
3 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157
4 256 256 – 2.07 5.59 4.60 12857 1.22 –
5 256 2048 0.03 2.06 5.71 4.53 12920 1.26 157
6 256 256 – 2.07 5.59 4.60 12857 1.22 –

We thus conclude that the production of helicity in
strongly rotating stratified turbulence is directly propor-
tional to N/f , and results from a balance between ro-
tation and stratification. In the limit of f ! 1 (no
stratification), helicity is exactly conserved; in the limit
of N ! 1, helicity can again be created by the flow, but
in the balance, dissipation also plays a role [32]. In other
words, as N/f (proportional to the Rossby deformation
radius) increases, stratification dominates and the Corio-
lis force is no longer available to balance gravity, although
in this case another balance involving dissipation may be
written instead, which describes well the preservation of
helicity [32]. Indeed, dissipation is known to play a role
in the overall dynamics, e.g., in the changes of potential
vorticity once gravity waves start to break [33]. Finally, it
is interesting that N/f scaling has also been advocated,
for example, in the context of statistical mechanics of

non-dissipative geophysical flows [34].

B. Beyond geostrophy

Geostrophic balance is just the beginning of the story,
the assumptions (of stationarity, zero non-linearities and
no dissipation) being of course unrealistic for geophysical
and astrophysical flows. For example, it is known that in
three-dimensional turbulence without waves, the rate of
energy dissipation can be evaluated phenomenologically
as ✏

V

⇠ U3
0 /L0, no matter how high the Reynolds num-

ber; this has been demonstrated using highly-resolved di-
rect numerical simulations [35] up to grids of 40963 points
(for the case of a coupling to a magnetic field, in which
case Alfvén waves are present and interact with the flow,
see [36] in two dimensions (2D), and [37] in 3D).

Fr ~ 0.11, Ro ~ 0.4, 
RB ~ 100, N/f ~ 3.6

   Buoyancy                   Re ~ 8000, 5123 grids,                    RB = ReFr2 

         Marino et al., 2013 

Fr ~ 0.025, Ro ~ 0.05, 
RB ~ 5, N/f = 2



Asymptotic Expansions & Classical Results

Recovered classical single-scale models:
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t
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, x,
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) Linear small scale internal gravity waves

U(i) = U(i)(t,x, z) Anelastic & pseudo-incompressible models

U(i) = U(i)(⇥t, ⇥2x, z) Linear large scale internal gravity waves

U(i) = U(i)(⇥2t, ⇥2x, z) Mid-latitude Quasi-Geostrophic Flow

U(i) = U(i)(⇥2t, ⇥2x, z) Equatorial Weak Temperature Gradients

U(i) = U(i)(⇥2t, ⇥�1 ⇤(⇥2x), z) Semi-geostrophic flow

U(i) = U(i)(⇥3/2t, ⇥5/2x, ⇥5/2y, z) Kelvin, Yanai, Rossby, and gravity Waves

Klein, 2010
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Figure 1
Scaling regimes and model equations for atmospheric flows. The weak-temperature-gradient (WTG) and
hydrostatic primitive equation (HPE) models cover a wide range of spatial scales assuming the associated
advective and acoustic timescales, respectively. The anelastic and pseudoincompressible models for realistic
flow regimes cover multiple spatiotemporal scales (Section 4.3). For similar graphs for near-equatorial flows,
see Majda 2007b, Majda & Klein 2003. PG, planetary geostrophic; QG, quasi-geostrophic.

Importantly, in writing Equation 9, we have merely adopted a transformation of variables, but
no approximations. Together with the definitions in Equations 7 and 8, they are equivalent to the
original version of the compressible flow equations in Equation 5. However, below we employ
judicious choices for the scaling exponents, α[·], and assume solutions that adhere to the implied
scalings in that v||, w̃, π̃ , θ̃ = O(1) and that the partial derivative operators ∂τ , ∇ξ, and ∂z yield O(1)
results when applied to these variables as ε → 0. This allows us to efficiently carve out the essence of
various limit regimes for atmospheric flows without having to go through the details of the asymp-
totic expansions. Figure 1 summarizes the mid-latitude flow regimes discussed in this way below.

The classical Strouhal, Mach, Froude, and Rossby numbers are now related to ε and the
spatiotemporal scaling exponents via

St−1 = L
UT

= εαt

εαx
, Fr2 = γ Ma2 = γU2

C2 = ε3, Ro = εαx−1, (10)

where T, L, U, and C are the characteristic timescale and length scale, horizontal flow velocity,
and sound speed in the rescaled variables from Equations 8 and 9, respectively.

1.4. Remarks
We restrict the discussion here to length scales larger or equal to the density scale height. Of
course, on length scales and timescales comparable with those of typical engineering applications,
turbulence will induce a continuous range of scales. Analyses that exclusively rely on the assumption
of scale separations are of limited value in studying such flows. The interested reader may want
to consult Oberlack (2006) for theoretical foundations and references.

254 Klein

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
0.

42
:2

49
-2

74
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

by
 N

C
A

R
 o

n 
07

/2
0/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.



248 K. Julien, E. Knobloch, R. Milliff and J. Werne

Polar Extratropics Tropics
O (Ro)  – O (Ro)!0

~ 1 ~ 1

>> 1 >> 1

<< 1 << 1

~Ro–1 ~Ro–1

Az Ay
UH-QGE

UH-QGEUH-QGE

UH-QGE

UNH-QGE I,II

TQH-QGE

TH-QGE

TNH-QGE I,II TNH-QGE III

TNH-QGE III

TNH-QGE III

SNH-QGE III

SNH-QGE III

SNH-QGE III

2
π

Figure 4. Classification of the reduced U–Upright, T–Tilted, S–Sideways QG models (see
table 4) as a function of the colatitude ϑ0, and the spatial aspect ratios Az or Ay .
H–hydrostatic, QH–quasi-hydrostatic, NH–non-hydrostatic. With the exception of TNH-QGE
III Az distinguishes between all models in the polar and extratropical regions where Ay =O(1),
while Ay distinguishes between the tropical QGE and TNH-QGE III for which Az = O(1). The
symbol ←→ indicates a continuous transition between different models while indicates
extension of a model to the polar or equatorial regions.

horizontal dominate material advection, D0
t = ∂t + u0 · ∇⊥, as expected of geostrophy.

For the non-orthogonal coordinate representation u0 · ∇⊥ = ũ0∂x̃ + ṽ0∂ỹ for X = Z and
u0 · ∇⊥ = ũ0∂x̃ + w̃0∂z̃ for X = Y.

In the remainder of this section we summarize the essential attributes of each
regime, following the details presented in figure 4, and tables 3 and 4.

(a) Small aspect ratio regime

This regime occurs when Az = o(1), Ay ∼ 1 (see figure 2a). The dominant
contribution from the Coriolis force comes from the local vertical component 2Ωη3.
This assumption leads to an upright geostrophic balance and a description of the slow
dynamics in the extratropical regions in terms of UH-QGE (table 4, equation (3.1)).
The resulting QGE (schematically illustrated in figure 4) are derived in § 4 for the
parameter values given in table 3, and correspond to the classical equations of Charney
(1948, 1971; see also Pedlosky 1979; Salmon 1998) that are valid for large-scale, stably

JFM 2006
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   Dimensionless parameters -  Universality?     

§  Re, Ro, Fr and Pr (=1) 
§  Scale of initial field and/or of forcing 
§  Isotropy or not of initial conditions and/or forcing 
§  Presence or not of temperature fluctuations,            

and if so, balanced or not 
§  Role of: 

–  inviscid invariants such as PotVort, linear or not 
–  resolving characteristic scales for a given parameter set 
–  local/nonlocal scale interactions 
–  large-scale friction 
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            Federrath, 2013 
                 Flash code 

6 Federrath

Figure 2. Slices through the three-dimensional gas density (top) and vorticity (bottom) for fully-developed, highly compressible, su-

personic turbulence, generated by solenoidal driving (left) and compressive driving (right), and a grid resolution of 4096

3

cells. Large

regions of very low density and very low vorticity in the compressive driving case indicate that the inertial range is shifted to slightly

smaller scales for compressive driving compared to the more space-filling case of solenoidal driving. The fractal dimension of the density

is D

f

⇡ 2.6 and D

f

⇡ 2.3 for solenoidal and compressive driving, respectively (Federrath et al. 2009). (Movies available in the online

version).

and in nearby galaxies (Donovan Meyer et al. 2013). Dense
structures with high levels of vorticity are confined to rela-
tively small patches in the case of purely compressive driv-
ing. Some large-scale regions with sizes of about ` & L/10
or k . 10, remain almost empty and exhibit very low gas
density and vorticity. However, structures on smaller scales
(k & 10) do show high levels of vorticity throughout. This
indicates that the inertial range in M ⇡ 17 turbulence with
compressive driving starts on somewhat smaller scales than
with purely solenoidal driving (Kritsuk et al. 2010), which
is di↵erent from the case of mildly supersonic turbulence
with M ⇡ 5–6 (Kritsuk et al. 2007; Federrath et al. 2010),

where the inertial-range extent is not significantly di↵erent
between solenoidal and compressive driving.

4.2 Density PDFs

The strong density variations in supersonic turbulence such
as seen in Figures 2 and 3 are clearly the most promi-
nent di↵erence to incompressible turbulence. To quantify
these, we briefly analyse the probability distribution func-
tion (PDF) of the gas density. The volume-weighted density
PDFs of the logarithmic density s ⌘ ln(⇢/⇢

0

) are shown in
Figure 4. Obviously, compressive driving produces a signifi-

c� 0000 RAS, MNRAS 000, 000–000

Density slice, supersonic-Mach ~17, 40963 grid 

Different (solenoidal/compressible) driving 
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Properties of the equations of motion

6 Meteorological Training Course Lecture Series

© ECMWF, 2002

Figure 6. Anemograph trace for Bellambi Point on 26 December 1996 (wind speed in knots), taken from Batt and
Leslie (1998), Fig. 7.

We can see from Figure 1 and Figure 2 that there is coherent large scale organisation in the flow, such as the cloud
band with waves extending SW to NE across the Atlantic. There is also a region of regular cellular convection south
of Iceland, and, in Figure 2, a regular gravity wave-train extending across Ireland and Scotland. It is well-known
that many different types of organisation are possible, depending on the atmospheric state and the space and time-
scales examined.

Figure  7. Daily sea-level pressure maps for December 1999, from Weather Log (Royal Meteorological Society).

In operational medium-range forecasting, the prime job is to predict the coherent motions associated with weather

Intermittency which manifests itself as long tails in PdF 
Problem for e.g. wind farms

Strong jumps
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Fluid turbulence at 40963 resolution, Rλ ~ 1200
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a b
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Figure 4
Snapshot of the intensity distributions of (a) the energy-dissipation rate ε̃ = ε/(2ν) and (b) the enstrophy # = ω2/2 on a cross section in
DNS-ES at Rλ = 675 in arbitrary units.

distribution functions (PDFs), as in Figure 5. As expected, the PDF is far from Gaussian. It is
also slightly skewed, and the skirts of the PDF increase with Re.

To understand how the PDF depends on Re, Ishihara et al. (2007) analyzed the dependence
on Rλ of the skewness S of the longitudinal velocity derivative and found that −S tends to-
ward a constant (∼0.5) with increasing Rλ up to Rλ ! 200, whereas it increases algebraically
(0.34 R0.11

λ ) with Rλ when Rλ > 200, in agreement with the experimental data compiled by Sreeni-
vasan & Antonia (1997). This implies that the PDF of the gradient normalized by its standard
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r for various separation distances
rn = 2n(x, n = 0, 1, 2, . . . 9, where (x = 2π/1024. The inertial range separation corresponds to n = 5 and 6, which is rn =
98η and 196η, respectively. The orange curve is Gaussian, the green ones comprise the energy-containing range, the blue curve is the
inertial range, and the red curve is the dissipation range at Rλ = 460. Panel a redrawn from Ishihara et al. 2007, and panel b is from
Gotoh et al. 2002.
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2

over time of the di↵erent structures, similarly to the case
of shear layers. These long-time correlations can lead to
so-called 1/f noise, itself known to have PDFs with fat
wings in a variety of problems (see, e.g., [19, 20]).

However, resolving properly the PBL and its cloud
content, let alone the microphysical processes that play
an important role in its dynamics, is far out of reach of
present-day high-performance computing. One can take
the opposite approach, namely to simplify the problem
to its bare bone. This is what we propose in this Letter,
on the one hand deriving a simple model that can show
a stronger intermittency for stronger gravity waves in
a plage of parameters, and on the other hand perform-
ing high resolution direct numerical simulations (DNS)
of the Boussinesq equations, as a function of the dimen-
sionless parameters of the problem, namely the Reynolds
and Froude numbers, Re = U0L0/⌫ and Fr = U0/[L0N ],
with U0, L0 characteristic velocity and length scale, N

the Brunt-Väisälä frequency and ⌫ the kinematic viscos-
ity. This study also aims at clarifying the interactions of
linear waves and nonlinearities (here, advection) in form-
ing extreme events that can be stronger than in the fully
turbulent regime, given proper coupling.

The model One di�culty in modeling turbulent flows
lies in estimating the pressure term which, in an incom-
pressible fluid, is highly non-local. One has to consider
the complex coupling between the vorticity and shear
(the anti-symmetric and symmetric parts of the velocity
gradient tensor). A simple model of such behavior was
developed in [21] that led to the possible existence of a
singularity in the inviscid case when isotropizing the pres-
sure Hessian. This model, sometimes called restricted
Euler dynamics, has proven very useful in analyzing the
development and the statistical and geometrical (align-
ment) properties of intermittent structures in a variety of
turbulent flows; a thorough recent review of the di↵erent
models emanating from such ideas is found in [22].

Since the property we want to stress in this Letter is
that of intermittency, one can focus on the simplest of
such models, taking into account only the longitudinal
component of the velocity structure function,

�u

x

(`) = hu
x

(x + `) � u

x

(x)i; this leads to

d

t

�u

x

= ��u

2
x

/` . The equation immediately shows
the enhancement of �u

x

, as observed for example for the
Navier-Stokes equations for which the skewness (normal-
ized third-order moment) of velocity gradients is negative
and of order unity.

When coupling this evolution to that of transverse
modes, the run-away evolution of �u

x

is damped but
strong gradients still form; similarly when including a
passive scalar [23]. Adding now the buoyancy term
present in the Boussinesq equations for an incompress-
ible stably stratified flow (see e.g. [24–26]) to the passive
scalar model in [23], and restricting the evolution to two
modes, both at a scale ` (the temperature fluctuations ✓

FIG. 1. Time evolution of vertical velocity gradients �w in
the model of eq. (1) for ` = 0.3, and N=0 (no stratification,
solid line), 2, 4, 8, 12 and 16 (respectively dot, dash, dash-dot,
dash-double-dot and finally long dash lines). Note the faster
evolution towards negative gradients at intermediate values
of N, before oscillatory behavior takes over for large N.

and the vertical velocity component w), we obtain:

d

t

�w = ��w

2
/` � N�✓ , (1)

d

t

�✓ = ��w�✓/` + N�w ,

taking again longitudinal (i.e., vertical) di↵erences in the
structure functions. In the purely rotating case, a model
similar to that in eq. (1) was developed in [27] where it is
concluded that there is a weakening of negative skewness
in the presence of rotation. Note that a wavelet analysis
of turbulence with shear concludes as well to weakening
of strong gradients in the presence of rotation [28].

System (1) has only one (trivial) fixed point (�w =
0, �✓ = 0). For weak stratification, one recovers the
Euler behavior of strong negative gradients, and in the
opposite case (N >> 1), system (1) reduces to that
of two harmonic oscillators of frequency N that are in
phase. However, the two terms (non-linear and oscilla-
tory) become comparable when �w ⇠ �✓ ⇠ N` in a range
of scales. Note that this corresponds to the balanced
spectrum E(k

z

) ⇠ N

2
k

�3
z

which has been predicted and
observed in many instances in the atmosphere and the
oceans (see e.g. [29] and references therein). This can
also be expressed as a function of a length scale which
varies as 1/N and, as such, is akin to the so-called buoy-
ancy length scale L

B

= U0/N (this scaling for both the
kinetic and potential energy does not preclude, however,
a lack of equipartition between the two fields).

Stronger vertical gradients are observed in Fig. 1 from
a numerical integration of eq. (1), with ` = 0.3 and N

varying between 0 and 16; for U0 = 1, this corresponds
to Froude numbers down to a value of 0.18. [TRUE?
Initial conditions are u(t = 0) = u0 = 1, ✓(t = 0) =
✓0 = 1.] [Pablo: would it be useful to try 2 Froude
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distribution functions (PDFs), as in Figure 5. As expected, the PDF is far from Gaussian. It is
also slightly skewed, and the skirts of the PDF increase with Re.

To understand how the PDF depends on Re, Ishihara et al. (2007) analyzed the dependence
on Rλ of the skewness S of the longitudinal velocity derivative and found that −S tends to-
ward a constant (∼0.5) with increasing Rλ up to Rλ ! 200, whereas it increases algebraically
(0.34 R0.11

λ ) with Rλ when Rλ > 200, in agreement with the experimental data compiled by Sreeni-
vasan & Antonia (1997). This implies that the PDF of the gradient normalized by its standard
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Velocity differences δu(l) 
on distances l ~ 2n Δx 
 
 
 
Gaussian at large scale, and with 
heavy tails at small scales 

2

over time of the di↵erent structures, similarly to the case
of shear layers. These long-time correlations can lead to
so-called 1/f noise, itself known to have PDFs with fat
wings in a variety of problems (see, e.g., [19, 20]).

However, resolving properly the PBL and its cloud
content, let alone the microphysical processes that play
an important role in its dynamics, is far out of reach of
present-day high-performance computing. One can take
the opposite approach, namely to simplify the problem
to its bare bone. This is what we propose in this Letter,
on the one hand deriving a simple model that can show
a stronger intermittency for stronger gravity waves in
a plage of parameters, and on the other hand perform-
ing high resolution direct numerical simulations (DNS)
of the Boussinesq equations, as a function of the dimen-
sionless parameters of the problem, namely the Reynolds
and Froude numbers, Re = U0L0/⌫ and Fr = U0/[L0N ],
with U0, L0 characteristic velocity and length scale, N

the Brunt-Väisälä frequency and ⌫ the kinematic viscos-
ity. This study also aims at clarifying the interactions of
linear waves and nonlinearities (here, advection) in form-
ing extreme events that can be stronger than in the fully
turbulent regime, given proper coupling.

The model One di�culty in modeling turbulent flows
lies in estimating the pressure term which, in an incom-
pressible fluid, is highly non-local. One has to consider
the complex coupling between the vorticity and shear
(the anti-symmetric and symmetric parts of the velocity
gradient tensor). A simple model of such behavior was
developed in [21] that led to the possible existence of a
singularity in the inviscid case when isotropizing the pres-
sure Hessian. This model, sometimes called restricted
Euler dynamics, has proven very useful in analyzing the
development and the statistical and geometrical (align-
ment) properties of intermittent structures in a variety of
turbulent flows; a thorough recent review of the di↵erent
models emanating from such ideas is found in [22].

Since the property we want to stress in this Letter is
that of intermittency, one can focus on the simplest of
such models, taking into account only the longitudinal
component of the velocity structure function,

�u

x

(`) = hu
x

(x + `) � u

x

(x)i; this leads to

d

t

�u

x

= ��u

2
x

/` . The equation immediately shows
the enhancement of �u

x

, as observed for example for the
Navier-Stokes equations for which the skewness (normal-
ized third-order moment) of velocity gradients is negative
and of order unity.

When coupling this evolution to that of transverse
modes, the run-away evolution of �u

x

is damped but
strong gradients still form; similarly when including a
passive scalar [23]. Adding now the buoyancy term
present in the Boussinesq equations for an incompress-
ible stably stratified flow (see e.g. [24–26]) to the passive
scalar model in [23], and restricting the evolution to two
modes, both at a scale ` (the temperature fluctuations ✓

FIG. 1. Time evolution of vertical velocity gradients �w in
the model of eq. (1) for ` = 0.3, and N=0 (no stratification,
solid line), 2, 4, 8, 12 and 16 (respectively dot, dash, dash-dot,
dash-double-dot and finally long dash lines). Note the faster
evolution towards negative gradients at intermediate values
of N, before oscillatory behavior takes over for large N.

and the vertical velocity component w), we obtain:

d

t

�w = ��w

2
/` � N�✓ , (1)

d

t

�✓ = ��w�✓/` + N�w ,

taking again longitudinal (i.e., vertical) di↵erences in the
structure functions. In the purely rotating case, a model
similar to that in eq. (1) was developed in [27] where it is
concluded that there is a weakening of negative skewness
in the presence of rotation. Note that a wavelet analysis
of turbulence with shear concludes as well to weakening
of strong gradients in the presence of rotation [28].

System (1) has only one (trivial) fixed point (�w =
0, �✓ = 0). For weak stratification, one recovers the
Euler behavior of strong negative gradients, and in the
opposite case (N >> 1), system (1) reduces to that
of two harmonic oscillators of frequency N that are in
phase. However, the two terms (non-linear and oscilla-
tory) become comparable when �w ⇠ �✓ ⇠ N` in a range
of scales. Note that this corresponds to the balanced
spectrum E(k

z

) ⇠ N

2
k

�3
z

which has been predicted and
observed in many instances in the atmosphere and the
oceans (see e.g. [29] and references therein). This can
also be expressed as a function of a length scale which
varies as 1/N and, as such, is akin to the so-called buoy-
ancy length scale L

B

= U0/N (this scaling for both the
kinetic and potential energy does not preclude, however,
a lack of equipartition between the two fields).

Stronger vertical gradients are observed in Fig. 1 from
a numerical integration of eq. (1), with ` = 0.3 and N

varying between 0 and 16; for U0 = 1, this corresponds
to Froude numbers down to a value of 0.18. [TRUE?
Initial conditions are u(t = 0) = u0 = 1, ✓(t = 0) =
✓0 = 1.] [Pablo: would it be useful to try 2 Froude

Velocities are Gaussian 
Gradients are intermittent 
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gravity forces at scales large enough that nonlinearities
can be neglected; this balance is crucial for weather fore-
casting and simulations of climate change. However, the
consequences of geostrophic balance, as far as helical mo-
tions are concerned, has been mostly ignored except for
the pioneering work of Hide [17]. Helicity was hypothe-
sized to be important in the atmosphere in the dynamics
and persistence of rotating convective storms [18] on the
basis of the weakening of non-linear interactions in the
so-called Lamb vortex u×ω. Helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear and it can be
used as an indicator of storm occurrence [19].

Since helicity is no longer an invariant in the absence
of dissipation, its presence in these atmospheric storms
must be explained but the physical mechanisms govern-
ing its creation, and the structures associated with it,
remain unclear. In this paper, we perform a paramet-
ric study using direct numerical simulations in which we
vary both rotation and stratification, and we show that
a rotating stratified flow can spontaneously create helic-
ity through a mechanism directly linked to geostrophic
balance at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

We integrate the incompressible Boussinesq equations,
with solid-body rotation Ω and gravity g, anti-aligned in
the vertical (z) direction, with b the buoyancy (in units
of velocity), w the vertical velocity, P the pressure, ν
the viscosity, and κ the diffusivity (with unit Prandtl
number, ν = κ):

∂tu+ u ·∇u− ν∆u =−∇P −Nbez − 2Ωez × u ,(1)

∂tb+ u ·∇b− κ∆b = Nw , (2)

∇ · u = 0 . (3)

The Brunt-Väisälä frequency is N = [−g∂z b̄/b]1/2 where
∂z b̄ is the background imposed stratification; the iner-
tial wave frequency is 2kzΩ/k. The code is pseudo-
spectral with periodic boundary conditions in all direc-
tions and unit aspect ratio; it is parallelized with a hybrid
MPI/OpenMP method [20], and has been run on grids of
up to 81963 points (for short times), using up to 98304
compute cores.

The Froude, Rossby and Reynolds numbers are de-
fined, respectively, as

Fr =
urms

NLint
, Ro =

urms

fLint
, Re =

urmsLint

ν
,

with f = 2Ω, and with urms and Lint =
∫

[EV (k)/k]/EV

the rms velocity and integral scale evaluated around the
maximum of enstrophy; EV = 1

2

〈

u2
〉

is the kinetic en-
ergy. These parameters vary in the range 0.006 ≤ Fr ≤
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FIG. 1: Temporal evolution of the total helicity (top) and
enstrophy (bottom), both for Fr ∼ 0.01, N = 12.56, varying
rotation (and thus N/f, see insets). Oscillations are propor-
tional to N and are due to gravity waves (middle).

0.27, 0.012 ≤ Ro ≤ 8.1, and Re ≈ 3000 for grids of 2563

points, and Re ≈ 8000 using 5123 points. Decay is left
to occur for 15 to 30 turn-over times, τNL = Lint/urms.
The initial velocity field is random, with all three compo-
nents non-zero, and it is centered around wavenumbers
k0 = [1, 2]. At t = 0, b = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. In the ideal (ν = 0) case,
potential vorticity

PV = −fN + f∂zb−Nωz + ω ·∇b

is a point-wise invariant, and the total (kinetic + poten-
tial) energy ET = EV + EP is conserved as well, with
respective enstrophies (proportional to dissipation when
ν ̸= 0),

ZV =
〈

ω2
〉

, ZP =
〈

|∇b|2
〉

.

Note that PV is quadratic and thus its L2 norm is not
conserved in general by the truncation; however, the non-
linear term ω · ∇b can be neglected in the presence of
strong rotation and stratification [21].

III. RESULTS

A. The helical version of geostrophic balance

We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. As-
suming stationarity, weak nonlinearities and small dissi-

How do waves alter the dynamics? 
Stable Boussinesq stratification à gravity waves

+ F
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Fig. 5 Profiles of vertical velocity skewness in the CBL. The symbols are observations from previous experi-
ments, as described by Moeng and Rotunno (1990). The black circles intersected with horizontal lines (which
indicate the standard deviation of the measurements) are from AMMA (Redelsperger et al. 2006), the dark
grey circles are from the Minnesota experiment (Wyngaard 1988), the light grey circles are from AMTEX
(Lenschow et al. 1980) and the coloured lines are the averaged LIFT observations (the horizontal magenta
lines through the magenta circles are the standard deviations of the LIFT observations). The thin lines are
LES results (Sullivan and Patton 2011) and the green line is the thermal model of S

Skewness is a measure of the asymmetry of the w probability distribution. Again there is
considerable scatter and a definite increase of S with increasing instability. The only case
that stands out here is Day 16, which has a maximum of S ≈ 1.5 in the middle of the
CBL; but again, this case has the poorest sampling statistics. On average, these results,
including the scatter, are similar to aircraft observations reported by Lenschow et al. (1980,
1994), and Gryanik and Hartmann (2002). Figure 4 also shows an empirical formulation
⟨w3⟩/w3

∗ = 1.2 z∗(1 − 0.7 z∗)3 based on Gryanik and Hartmann (2002), but with the coeffi-
cient increased from unity to 1.2 to better approximate the results of Lenschow et al. (1980).
We see good agreement with the average of the LIFT results; generally, the results of Gryanik
and Hartmann (2002) are larger than the LIFT results, even though their range of values of
zi/L , 10–20, is in our ‘least unstable’ category.

Figure 5 shows both the observations and the LES results. We see that, on average, the
modelled and LIFT values of S are in good agreement up to about z∗ ≈ 0.5. However,
above that level, the LIFT observations vary considerably with stability. In contrast, the LES
results show little variation with stability. The LES results lie between the most convective
cases, which continue to increase monotonically with height, and the overall average. The
least convective LIFT cases decrease somewhat with height and are in close agreement with
previous observations and AMMA observations where we see a maximum of S ≈ 0.6–0.7
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offshore atmospheric warming and nearshore upwelling
cooling (Marchesiello et al. 2003). The horizontal eddy
flux is dominated by mesoscale eddies, and it changes
only modestly across the ICC cases (not shown). How-
ever, the vertical eddy heat flux does exhibit a subme-
soscale transition. The flux divergences, !"zw#T # and
!"zw$T$, in Fig. 11 mainly act to restratify the bound-
ary layer by warming above and cooling below. Note
that this is a countergradient flux relative to the mean
stratification (albeit only marginally so in the weakly
stratified boundary layer). At the highest resolutions
(ICC0 and ICC1), the submesoscale flux dominates
over the mesoscale flux (which is largest in the near-
shore upwelling zone); offshore there is a 10-fold in-
crease of total eddy flux divergence magnitude from
ICC12 to ICC0 (fivefold from ICC6 to ICC0). Ex-
pressed as an equivalent solar heat flux warming the
upper half of the boundary layer, the contribution from

!"zw#T # is equivalent to 80 W m!2 200 km offshore
and 300 W m!2 nearshore.

The heating rate by submesoscale vertical eddy flux
divergence is about 5 times that by horizontal eddy flux.
However, the consequences of w #T # for T(x) are lim-
ited. In going from 12- to 0.75-km grid spacing, there is
only a 20% reduction in h, an increase in stratification
within the boundary layer (mostly near its base; even so
it remains weak relative to the pycnocline), and little
change in the surface temperature (SST)—less than
0.3°C in the domain average.

The explanation for the small sensitivity of T(x) to
w #T # comes from the mean heat balance. We demon-
strate this by comparing different terms in the domain-
averaged balance between cases ICC6 and ICC0. Be-
cause the mean SST values for the two cases are close,
the atmospheric heat fluxes are close (i.e., within 5 W
m!2), despite the SST-restoring formulation (section

FIG. 10. Rms velocity profiles: mean (dot–dashed), mesoscale (continuous), and submesoscale (dashed). Each
panel shows ICC0 (black lines) and ICC6 (gray lines). There are two additional w # profiles for ICC0 (dotted lines),
corresponding to conditional averages when the boundary layer is either between 20 and 30 m (with maximum rms
w # at 18 m) or between 30 and 40 m (with maximum rms w # at 25 m).

FIG. 9. Single-point PDFs for (left) %z/f0 at 10- (solid line) and 70-m depth (dashed line) and (right) w (day!1)
at 20-m depth for ICC0 (black lines) and ICC6 (gray lines). The dotted vertical lines in the left panel are %z & 'f0.
These PDFs are normalized only so that the total probability is equal to 1.
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measurement noise levels arising from the necessarily slower
ping rate of the low-frequency ADCP (see the instrument
noise discussion in supporting information).
[10] The divergence distribution in the mixed layer was close

to Gaussian with slight negative skewness of!0.20± 0.13 and
standard deviation of 0.47± 0.01 (Figure 2b); it did not change
much with depth (Figure 2e). Lateral normalized strain rate
statistics were well described by a χ distribution with 2 degrees
of freedom (Figures 2c and 2f) with standard deviations of 0.56
in the mixed layer and 0.27 in the pycnocline.

3. Discussion

3.1. Comparison With Numerical Simulations

[11] A set of nested numerical models was developed in
support of the LatMix experiment (see supporting infor-
mation for details). The large-scale model domain covered
most of the Atlantic basin with 5–7 km resolution. Within
it, two progressively smaller domains were embedded, with
the innermost one focusing on the Gulf Stream region with
0.5 km resolution. This hierarchy allowed realistic forcing

(a) (b)

(f)(e)

(c)

(d)

Figure 2. Histograms of normalized (a, d) vorticity, (b, e) divergence, and (c, f) strain rate in the mixed layer (0–50m, 300 kHz
ADCP, top row) and upper pycnocline (350–400m, 75 kHz ADCP, bottom row). Red curves show corresponding distributions
produced in a 0.5 km numerical model. Blue dashed curves in Figures 2a and 2d show one-ship LatMix vorticity distributions.
All distributions are scaled by their maximum value. Parameters of observation-based distributions are shown on the insets.
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Figure 3. (a) Skewness and (b) standard deviation of the normalized vorticity distribution as a function of depth. Shown are the
statistics of LatMix observations with 75 and 300 kHz ADCPs (solid and dashed black lines), of the same statistics derived from
one-ship LatMix observations (solid and dashed blue lines), and of the numerical model (red line). (c)Mean normalized buoyancy
frequency based on Moving Vessel Profiler observations during LatMix survey (green) and the numerical model (red).
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Fig. 2. Standardized skewness for the synoptic-scale ω-velocity fluctuations at 850 hPa (a, b), 500 hPa (c, d) and 300 hPa (e, f) for January (a, c, e)
and July (b, d, f).

In the middle free troposphere (e.g. at 400 hPa, see Fig. 3c and
d), the January pattern of the positive temperature skewness in
the North Pacific storm track is more patchy than in the lower
troposphere, while the North Atlantic storm track still exhibits a
compact pattern of positive ST ′ amounting about +(0.3–0.6) (cf.
Fig. 3a and c) for this month. In this, both the North Pacific and
North Atlantic patterns of positive ST ′ are displaced to the west
of their lower troposphere counterparts. This feature is in line
with the results obtained in (Hoskins and Hodges, 2002) regard-
ing the positions of the maxima for the 2–6-d bandpass filtered
variances of temperature in the lower and upper troposphere (cf.
figs. 3 and 4 in the cited paper). In the SH, a distinct signature
of the South Pacific mid-latitude storm track is seen at 400 hPa
for July, although this pattern of positive ST ′ is more weak and
less aggregated than that in the lower troposphere (cf. Fig. 3b

and d). The subtropical regions are characterized by a negative
anticyclonic-type ST ′ at 400 hPa for both January and July in the
NH and the SH (Fig. 3c and d). As in the lower troposphere
(see Fig. 3a and b), the North Pacific High manifests itself in
the middle troposphere in the same seasons (see Fig. 3c and d)
as the location of high negative values of ST ′ .

Figure 4a–d illustrates the geographic distribution of the stan-
dardized skewness of the synoptic-scale temperature perturba-
tions Sst,T ′ in the lower and middle free troposphere for January
and July. The comparison of Figs. 3a–d and 4a–d testifies that
the deviations, in terms of skewness, of a sampled stochas-
tic process of the synoptic-scale temperature fluctuations from
Gaussian process are statistically significant in all the discussed
above regions with high values of ST ′ , as far as the absolute values
of Sst,T ′ in those regions are larger in magnitude than 2.

Tellus 60A (2008), 1
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Fig. 7. Skewness at 850 hPa for the synoptic-scale fluctuations of zonal (a, b) and meridional (c, d) wind and the zoomed plots for 850 hPa of the
zonal wind in the North Atlantic (e) and of the meridional wind in the South Pacific (f) for January (a, c, e) and July (b, d, f).

meridional winds from a Gaussian process in all the discussed
above regions with high values of Su′ and Sv ′ , since the absolute
values of Sst,u′ and Sst,v ′ in those regions are larger in magnitude
than 2.

In our paper, we do not analyse the synoptic-scale vorticity
skewness Sζ ′ . The field of Sζ ′ (not shown in the paper) appears to
be much more patchy, as compared to Sω′ , Su′ and Sv ′ fields, which
makes it doubtful the estimation of the statistical significance of
the deviation of the synoptic-scale vorticity from the Gaussian
process. This is because the initial ERA40 reanalysis data on
the vorticity are rather noisy and reflect much more small-scale
features than those on the horizontal winds (Bengtsson et al.,
2004b). For that reason, the cyclone/anticyclone asymmetry, as
an example, which is expected to be well traced by Sζ ′ , is actually
not distinctly followed by this field, as opposed to Sω′ .

3.1.5. Summary of the results on skewness of the synoptic-
scale variations. The comparison of Figs. 1a, b, 3a, b, 5a, b
and 7a, b clearly points to dissimilar geographic patterns for
the skewnesses of the synoptic-scale vertical velocity, tempera-
ture, specific humidity, and horizontal winds. This, in particular,
casts some doubts upon the occurrence of the universal spa-
cial scale for the synoptic eddies (and the accompanying baro-
clinic zones), for all the discussed above variables, specifically
in the atmosphere with different moisture content in different
regions.

In the foregoing, we discussed some probable reasons for
non-Gaussianity of the synoptic-scale skewnesses of the con-
sidered variables. However, we can by no means exclude the
alternative explanations for a non-Gaussian character of the free-
troposphere synoptic component. We have already mentioned a

Tellus 60A (2008), 1

Gaussian 

Skewness of horizontal velocity 
 
Associated with cyclones 



 Fr ~ 0.11  (N=4)
 RB ~ 300

   z

       Stratification, no rotation: Temperature fluctuations, xz slice,       
Re ~ 24000, 20483 grids, KF ~2-3                  
                                                                     RB = ReFr2  : buoyancy 
R.           Reynolds                                                      

        Rorai et al., 2014 

  Fr ~ 0.03 (N=12)
  RB ~ 22

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

ï1 ï0.5 0 0.5 1



 Pure stratification

 Fr ~ 0.11, RB ~ 300

Rorai et al., 2014, 2015 

  Fr ~ 0.03, RB ~ 22

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

ï1 ï0.5 0 0.5 1



86 

9

does predict this break ... any other idea?] The
buoyancy scale is also understood today in the context
of the theoretical developments in [23] advocating for a
developed turbulence in the vertical, leading to a vertical
Froude number Frz = Urms/[LzN ] of order unity.

The large-scale spectra are flat; this is due to the com-
bination of two factors: (i) the dominance of k? = 0
modes at large scales due to resonance interactions which
are stronger at large scales; and (ii) the organization of
the flow in the vertical direction in well-defined strata
with strong vertical gradients both in the velocity and
the buoyancy. It was shown for example in [19] that
a superposition of such strata can indeed lead to a flat
spectrum.

Finally, the helicity spectra are shown in Fig. 7, in
terms of the absolute value of the helical density. They
display, as in the decay case, a flat spectrum at large
scale and a steep spectrum at smaller scales, with a clear
break at the buoyancy scale, and also with changes of
sign in the small scales (hence the large fluctuations seen
in the figure).
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FIG. 7. (Color online.) Helicity spectra (in absolute value)
for the Fr ⇡ 0.1 (N = 4 run, left) and for Fr ⇡ 0.03 (N = 12
run, right). Note the flat spectra at large scale, up to what
can be identified as the buoyancy scale. [Cecilia: H

T

? OR
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?]

IV. CONCLUSION AND DISCUSSION

We have shown in this paper that [XXX...]
Further studies are needed, and in particular because

there are several relevant scales that must be separately
resolved (see also the discussion in §IV).

One issue concerns the e↵ect that the choice of forc-
ing can have on the outcome of the simulations which
is far from evident (see for example the discussion in
[37]). Since in this paper we are interested in the devel-
opment of anisotropy, we chose a fully isotropic forcing
(and initial conditions). Moreover, forcing (and initial
conditions) need not be balanced since, again, our inter-

est is to study in its generality the structures that develop
dynamically in stratified flows.
[The next 2 to 3 paragraphs below were writ-

ten in response to my finding intermittency in
the velocity itself everywhere. I can shorten this
and reserve the rest for the next paper, on mix-
ing, where intermittency plays a big role as well
... Just let me know. Do remember, though
that this paper does not have a length constraint,
whereas for the intermittency paper, and for the
mixing paper perhaps as well, we still are under
constraints if we submit to PRL ...]

High amplitudes events in geophysical flows have been
documented for a long time, in di↵erent contexts. For
example, strong winds in blocking events in the atmo-
sphere are analyzed in [38], where a balance between
vorticity production and Ekman pumping is advocated.
Height and sea-level anomalies were found in [39] where
they were associated with resonant interactions between
baroclinic waves and the wind. More recently, order-
unity skewness for velocity, temperature and specially
for humidity were also found in atmospheric data at mid-
latitude, up to the free troposphere, and were associated
with storm tracks [40]. Non-zero skewness of the vertical
velocity is commonly observed in the laboratory and in
the convective boundary layer; for example, recent lidar
observations indicate a stronger skewness for more un-
stable flows [41]. These non-Gaussian structures are as-
sociated with random plumes with di↵ering updraft and
downdraft intensities; vertical velocities govern transport
and particle di↵usion and prove di�cult to model, in-
cluding when one uses Large Eddy Simulations at high
resolution [42].
Intermittency is also observed in the stable plane-

tary boundary layer, and in Langmuir circulation in the
ocean. In all cases, it is associated with the presence of
strong coherent structures such as jets in baroclinic tur-
bulence [43, 44]. Quasi-normal closures taking into ac-
count temperature-vertical velocity correlations (as well
as non-zero skewness) have been derived in [45–48]. They
lead for example to a better description of mixed-layer in-
stabilities and mixed-layer eddies in ocean modeling, and
in their interactions with air and sea-ice [49]. It can also
be noted that the weak turbulence theory, using for ex-
ample the random phase approximation, does not imply
zero skewness and thus allows for intermittency. This
happens either because of some small non-normality in
the initial conditions [50] or because of the way the weak
turbulence breaks down due to its non-uniformity in scale
[51].
The development of intense and localized structures in

stably stratified turbulence can be modeled in a simple
way [52]; potential applications to the nocturnal plane-
tary boundary layer and to mixing in the atmosphere and
the oceans and to the consequences for climate modeling
will be examined in future works. Intermittency is closely
linked to mixing and anomalous transport in turbulent
flows. Measurements of turbulent energy dissipation in
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FIG. 6. (Color online.) Total energy spectra (a) as a function of isotropic wavenumber and (b,c) as a function of parallel
and perpendicular wave numbers respectively. (d) and (e) give the potential energy spectra again as a function of kk and k?.
Power-law solid lines are added for reference. The buoyancy scale is identifiable as a break in kk in the potential energy spectra.
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does predict this break ... any other idea?] The
buoyancy scale is also understood today in the context
of the theoretical developments in [23] advocating for a
developed turbulence in the vertical, leading to a vertical
Froude number Frz = Urms/[LzN ] of order unity.

The large-scale spectra are flat; this is due to the com-
bination of two factors: (i) the dominance of k? = 0
modes at large scales due to resonance interactions which
are stronger at large scales; and (ii) the organization of
the flow in the vertical direction in well-defined strata
with strong vertical gradients both in the velocity and
the buoyancy. It was shown for example in [19] that
a superposition of such strata can indeed lead to a flat
spectrum.

Finally, the helicity spectra are shown in Fig. 7, in
terms of the absolute value of the helical density. They
display, as in the decay case, a flat spectrum at large
scale and a steep spectrum at smaller scales, with a clear
break at the buoyancy scale, and also with changes of
sign in the small scales (hence the large fluctuations seen
in the figure).
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FIG. 7. (Color online.) Helicity spectra (in absolute value)
for the Fr ⇡ 0.1 (N = 4 run, left) and for Fr ⇡ 0.03 (N = 12
run, right). Note the flat spectra at large scale, up to what
can be identified as the buoyancy scale. [Cecilia: H

T

? OR
H

V

?]

IV. CONCLUSION AND DISCUSSION

We have shown in this paper that [XXX...]
Further studies are needed, and in particular because

there are several relevant scales that must be separately
resolved (see also the discussion in §IV).

One issue concerns the e↵ect that the choice of forc-
ing can have on the outcome of the simulations which
is far from evident (see for example the discussion in
[37]). Since in this paper we are interested in the devel-
opment of anisotropy, we chose a fully isotropic forcing
(and initial conditions). Moreover, forcing (and initial
conditions) need not be balanced since, again, our inter-

est is to study in its generality the structures that develop
dynamically in stratified flows.
[The next 2 to 3 paragraphs below were writ-

ten in response to my finding intermittency in
the velocity itself everywhere. I can shorten this
and reserve the rest for the next paper, on mix-
ing, where intermittency plays a big role as well
... Just let me know. Do remember, though
that this paper does not have a length constraint,
whereas for the intermittency paper, and for the
mixing paper perhaps as well, we still are under
constraints if we submit to PRL ...]

High amplitudes events in geophysical flows have been
documented for a long time, in di↵erent contexts. For
example, strong winds in blocking events in the atmo-
sphere are analyzed in [38], where a balance between
vorticity production and Ekman pumping is advocated.
Height and sea-level anomalies were found in [39] where
they were associated with resonant interactions between
baroclinic waves and the wind. More recently, order-
unity skewness for velocity, temperature and specially
for humidity were also found in atmospheric data at mid-
latitude, up to the free troposphere, and were associated
with storm tracks [40]. Non-zero skewness of the vertical
velocity is commonly observed in the laboratory and in
the convective boundary layer; for example, recent lidar
observations indicate a stronger skewness for more un-
stable flows [41]. These non-Gaussian structures are as-
sociated with random plumes with di↵ering updraft and
downdraft intensities; vertical velocities govern transport
and particle di↵usion and prove di�cult to model, in-
cluding when one uses Large Eddy Simulations at high
resolution [42].
Intermittency is also observed in the stable plane-

tary boundary layer, and in Langmuir circulation in the
ocean. In all cases, it is associated with the presence of
strong coherent structures such as jets in baroclinic tur-
bulence [43, 44]. Quasi-normal closures taking into ac-
count temperature-vertical velocity correlations (as well
as non-zero skewness) have been derived in [45–48]. They
lead for example to a better description of mixed-layer in-
stabilities and mixed-layer eddies in ocean modeling, and
in their interactions with air and sea-ice [49]. It can also
be noted that the weak turbulence theory, using for ex-
ample the random phase approximation, does not imply
zero skewness and thus allows for intermittency. This
happens either because of some small non-normality in
the initial conditions [50] or because of the way the weak
turbulence breaks down due to its non-uniformity in scale
[51].
The development of intense and localized structures in

stably stratified turbulence can be modeled in a simple
way [52]; potential applications to the nocturnal plane-
tary boundary layer and to mixing in the atmosphere and
the oceans and to the consequences for climate modeling
will be examined in future works. Intermittency is closely
linked to mixing and anomalous transport in turbulent
flows. Measurements of turbulent energy dissipation in
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does predict this break ... any other idea?] The
buoyancy scale is also understood today in the context
of the theoretical developments in [23] advocating for a
developed turbulence in the vertical, leading to a vertical
Froude number Frz = Urms/[LzN ] of order unity.
The large-scale spectra are flat; this is due to the com-

bination of two factors: (i) the dominance of k? = 0
modes at large scales due to resonance interactions which
are stronger at large scales; and (ii) the organization of
the flow in the vertical direction in well-defined strata
with strong vertical gradients both in the velocity and
the buoyancy. It was shown for example in [19] that
a superposition of such strata can indeed lead to a flat
spectrum.
Finally, the helicity spectra are shown in Fig. 7, in

terms of the absolute value of the helical density. They
display, as in the decay case, a flat spectrum at large
scale and a steep spectrum at smaller scales, with a clear
break at the buoyancy scale, and also with changes of
sign in the small scales (hence the large fluctuations seen
in the figure).
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FIG. 7. (Color online.) Helicity spectra (in absolute value)
for the Fr ⇡ 0.1 (N = 4 run, left) and for Fr ⇡ 0.03 (N = 12
run, right). Note the flat spectra at large scale, up to what
can be identified as the buoyancy scale. [Cecilia: H
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? OR
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IV. CONCLUSION AND DISCUSSION

We have shown in this paper that [XXX...]
Further studies are needed, and in particular because

there are several relevant scales that must be separately
resolved (see also the discussion in §IV).
One issue concerns the e↵ect that the choice of forc-

ing can have on the outcome of the simulations which
is far from evident (see for example the discussion in
[37]). Since in this paper we are interested in the devel-
opment of anisotropy, we chose a fully isotropic forcing
(and initial conditions). Moreover, forcing (and initial
conditions) need not be balanced since, again, our inter-

est is to study in its generality the structures that develop
dynamically in stratified flows.
[The next 2 to 3 paragraphs below were writ-

ten in response to my finding intermittency in
the velocity itself everywhere. I can shorten this
and reserve the rest for the next paper, on mix-
ing, where intermittency plays a big role as well
... Just let me know. Do remember, though
that this paper does not have a length constraint,
whereas for the intermittency paper, and for the
mixing paper perhaps as well, we still are under
constraints if we submit to PRL ...]

High amplitudes events in geophysical flows have been
documented for a long time, in di↵erent contexts. For
example, strong winds in blocking events in the atmo-
sphere are analyzed in [38], where a balance between
vorticity production and Ekman pumping is advocated.
Height and sea-level anomalies were found in [39] where
they were associated with resonant interactions between
baroclinic waves and the wind. More recently, order-
unity skewness for velocity, temperature and specially
for humidity were also found in atmospheric data at mid-
latitude, up to the free troposphere, and were associated
with storm tracks [40]. Non-zero skewness of the vertical
velocity is commonly observed in the laboratory and in
the convective boundary layer; for example, recent lidar
observations indicate a stronger skewness for more un-
stable flows [41]. These non-Gaussian structures are as-
sociated with random plumes with di↵ering updraft and
downdraft intensities; vertical velocities govern transport
and particle di↵usion and prove di�cult to model, in-
cluding when one uses Large Eddy Simulations at high
resolution [42].
Intermittency is also observed in the stable plane-

tary boundary layer, and in Langmuir circulation in the
ocean. In all cases, it is associated with the presence of
strong coherent structures such as jets in baroclinic tur-
bulence [43, 44]. Quasi-normal closures taking into ac-
count temperature-vertical velocity correlations (as well
as non-zero skewness) have been derived in [45–48]. They
lead for example to a better description of mixed-layer in-
stabilities and mixed-layer eddies in ocean modeling, and
in their interactions with air and sea-ice [49]. It can also
be noted that the weak turbulence theory, using for ex-
ample the random phase approximation, does not imply
zero skewness and thus allows for intermittency. This
happens either because of some small non-normality in
the initial conditions [50] or because of the way the weak
turbulence breaks down due to its non-uniformity in scale
[51].
The development of intense and localized structures in

stably stratified turbulence can be modeled in a simple
way [52]; potential applications to the nocturnal plane-
tary boundary layer and to mixing in the atmosphere and
the oceans and to the consequences for climate modeling
will be examined in future works. Intermittency is closely
linked to mixing and anomalous transport in turbulent
flows. Measurements of turbulent energy dissipation in

Energy spectrum break at LB  

Break also in oceanic data,  
D’Asaro & Lien 2000 
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FIG. 7. Spectra of vertical velocity from Knight Inlet and the North Pacific. Color indicates subgroup of spectra as shown on lower right.
No corrections for instrument response have been made. Number in legend indicates number of spectra in each subgroup. (a) Raw spectra,
(b) spectra scaled by N as in GM model, (c) N-scaled spectra averaged in each subgroup. The GM spectral energy level is shown in (b) and
(c).

29 trajectories is available from this region; one is too
noisy to use. ‘‘High accuracy’’ acoustic tracking is avail-
able for 9 of the remaining 28 spectra; the horizontal
velocity spectra for these are accurate to about 10N;
horizontal velocity spectra for the ‘‘low accuracy’’ tra-
jectories are not accurate past 2N. Figure 11 shows all
28 spectra. Most (78%) of the vertical velocity spectra
fits Eq. (4), shown by the orange line labeled Wturb, at
the 95% level. All fit (4) at superbuoyant frequencies.
The blue dots show these spectra, corrected for instru-
ment response following (6). Their average (blue line)
fits (4) remarkably well.

(ii) Scaling
The vertical velocity spectra are scaled so that those

fitting (4) would collapse to a single curve; ´ and v0

are estimated for each spectrum as described in section
5c. The value of N is estimated as 2v0 since this is more
reliable and consistent than using the CTD-derived val-
ues (see section 5c and Fig. 8). The horizontal velocity
spectra are scaled in the same way as the vertical ve-
locity spectra. Note that the horizontal and vertical ve-
locity spectra are computed from completely different
data, acoustic tracking and float pressure, respectively.

(iii) Consistency tests
Figure 11 shows the scaled horizontal and vertical

velocity spectra. Here Wiw lies within the error bars for
W up to about 0.3N, implying that (2) applies to these
data. Near N, the observed motions become isotropic,
whereas (2) predicts more vertical kinetic energy than
horizontal kinetic energy.
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FIG. 5. (Color online.) Two-dimensional total energy spectra for Fr ⇡ 0.1 (N = 4, left) and Fr ⇡ 0.03 (N = 12, right) for
co-latitudes (with respect to the vertical) ✓ = 0 (black, solid line), ✓ = xx (blue, dash line), ✓ = xx (purple, dash-dot line),
✓ = xx (green, dash-triple dot line), ✓ = xx (yellow, dotted line), and finally ✓ = ⇡/2 (red, solid line). Observe the dominance
of energy in the k? = 0 slow mode, all the way to the Ozmidov scale where isotropy recovers. Power-law solid lines are added
for reference.

2. The resulting one-dimensional energy spectra

The one-dimensional total energy spectra are given in
Fig. 6 for the two flows, together with their decomposi-
tion into their variations with either kk or k?; we show as
well the potential energy spectra. They are averaged over
[XX] turn-over times, after the peak of enstrophy. It was
remarked in [26] that two-dimensional spectra (and con-
tours) shown in Fig. 4 and Fig. 5 may represent more
realistic diagnostics of the flow dynamics, given the wide
variety of spectral slopes they display when varying the
angle between imposed stratification and wavevector. If
the Ozmidov scale appeared rather naturally in the pre-
ceding figure since it can be defined as the scale at which
isotropy recovers, the buoyancy scale appears more easily
in the present depiction of spectra, in particular exam-
ining the potential energy component, EP (kk). These
spectra are flat at large scale, and show a break towards
a steep slope at a scale which is roughly the buoyancy
scale defined as Urms/N . The potential energy spectra
in terms of k? may well follow a �5/3 spectrum, which
could be justified on the basis of the dynamics of a passive
scalar following the (small-scale) Kolmogorov evolution
of the velocity field (note that the coupling to the velocity
is through the vertical velocity which is one order of mag-
nitude smaller than the horizontal velocity). [TRUE? (I
made the assertion on the basis of < W 2 >⇠ EP ).
Laval et al. 2004? find a growth of < W 2 > at late
times ...] Note that, using a Large-Eddy Simulation, the
transition from a steep (saturated) large-scale spectrum
to a Kolmogorov isotropic spectrum was observed in [37]
but only sporadically, when breaking events occurred.

The di�culty in interpreting the kinetic energy (and
total energy) spectra is that the di↵erent inertial ranges
are not well separated and therefore the di↵erent dynam-
ical forces at play interfere in a range of scales. It is
tempting to assert that there is enough evidence for a so-

called saturation spectrum in the vertical (specifically, at
scales smaller than the buoyancy scale but larger than
the Ozmidov scale). This is clearly the case in the run
with N = 12, whereas in the run with N = 4, this range
is not su�ciently resolved. It is equally tempting and
rather well accepted that an isotropic Kolmogorov range
recovers at scales smaller than the Ozmidov scale. This
is barely visible for the run with N = 4, and not avail-
able for the run with N = 12 since the ratio between the
Ozmidov scale and the Kolmogorov (dissipation) scale
is of order unity. One can nevertheless make the gen-
eral remark that potential and kinetic energy spectra are
steeper when stratification is stronger, that the spectra
in terms of k? are similar for both values of the Brunt-
Väisälä frequency, and finally that they are shallow at
scales larger than the buoyancy length scale.
[One ought perhaps to discuss here how such

scales can be defined, within a numerical factor
of order unity and that may well dependent on
details of the flow under study. ... See above,
concerning 2*pi versus epsilon] [Almalkie [22] ?
Waite? [17]]
The buoyancy wavenumber kB = 2⇡/LB is introduced

in [18] to take into account the fact that, in the La-
grangian framework, the buoyancy field is advected by
the velocity (although it is not a passive scalar) and thus
depends on the total kinetic energy. This leads to the
appearance of a sharp break in the buoyancy spectrum
at kB , a break not present for the kinetic energy spec-
trum. A simple interpretation of this hypothesis may be
that the the eddy decorrelation rate enters both in the
dynamics of the velocity and temperature field (through
advection), but that the Brunt-Väisälä frequency only
participates, in this buoyancy-dominated regime, in the
decorrelation of the buoyancy field but not int the ve-
locity field decorrelation which, for strong waves, is only
quenched due to the weakness of nonlinear interactions.
[AP: I am not really convinced but Weinstock

Isotropy at         kOz~         [N3/ε]1/2: -5/3 beyond? 
                    The Ozmidov scale 

φ=0 

φ=π/2  



DNS 20483, 
 Re=24000 
 
Time 
Averaged 
PDFs after  
the peak of 
dissipation 
 

−5 0 510−6

10−5

10−4

10−3

10−2

10−1

100

v⊥

P r(v⊥)

 

 
N=4
N=12

Vperp 

N=4 
Gaussian in 
black 
 

N=12 



DNS 20483, 
 Re=24000 
 
Time 
Averaged 
PDFs after  
the peak of 
dissipation 
 

−5 0 510−6

10−5

10−4

10−3

10−2

10−1

100

v⊥

P r(v⊥)

 

 
N=4
N=12

−10 −5 0 5 1010−6

10−5

10−4

10−3

10−2

10−1

100

vz

P r(vz)

 

 
N=4
N=12

Vperp 

W 

N=4 
 
N=12 



DNS 20483, 
 Re=24000 
 
Time 
Averaged 
PDFs after  
the peak of 
dissipation 
 

−5 0 510−6

10−5

10−4

10−3

10−2

10−1

100

v⊥

P r(v⊥)

 

 
N=4
N=12

−10 −5 0 5 1010−6

10−5

10−4

10−3

10−2

10−1

100

vz

P r(vz)

 

 
N=4
N=12

Vperp 

W 

N=4 
 
N=12 

−10 −5 0 5 1010−6

10−5

10−4

10−3

10−2

10−1

100

θ̄

Pr(θ̄)

 

 
N=4
N=12

Temperature 



93 

−2 −1 0 1 2 3
10−10

10−8

10−6

10−4

10−2

100

uz / <uz>

P(
u z / 

<u
z>)

RotStrat: uz

 

 
t=14.960

Marino et al., 2017 



C. RORAI, P. D. MININNI, AND A. POUQUET PHYSICAL REVIEW E 89, 043002 (2014)

A. Boussinesq equations

We start from the Boussinesq equations, which describe a
stably stratified flow with gravity in the vertical direction. For
the velocity u = (u,v,w) and potential temperature fluctua-
tions θ , the equations are

∂u
∂t

+ u · ∇u = −∇P − Nθ ez + ν$u + fV , (1)

∂θ

∂t
+ u · ∇θ = Nw + κ$θ, (2)

∇ · u = 0, (3)

where P is the pressure, κ = ν the diffusivity, and fV a velocity
forcing term. The square Brunt-Väisälä frequency is given by
N2 = −(g/θ)(d θ̄/dz), where θ̄ is the imposed background
stratification, assumed to be linear, and g is the gravity.

B. Simple model

We are interested in a simple model for the evolution of
the field variations. Estimating the pressure forces in Eq. (1),
which for an incompressible fluid are highly nonlocal, is dif-
ficult since one has to consider the coupling between vorticity
and shear. A simple one-dimensional model of such behavior
was developed in Ref. [17]. This model, sometimes called
restricted Euler dynamics, has proven useful in analyzing the
development and the statistical and geometrical properties of
intermittent structures in a variety of turbulent flows (see [18]
for a recent review).

For simplicity, in the absence of stratification one can
consider only vertical velocity differences δw in the vertical
velocity w at scale ℓ, defined as δw(ℓ) = ⟨w(x + ℓẑ) −
w(x)⟩ ≈ ℓ∂zw. Taking the spatial derivative of Eq. (1) in
the one-dimensional (1D) case, with θ = 0, and neglecting
pressure, forcing, and viscous forces yields

∂t (∂zw) + w∂z(∂zw) = dt (∂zw) = −(∂zw)2.

Then, for the velocity differences dtδw = −δw2/ℓ, this
equation immediately shows the temporal enhancement of
negative values of δw, as observed, for example, for isotropic
turbulent fluids for which the skewness of velocity gradients
is negative and of order unity.

When the flow is stably stratified, gravity acts as a
restitutive force allowing for oscillatory solutions (internal
gravity waves). Nonlinear coupling tends to transfer energy
towards modes with vertical spatial dependence, resulting
in the creation of horizontal layers in the fluid, and further
justifying the reduction to a 1D system. Under the same
hypothesis, for δθ ≈ ℓ∂zθ , and from Eqs. (1) and (2) we obtain

dδw

dt
= −δw2

ℓ
− Nδθ, (4)

dδθ

dt
= −δwδθ

ℓ
+ Nδw. (5)

These equations can be considered as a crude 1D (vertical)
model of a stratified flow.

We can define the dimensionless Froude number Fr =
U/NL (with U and L characteristic velocity and length);
it quantifies the ratio between nonlinear and linear effects.
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FIG. 1. Evolution in time of vertical velocity variations δw in the
model of Eqs. (4) and (5) for ℓ = 0.2 and N = 0 (no stratification,
solid line), 2 (dotted line), 4 (dashed line), 12 (dash-dotted line), 20
(dash–triple-dotted line), and 30 (long-dashed line). Note the faster
evolution towards negative and strong vertical gradients at interme-
diate values of N , as it increases from 2 to 12, before oscillatory
behavior takes over for large enough N (here, corresponding to
N = 20 and 30).

The system of Eqs. (4) and (5) has only one fixed point
(δw = δθ = 0). For weak stratification (large Froude number),
one recovers the Euler behavior of strong negative gradients
and in the opposite case (N ≫ 1, or small Froude number),
the model has oscillatory solutions in the vertical velocity and
temperature fluctuations (see Fig. 1).

The terms governing both (nonlinear and linear) behaviors
become comparable when δw ∼ δθ ∼ Nℓ. When this is
satisfied in a range of scales, it corresponds to the balanced
energy spectrum E(kz) ∼ δw2/kz ∼ N2k−3

z , which has been
predicted and observed in many instances in the atmosphere
and the oceans (see, e.g., Ref. [19] and Fig. 2).

In Fig. 1 an interesting evolution is observed. In an
intermediate regime (specifically, here ℓ = 0.2 and N = 2,
4, and 12) and for initial δw and δθ > 0, δw becomes negative
(and diverges) unlike the case N = 0 and it does so faster
for larger values of N . In other words, the effect of waves
is rapidly amplified by the nonlinear term, resulting in a
catastrophic behavior. The runaway occurs as N increases
and before oscillations take over, in Fig. 1 for N > 12. Note
that, for N = 0 and initial δw < 0, large negative gradients do
eventually occur: This is the essence of the Vieillefosse model
[17,18], written to study the development of strong negative
gradients in homogeneous isotropic turbulence. However, they
do so more slowly than in the presence of gravity waves, as
shown in Fig. 1.

The large negative values of δw can be interpreted as the
signature of strong intermittent bursts. Note that for even
larger values of N , although the solutions become oscillatory,
they still display skewness (i.e., they have a tendency towards
more negative values of δw). On the other hand, if the initial
conditions are negative (δw,δθ < 0), the divergence is delayed
by increasing stratification.

The coupling of this evolution to that of the horizontal
velocity damps the runaway evolution of δw (because of
incompressibility) but strong gradients still form. For such
extensions, see Ref. [20], which presents a similar model
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Stratified turbulence model (N is the Brunt-Vaissala frequency): 
vertical differences of fluctuations of vertical velocity w  
and temperature θ  over a vertical distance  l = lz 

* N small: hydrodynamic of intermittent strong turbulence 
 
* N large: harmonic oscillator of frequency N 
 
 
•  Nθ lz ~ w2,  balance compatible with “saturated” spectrum  
                                                              Ew(kz)  ~ EP(kz) ~ N2 kz

-3 

à 3 regimes 
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A. Boussinesq equations

We start from the Boussinesq equations, which describe a
stably stratified flow with gravity in the vertical direction. For
the velocity u = (u,v,w) and potential temperature fluctua-
tions θ , the equations are

∂u
∂t

+ u · ∇u = −∇P − Nθ ez + ν$u + fV , (1)

∂θ

∂t
+ u · ∇θ = Nw + κ$θ, (2)

∇ · u = 0, (3)

where P is the pressure, κ = ν the diffusivity, and fV a velocity
forcing term. The square Brunt-Väisälä frequency is given by
N2 = −(g/θ )(d θ̄/dz), where θ̄ is the imposed background
stratification, assumed to be linear, and g is the gravity.

B. Simple model

We are interested in a simple model for the evolution of
the field variations. Estimating the pressure forces in Eq. (1),
which for an incompressible fluid are highly nonlocal, is dif-
ficult since one has to consider the coupling between vorticity
and shear. A simple one-dimensional model of such behavior
was developed in Ref. [17]. This model, sometimes called
restricted Euler dynamics, has proven useful in analyzing the
development and the statistical and geometrical properties of
intermittent structures in a variety of turbulent flows (see [18]
for a recent review).

For simplicity, in the absence of stratification one can
consider only vertical velocity differences δw in the vertical
velocity w at scale ℓ, defined as δw(ℓ) = ⟨w(x + ℓẑ) −
w(x)⟩ ≈ ℓ∂zw. Taking the spatial derivative of Eq. (1) in
the one-dimensional (1D) case, with θ = 0, and neglecting
pressure, forcing, and viscous forces yields

∂t (∂zw) + w∂z(∂zw) = dt (∂zw) = −(∂zw)2.

Then, for the velocity differences dtδw = −δw2/ℓ, this
equation immediately shows the temporal enhancement of
negative values of δw, as observed, for example, for isotropic
turbulent fluids for which the skewness of velocity gradients
is negative and of order unity.

When the flow is stably stratified, gravity acts as a
restitutive force allowing for oscillatory solutions (internal
gravity waves). Nonlinear coupling tends to transfer energy
towards modes with vertical spatial dependence, resulting
in the creation of horizontal layers in the fluid, and further
justifying the reduction to a 1D system. Under the same
hypothesis, for δθ ≈ ℓ∂zθ , and from Eqs. (1) and (2) we obtain

dδw

dt
= −δw2

ℓ
− Nδθ, (4)

dδθ

dt
= −δwδθ

ℓ
+ Nδw. (5)

These equations can be considered as a crude 1D (vertical)
model of a stratified flow.

We can define the dimensionless Froude number Fr =
U/NL (with U and L characteristic velocity and length);
it quantifies the ratio between nonlinear and linear effects.
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FIG. 1. Evolution in time of vertical velocity variations δw in the
model of Eqs. (4) and (5) for ℓ = 0.2 and N = 0 (no stratification,
solid line), 2 (dotted line), 4 (dashed line), 12 (dash-dotted line), 20
(dash–triple-dotted line), and 30 (long-dashed line). Note the faster
evolution towards negative and strong vertical gradients at interme-
diate values of N , as it increases from 2 to 12, before oscillatory
behavior takes over for large enough N (here, corresponding to
N = 20 and 30).

The system of Eqs. (4) and (5) has only one fixed point
(δw = δθ = 0). For weak stratification (large Froude number),
one recovers the Euler behavior of strong negative gradients
and in the opposite case (N ≫ 1, or small Froude number),
the model has oscillatory solutions in the vertical velocity and
temperature fluctuations (see Fig. 1).

The terms governing both (nonlinear and linear) behaviors
become comparable when δw ∼ δθ ∼ Nℓ. When this is
satisfied in a range of scales, it corresponds to the balanced
energy spectrum E(kz) ∼ δw2/kz ∼ N2k−3

z , which has been
predicted and observed in many instances in the atmosphere
and the oceans (see, e.g., Ref. [19] and Fig. 2).

In Fig. 1 an interesting evolution is observed. In an
intermediate regime (specifically, here ℓ = 0.2 and N = 2,
4, and 12) and for initial δw and δθ > 0, δw becomes negative
(and diverges) unlike the case N = 0 and it does so faster
for larger values of N . In other words, the effect of waves
is rapidly amplified by the nonlinear term, resulting in a
catastrophic behavior. The runaway occurs as N increases
and before oscillations take over, in Fig. 1 for N > 12. Note
that, for N = 0 and initial δw < 0, large negative gradients do
eventually occur: This is the essence of the Vieillefosse model
[17,18], written to study the development of strong negative
gradients in homogeneous isotropic turbulence. However, they
do so more slowly than in the presence of gravity waves, as
shown in Fig. 1.

The large negative values of δw can be interpreted as the
signature of strong intermittent bursts. Note that for even
larger values of N , although the solutions become oscillatory,
they still display skewness (i.e., they have a tendency towards
more negative values of δw). On the other hand, if the initial
conditions are negative (δw,δθ < 0), the divergence is delayed
by increasing stratification.

The coupling of this evolution to that of the horizontal
velocity damps the runaway evolution of δw (because of
incompressibility) but strong gradients still form. For such
extensions, see Ref. [20], which presents a similar model
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over time of the di↵erent structures, similarly to the case
of shear layers. These long-time correlations can lead to
so-called 1/f noise, itself known to have PDFs with fat
wings in a variety of problems (see, e.g., [19, 20]).

However, resolving properly the PBL and its cloud
content, let alone the microphysical processes that play
an important role in its dynamics, is far out of reach of
present-day high-performance computing. One can take
the opposite approach, namely to simplify the problem
to its bare bone. This is what we propose in this Letter,
on the one hand deriving a simple model that can show
a stronger intermittency for stronger gravity waves in
a plage of parameters, and on the other hand perform-
ing high resolution direct numerical simulations (DNS)
of the Boussinesq equations, as a function of the dimen-
sionless parameters of the problem, namely the Reynolds
and Froude numbers, Re = U0L0/⌫ and Fr = U0/[L0N ],
with U0, L0 characteristic velocity and length scale, N

the Brunt-Väisälä frequency and ⌫ the kinematic viscos-
ity. This study also aims at clarifying the interactions of
linear waves and nonlinearities (here, advection) in form-
ing extreme events that can be stronger than in the fully
turbulent regime, given proper coupling.

The model One di�culty in modeling turbulent flows
lies in estimating the pressure term which, in an incom-
pressible fluid, is highly non-local. One has to consider
the complex coupling between the vorticity and shear
(the anti-symmetric and symmetric parts of the velocity
gradient tensor). A simple model of such behavior was
developed in [21] that led to the possible existence of a
singularity in the inviscid case when isotropizing the pres-
sure Hessian. This model, sometimes called restricted
Euler dynamics, has proven very useful in analyzing the
development and the statistical and geometrical (align-
ment) properties of intermittent structures in a variety of
turbulent flows; a thorough recent review of the di↵erent
models emanating from such ideas is found in [22].

Since the property we want to stress in this Letter is
that of intermittency, one can focus on the simplest of
such models, taking into account only the longitudinal
component of the velocity structure function, �u

x

(`) =
hu

x

(x + `) � u

x

(x)i; this leads to d

t

�u

x

= ��u

2
x

/` . The
equation immediately shows the enhancement of �u

x

, as
observed for example for the Navier-Stokes equations for
which the skewness (normalized third-order moment) of
velocity gradients is negative and of order unity.

When coupling this evolution to that of transverse
modes, the run-away evolution of �u

x

is damped but
strong gradients still form; similarly when including a
passive scalar [23]. Adding now the buoyancy term
present in the Boussinesq equations for an incompress-
ible stably stratified flow (see e.g. [24–26]) to the passive
scalar model in [23], and restricting the evolution to two
modes, both at a scale ` (the temperature fluctuations ✓

FIG. 1. Time evolution of vertical velocity gradients �w in
the model of eq. (1) for ` = 0.3, and N=0 (no stratification,
solid line), 2, 4, 8, 12 and 16 (respectively dot, dash, dash-dot,
dash-double-dot and finally long dash lines). Note the faster
evolution towards negative gradients at intermediate values
of N, before oscillatory behavior takes over for large N.

and the vertical velocity component w), we obtain:

d

t

�w = ��w

2
/` � N�✓ , (1)

d

t

�✓ = ��w�✓/` + N�w ,

taking again longitudinal (i.e., vertical) di↵erences in the
structure functions. In the purely rotating case, a model
similar to that in eq. (1) was developed in [27] where it is
concluded that there is a weakening of negative skewness
in the presence of rotation. Note that a wavelet analysis
of turbulence with shear concludes as well to weakening
of strong gradients in the presence of rotation [28].

System (1) has only one (trivial) fixed point (�w =
0, �✓ = 0). For weak stratification, one recovers the
Euler behavior of strong negative gradients, and in the
opposite case (N >> 1), system (1) reduces to that
of two harmonic oscillators of frequency N that are in
phase. However, the two terms (non-linear and oscilla-
tory) become comparable when �w ⇠ �✓ ⇠ N` in a range
of scales. Note that this corresponds to the balanced
spectrum E(k

z

) ⇠ N

2
k

�3
z

which has been predicted and
observed in many instances in the atmosphere and the
oceans (see e.g. [29] and references therein). This can
also be expressed as a function of a length scale which
varies as 1/N and, as such, is akin to the so-called buoy-
ancy length scale L

B

= U0/N (this scaling for both the
kinetic and potential energy does not preclude, however,
a lack of equipartition between the two fields).

Stronger vertical gradients are observed in Fig. 1 from
a numerical integration of eq. (1), with ` = 0.3 and N

varying between 0 and 16; for U0 = 1, this corresponds
to Froude numbers down to a value of 0.18. [TRUE?
Initial conditions are u(t = 0) = u0 = 1, ✓(t = 0) =
✓0 = 1.] [Pablo: would it be useful to try 2 Froude

The model for vertical differences of fluctuations of 
vertical velocity w, over distance l, N is the BV frequency 
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nitude of the velocity increment, !v!r; t", in the transverse
plane, can be evaluated from the two projections of Eq. (2)
(see Fig. 1):

!u!r; t" # !Akirk
ri
r
; !v!r; t" # jPij!r" !Akjrkj; (3)

where Pij!r" # !ij $ rirj=r2 and r # jrj.
Note that !u!r; t" and !v!r; t" correspond to velocity

increments over a displacement ri!t" that is evolving, in a
local linear flow, according to equation _ri # !Amirm. To
study the evolution of velocity increments at a fixed scale
l, it is necessary to eliminate effects from the changing
distance between the two points. Consider a line that goes
through the two points. Still within the assumption of a
locally linear velocity field, the velocity increments across
a fixed distance l along this line are !u % !u!r; t"l=r,
!v % !v!r; t"l=r (see Fig. 1).

Taking time derivatives of !u and !v, and using the
expressions for _!Aji and _ri, many terms simplify and one
arrives at the following ‘‘advected delta-vee’’ system of
equations:

! _u # $!u2l$1 & !v2l$1 $ 2

3
Ql& Y; (4)

! _v # $2!u!vl$1 & Z; (5)

where Y # lHijrirj=r2 and Z # lHijejri=r contain the
anisotropic nonlocal effects of the pressure, interscale
effects of subgrid-scale stresses, and damping effects of
molecular viscosity (e is a unit vector in the direction of the
transverse velocity component). The first term on the right-
hand-side (rhs) of the equation for ! _u also occurs in the 1D
Burgers equation (the self-amplification effect of negative
velocity gradients). The second term indicates that the
transverse velocity (rotation) tends to counteract the self-
amplification process. For ! _v, the first term on the rhs of
Eq. (5) suggests exponential growth of !v at a rate pro-

portional to j!ujwhen !u < 0. This ‘‘cross-amplification’’
mechanism can lead to very large values of !v.

We now pose the question whether the growth of inter-
mittency and the asymmetry of longitudinal velocity incre-
ments can be understood based on this system of equations,
but without the effects represented by Y and Z (i.e., the
restricted Euler dynamics). In order to determine whether
this simplified system approximates ! _u and ! _v in real
turbulence, comparisons are made with direct numerical
simulations (DNS). The rates of change of !u and !v
predicted by DNS are obtained by the finite difference in
time from two DNS velocity fields separated by the simu-
lation time step !t # 0:001. The data are obtained from a
pseudospectral simulation of the NS equations, with 2563

nodes and Taylor-scale Reynolds number R" ' 162. The
velocity fields are coarse grained using a Gaussian filter of
characteristic length " # 40#, where# is the Kolmogorov
length scale, yielding filtered velocity fields !ui!x; t0" and
!ui!x; t0 & !t" (i # 1; 2; 3). At the initial time t0, to every
grid-point x!t0" on the computational mesh, we associate a
partner x!t0" & r!t0" at a distance jr!t0"j # l # 40# in
some Cartesian direction. For each pair of points we mea-
sure the longitudinal and transverse velocity increments.
Then, we find the position to which x!t0" and x!t0" & r!t0"
will be advected by the smoothed velocity field, which are,
using the simple Euler integration, x!t0 & !t" # x!t0" &
!u!x; t0"!t, and x!t0 & !t" & r!t0 & !t", where r!t0 &
!t" # r!t0" & ( !u!x!t0" & r!t0"; t0"$ !u!x!t0"; t0")!t is the
new displacement vector. The final end point at a fixed
distance l is found by moving the material end point x!t0 &
!t" & r!t0 & !t" along the new displacement vector to the
point x!t0 & !t" & r!t0 & !t"l=jr!t0 & !t"j, so that the dis-
tance is kept fixed. Velocities at the new locations are
obtained from the stored field at the new time using bi-
linear interpolation, and the longitudinal and transverse
components are evaluated, by projections onto directions
parallel and perpendicular to the new displacement vector
between the two points. The rate of change of !u and !v is
evaluated using first-order finite differencing in time.

FIG. 1. Illustrative sketch of velocity increment !ui!r" be-
tween two points x!t" and x!t" & r!t", and the components of
!ui!r" longitudinal and transverse to the displacement vector r.
The quantities of interest are !u and !v, defined as the compo-
nents of the velocity increment over a fixed length l.

FIG. 2. Joint PDF of rates of change of velocity increments
predicted from DNS (filtered at " # 40# and taking increments
over a distance l # 40#) and the advected delta-vee system.
(a) longitudinal and (b) transverse velocity increments. Results
are robust with changes in " and l (with l * ").
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§  Gradient matrix: Aij = ∂ui / ∂xj 

§  Decomposition: Aij = Sij +Ωij,  
   where Sij = (Aij + Aji)/2  
               Ωij = (Aij - Aji)/2  
 
Define: 
Q2=−[Aim Ami]/2, R3=−[Aim Amn Ani]/3,  
§  QS = −[Sim Smi]/2,  
§  RS = −[Sim Smn Sni]/3,  
§  V2 = Sin Sim ωm ωn 
                                                                                      Meneveau, Ann. Rev. Fluid Mech. 2011 
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dtAij =−Aik Akj +1/3[Amk Akm δij] + Hij p + Hij
v 

  
with Hij p=−(∂2p/[∂xi∂xj] −1/3∇2pδij)  
         Hij

v=ν∂2Aij /[∂xk∂xk] 

§  Model pressure Hessian (Chevillard et al. 2011, Meneveau 2011 …)  
§  Isotropic? Local? 

§  Add transverse velocities 
§  Add rotation (Li 2010), passive scalar, … 
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Other models of intermittency for the nocturnal 
planetary boundary layer: some degree of 
nonlinearity over an otherwise linear system: 

 ^ parametric instability 
 ^ on-off intermittency 
 ^ sub-critical transitions 

 
BUT: 
Vertical Froude nber of order unity (Billant Chomaz 2001) 
à intrinsic nonlinear role in the vertical 
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Conclusions 
1) Helicity is created in rotating stratified flows:  

 ^ What are the emerging helical structures?  
 ^ How much helicity when the flow is more turbulent? 

 
2) Internal gravity waves can enhance in substantial ways the 
negative gradients of a turbulent flow leading to strong 
intermittency in strongly stable flows, as is well known from 
observations, but not necessarily well modeled 
•  Link with structures (Kelvin-Helmoltz billows and secondary instabilities, fronts, 

…) and with mixing? 
•  Lifetime and spatial extent of transients? 
•  Expand the model 
•  Role of forcing scale?                      
•  Role of parameters (Re, Fr, RB)? 
•  Role of rotation (and of inverse cascade)? 
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§   As a matter of conclusion: 

– The lack of resolution when there is 
more than one inertial range: the 
emergence of two characteristic 
scales (buoyancy and Ozmidov) 

à A proposition for what would be a 
really big run of stratified (and 
rotating?) turbulence 
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