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MHD equations
MHD (magnetohydrodynamics)

Interaction between electrically conducting fluid and magnetic field

The non-dimensionalised MHD equations:
Navier-Stokes equations for an incompressible fluid:

∂tu + u · ∇u− 1
Re

∆u +∇p = (∇× B
µr

)× B + f,
∇·u = 0.

Maxwell equations for the induction field B (magnetic field H = B/µr ):
∂tB = − 1

Rm
∇×

(
1
σr
∇× B

µr

)
+∇×(u× B),

∇·B = 0.
Kinetic and magnetic Reynolds numbers with ν kinematic viscosity, µ0
vacuum magnetic permeability, σ0 fluid electrical conductivity (and magnetic
Prandtl number):

Re =
UrefLref

ν
, Rm = µ0σ0UrefLref, Pm =

Rm

Re
= µ0σ0ν =

ν

η
.

Initial conditions (depend on the problem) and boundary conditions (BC)
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Dynamo action
Boundary conditions in MHD

kinematic BC for a fluid domain Ω of frontier Γ (n outward unit normal on Γ):
I no-slip: u|Γ = 0
I impenetrable BC: n·u|Γ = 0 and stress-free BC: (n·ε(u))×n|Γ = 0 with the

strain rate tensor ε(u) := 1
2

(
∇u +∇uT ).

magnetic BC, transmission conditions (more difficult to impose in general):
I at the frontier between 2 domains (conducting or insulating):

E1×n1 + E2×n2 = 0 and H1×n1 + H2×n2 = 0 (resp.
⇒ B1·n1 + B2·n2 = 0, j1·n1 + j2·n2 = 0)

I perfect conductor σr →∞ in contact with normal conductor (nc):
Ec × nc = 0⇔ jc × nc = 0 and Bc · nc = 0. Surface current: Hc × nc = js

I perfect ferromagnetic material (also called pseudo-vacuum or VTF Vanishing
Tangential Field) µr →∞ in contact with normal conductor: Hc × nc = 0 and
jc · nc = 0.
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Dynamo action
We have a dynamo when the magnetic field is sustained: magnetic energy does
not tend to 0 when time →∞ for some value of Rm

B = 0 is solution of MHD equations. Dynamo action when B = 0 unstable,
i.e. when Rm > Rc

m(Re , µr , σr )

no dynamo theorem, some anti-dynamo theorems (Cowling’s1)
kinematic problem: given a flow u (analytical u(x, t), measurements,
Navier-Stokes computation), how fast does the magnetic energy grow?
Linear, eigenvalue problem - lots of theory, clean issues
dynamical problem: given a mechanism for driving a flow (convection, shear,
impellers) how does the field grow and saturate? Nonlinear, chaotic, issues of
(MHD) turbulence. Usually requires numerical treatment - little theory
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1An axisymmetric magnetic field vanishing at infinity cannot be maintained by dynamo action.
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Dynamo action
full MHD equations with linear (Lorentz force neglected) and nonlinear regimes:
parameter space {Re ,Rm, µr , σr}.

onset of dynamo action monitored by the total magnetic energy,
M(t) = 1

2

∫
Ω
H(r, t) · B(r, t)dr

linear dynamo action M(t) ≈ exp((λr + iλi )t) with λr > 0. Threshold
Rm = Rc

m(Re , µr , σr ) when λr = 0.
nonlinear dynamo action when M(t) saturates. Question about mean energy
partition B2

µ0
= ρV 2f (Re ,Rm, µr , σr )

power needed to drive a turbulent flow P ≈ ρU3
refL

3
ref/lf = ρη3R3

m/lf

⇒ Interplay between analytical, experimental and numerical approaches.

Progress made thanks to numerics even if numerical limitations force to run codes
at parameters far from realistic values: bad job in modeling the very small-scale
flow dynamics but hopefully capture the larger-scale dynamo process correctly −→

From simple to complex numerical computations
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1D or 2D models
Ponomarenko dynamo (1973)

∂tB = − 1
Rm
∇×

(
1
σr
∇× B

µr

)
+∇×(u× B), kinematic dynamo

1D2C axisymmetric rigid screw flow surrounded by conductor:
u(r) = rΩeθ + χr0Ωez for r < r0 and u = 0 for r ≥ r0. Kinetic helicity is
HK = u · ∇×u = 2Ω2χr0
discontinuity of u at r = r0 (in conductor) provides strong shearing.
Mechanism: stretching of radial field, diffusion of toroidal/azimuthal field and
coupling through diffusion
magnetic Reynolds number Rm = µ0σr2

0 Ω
√

1 + χ2 based on maximum
velocity
solution of the form B = b(r) exp[(λr + iλi )t + imθ + ikz ]. The threshold is
when λr = 0
analytical optimization and matlab give
Rmc = 17.7221, kr0 = −0.3875,m = 1, χ = 1.3141, r2

0λiµ0σ = −0.4103
comparison with SFEMaNS using Kaiser and Tilgner (1999) parameters:
pitch χ = 1, periodic length k = 2π/8 and Rm = µ0σr2

0 Ω, conducting
domain 0 ≤ r ≤ r1 ⇒

I rotating magnetic field generated by shear near r = r0
I same scale for u and B
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1D or 2D models
Ponomarenko dynamo with SFEMaNS (Laguerre et al., Proc. ULB, CTR, 2005)

mechanism: stretching of radial field, diffusion of toroidal field and coupling
through diffusion
rotating magnetic field localized at discontinuity r0
same scale for u and B

periodical box Time evolution of B

Rmc(= µ0σr2
0 Ω) ≈ 18 for discontinuous u
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1D or 2D models
Screw or spiral Couette dynamo (Dobler, Shukurov and Brandenburg, PRE 2002)

smooth Ponomarenko profile created by spiral Couette flow (vertical velocity
W1 inside, angular velocity Ω2 outside)
1D eigenvalue code and 3D periodic compressible code (Mach < 0.5), perfect
conductor BC at R2
growth rate λr as a function of Rm: scaling laws as R−1/3

m (like Ponomarenko
case) and R−1/2

m : λr → 0 as Rm →∞ (slow dynamo)

inner cylinder trans-
lates at W1, outer
cylinder rotates at Ω2

λr (m = 1) vs Rm and radial mag-
netic energy profile for 0 ≤ r ≤ R2

isosurface |B| 65%
maximum at Re =
111, Rm = 1110 >
Rmc ≈ 218
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1D or 2D models
Riga experiment (Gailitis et al., PRL, 2000)

optimization (Gailitis, Stefani, Dobler, Frick): Rmc = 10.8

device with liquid sodium linear and saturated regimes

Rotating m = 1
mode ⇒ two helices
of opposite chirality
with respect to u

⇒ first evidence of an experimental fluid dynamo
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1D or 2D models
Perm experiment

1D geometry to toroidal geometry with Perm experiment: the m = 3 mode is
critical with Rmc(torus) = 17.5 and Rmc(Perm) = 16 (against Rmc(Pono) = 10.8)

torus geometry Perm geometry
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Perm dynamo by SFEMaNS at
Rm = 17: iso-surfaces of the Hθ
component of the m = 3 mode:
25% of the minimum (black) and
of the maximum values (white)
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1D or 2D models
Perm experiment

Torus in alloy based on copper on a turntable with diverters inside. Store kinetic
energy in spinning torus and brake abruptly (within 0.1− 0.2s). Flow diverters
make flow helical ⇒ screw dynamo. Numerical results (Dobler, Frick and
Stepanov, PRE 2003): field generation within ≤ 1s, then decay of B and u but
dynamo in the lab?
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1D or 2D models
G.O. Roberts dynamo (1970)

∂tB = − 1
Rm
∇×

(
1
σr
∇× B

µr

)
+∇×(u× B), kinematic dynamo

2D3C flow, independent of z but has a z-component
u = (cos y , sin x , sin y + cos x) = (∂yψ,−∂xψ,ψ) with ψ = sin y + cos x .
Special case of ABC (Arno’ld, Beltrami, Childress) flows
u = (A sin z + C cos y ,B sin x + A cos z ,C sin y + B cos x). Beltrami flow s.t.
∇×u = u
solution of the form B = b(x , y , k) exp(pt + ikz). Double Fourier series
expansion for solving b(x , y , k)

steady helicoidal right-handed growing magnetic field at large scale:
B = (− sin kz , cos kz , 0) exp(pt). Different scales for u (small) and B (large)
DNS by Ponty and Plunian, PRL 2011, transition from Large-Scale to
Small-Scale dynamo
Karlsruhe experiment
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1D or 2D models
G.O. Roberts dynamo (Plunian, Rädler, Magnetohydrodynamics 2002)

figure rotated through 45o : streamlines of u (left), B
(right)

growth rate p ∼ αk − k2/Rm at
different Rm

alternate helical loops (helicity) for u
steady helicoidal right-handed B field (m = 1 mode)
at large Rm, generated field is expelled into boundary layers ⇒ enhanced
diffusion, leading to lower growth rates and ultimately to decay: p → 0 as
Rm →∞ (slow dynamo)
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1D or 2D models
G.O. Roberts dynamo (Ponty, Plunian, PRL 2011)

Rmc vs Re , inset: u streamlines and time-averaged ωz
(laminar-left, turbulent-right)

B streamlines
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1D or 2D models
Karlsruhe dynamo experiment (Stieglitz, Muller, PoF, 2001)

52 helical loops with liquid sodium ⇒ second evidence of an experimental fluid
dynamo
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Overview of the numerical methods
3D periodic Cartesian geometry

Essence of pseudo-spectral methods (Orszag, 1969): all differentiating done
in spectral space, all multiplication in physical space. The key is the Fast
Fourier Transform (FFT). Linear terms treated in spectral space, nonlinear
terms in real space, and FFT used to go back and forth between physical and
spectral spaces. Advance in time in spectral space. For incompressible
Navier-Stokes equations, the pressure is eliminated by applying the
divergence free operator in Fourier space.
Examples of flows (no vacuum)

I ABC-Arno’ld, Beltrami, Childress flow (Galanti, Sulem, Pouquet, GAFD 1992,
Arnold, Galloway, Frisch)
u = (A sin z + C cos y ,B sin x + A cos z ,C sin y + B cos x).

I Taylor-Green flow (Brachet et al., JFM 1983, Pouquet, Politano, Mininni,
Ponty, Laval, Krstulovich)
Simplest driving force in Navier-Stokes equations with constant velocity
f(t) = f (t)vTG with f (t) s.t. the (k0, k0, k0) Fourier mode is constant
vTG = (sin(k0x) cos(k0y) cos(k0z),− cos(k0x) sin(k0y) cos(k0z), 0). Other
ways: constant force (i.e. add f at each time-step) or constant injection
power. Several symmetries are dynamically compatible and can increase the
CPU efficiency (see later).
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Overview of the numerical methods
Two periodic directions

Rotation-shear driven dynamo in an accretion disc (Lesur, Fromang, Papaloizou, etc)

accretion discs found around young stars and compact objects
gas spirals on the central object with outward turbulent transport of angular
momentum
discs may be turbulent due to the magnetorotational instability (MRI) (Balbus,

Hawley, 1991)

Focus on a small region of an accretion disc ⇒ local model: incompressible
Cartesian flow, with Ω local rotation and S linear radial shear:

∂tu + Sy∂xu + u · ∇u = −∇p − 2Ωez × u− Suyex + j× B + ν∆u,
∂tB + Sy∂xB = SByex∇×(u× B) + η∆B,

∇·u = 0.
∇·B = 0.

where u,B perturbations, with two cartesian periodic directions in z and x(φ)
and shearing-periodic condition in y(r) (no vacuum)
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Rotation-shear driven disc dynamo (Lesur, Fromang, Papaloizou, etc)

local model (shearing box). From
Lesur, 2009

Bφ. From Lesur, 2009

BC periodic in z and φ, shearing-periodic in r , no vacuum
no averaged magnetic field (only generated by the flow)
fast varying non axisymmetric structures involving a large scale Bφ(z)

dynamo starts for finite amplitude perturbations: transition to turbulence as
a subcritical MHD instability
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Overview of the numerical methods
BC with vacuum

continuity of tangential components of E and H
continuity of normal component of B = µ0µrH and j
if no jump in µr , continuity of B = µ0H
j = ∇×(B/µ0) = 0 in vacuum. If vacuum simply connected, Bv = ∇φ with
∇·B = 0 ⇒ ∆φ = 0 (φ harmonic function).
Depending on the geometry, we can have analytical solutions in vacuum:

I plane layer: Bv ∼ e±kz

I infinite/axially periodic cylinder: Bv as Bessel functions in r
I sphere: Bv as spherical harmonics in θ, ϕ
I other: none
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Overview of the numerical methods
Two periodic directions with vacuum

Convection driven plane layer dynamo (Cattaneo, Hughes, 2006)

Horizontal plane layer bounded between z = ±0.5d . Gravity and rotation axis in
ez direction, though sometimes have rotation axis tilted. Heated from below,
usually with constant temperature on boundaries. Electrically insulating outside
fluid layer. No-slip or stress-free boundaries.

∂tu + u · ∇u + 2Ωez × u = −∇p + j× B + gαTez + ν∆u,
∂tB = ∇×(u× B) + η∆B,

∂tT + u · ∇T = κ∆T + ST ,
∇·u = 0.
∇·B = 0.

Use toroidal-poloidal expansions (divergenceless u and B)
u = ∇×(eez) +∇×∇×(f ez) + Ux(z , t)ex + Uy (z , t)ey ,
B = ∇×(gez) +∇×∇×(hez) + Bx(z , t)ex + By (z , t)ey ,

where Ux(z , t),Uy (z , t),Bx(z , t),By (z , t) mean parts . Take z-components of
curl and curl curl of NS and z-components of induction eqn and its curl.

Caroline Nore (LIMSI-CNRS, Paris Sud) Numerical dynamos July 27, 2016 23



Convection driven plane layer dynamo (Cattaneo, Hughes, 2006)

Pseudo-spectral method with no-slip BC at z = ±0.5 (γ = β = 2π):
f (x , y , z , t) =

∑Nx
l=−Nx+1

∑Ny
m=−Ny +1

∑Nz+2
n=1 flmn(t)e i(lγx+mβy)Tn−1(2z) or

with stress-free BC with
f (x , y , z , t) =

∑Nx
l=−Nx+1

∑Ny
m=−Ny +1

∑Nz+2
n=1 flmne i(lγx+mβy) sin(nπ(z + 0.5))

temperature, without or with rotation

Bx , without or with rotation

Comparison between non-
rotating (left) and ro-
tating (right) cases at
Rayleigh ≥ 5 × 105: light
(dark) tones represent positive
(negative) fluctuations
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Overview of the numerical methods
Two periodic directions with vacuum

Dynamo in infinite cylinders

cylinder 0 ≤ r ≤ Rcyl : Bessel functions in r outside, pseudo-spectral in the
azimuthal and axial directions, and compact finite differences in the radial
direction inside (Léorat, 1994, Marié et al., EPJB 2003, Ravelet et al., PoF 2005)

cylinder R1 ≤ r ≤ R2: Bessel functions in r outside, pseudo-spectral in the
azimuthal and axial directions, and Chebychev expansion in the radial direction
outside (Willis & Barenghi, JFM 2002)

I toroidal-poloidal expansions in the conducting domain R1 ≤ r ≤ R2:
u = ψ0(r , t)eθ + φ0(r , t)ez +∇×(ψrer ) +∇×∇×(φ0rer ),
B = T0(r , t)eθ + P0(r , t)ez +∇×(T rer ) +∇×∇×(Prer ),

where ψ0, φ0, T0,P0 are non-periodic parts and periodic parts are expanded as:
f (x , θ, z , t) =

∑N
n=0
∑
|k|<K

∑
|m|<M fnkm(t)e i(αkz+m1mθ)Tn(x) for

x ∈ [0, 1], θ ∈ [0, 2π/m1], z ∈ [0, 2π/α] (r = R1 + x(R2 − R1))
I B = ∇ψ in the insulating domain (no jθ imposed)
⇒ ψ = R(r)Θ(θ)Z(z) = R(r)e i(mθ+αz) with R(r) solution of the modified
Bessel functions. For α = 0, R(r) = r±m for r ≤ R1 or r ≥ R2; for α 6= 0,
R(r) = Im(αr) for r ≤ R1 or R(r) = Km(αr) for r ≥ R2.
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Overview of the numerical methods
Two periodic directions with vacuum

Example: Taylor-Couette dynamo (Willis & Barenghi, AA 2002)

axially periodic cylin-
ders

isosurface of |B| at Re =
120, Rm = 240

Figure : Self-consistent dynamo in axially periodic Taylor-Couette set-up with
R1/R2 = 0.5,Ω2 = 0.
Larger scale for B than for u (Laure et al., Nato Sci Ser. II 2000)
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Overview of the numerical methods
Sphere

kinematic dynamo: Dudley and James, Proc. Roy. Soc. London, 1989 (finite
differences)
nonlinear dynamo: use thermal convection and rotation as sources of motion

I first 3D self-consistent Boussinesq models of thermal convection 20 yr ago
(Glatzmaier and Roberts, Nature, 1995; Kageyama et al., Nature, 1995), first
milestones of modern dynamo modeling ⇒ dipole excursions and reversals

I benchmarks in spherical shell or full sphere: Christensen et al., 2001;
Christensen et al., 2009; Jones et al., 2011; Jackson et al., 2013; Marti et al.,
2014; Matsui et al., 2016 ⇒ comparisons between pseudo-spectral and local
methods, finite volume or finite element methods or mixed ‘global-local’
method (SFEMaNS)

Magnetic field
streamlines like
a dipole and
web page of
G. Glatzmaier
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Numerical methods for a sphere
pseudo-spectral codes, usually with a poloidal–toroidal representation for
magnetic field and velocity: spherical harmonic expansions in the angular
variables and different approximations in r : Chebyshev polynomials (Tilgner,
Busse, 1997; Hollerbach, 2000; Sasaki et al., 2012, Simitev and Busse, 2014);
finite differences (Sheyko, Marti and Jackson, 2014; Dormy in the code
PARODY, Aubert in the code PARODY-JA; Schaeffer, 2012); Worland
polynomials (Marti, Jackson, 2014)
finite volume algorithm: magnetic and velocity fields directly; divergence-free
condition for B implemented using a Lagrange multiplier; massively
MPI-parallel unstructured finite-volume code, based on a domain
decomposition with METIS (Vantieghem et al., GJI 2016 with
pseudo-vacuum BC)
finite elements: magnetic and velocity fields directly; divergence-free
condition for B implemented using a Lagrange multiplier; quadratic finite
elements elements are used for u,T and B and linear elements for P (Chan
et al., 2007).
commercial code like COMSOL: finite elements for u,P,T and A (vector
potential) (standard Lagrange element P1-P2-P2 for P, u,T , quadratic edge
elements for A) (Cébron, 2014)
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Overview of the numerical methods
Finite domains

spheroid: dynamo in a precessional spheroid by Wu, Roberts, GAFD 2009
with Poincaré stress condition (problem, see Guermond et al., EJMB 2013)
torus: Morales et al., PoP 2015 (using penalty method, see later)
cylinder: Giesecke et al., 2008–, Iskakov et al., 2004, Nore et al., 2006– (see
VKS modeling)

precessional spheroid D-torus dynamo in a short Taylor-
Couette cylinder
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Motivation

Figure : The von Kármán sodium experiment (VKS collaboration)

mainly axisymmetric B (axial dipole and azimuthal component) for exactly
counter-rotating impellers
magnetic field generated only when impellers are made of soft iron with
relative magnetic permeability µr > 1. Why?
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First step: periodic cartesian geometry and nonlinear codes
Taylor-Green vortex

∂tu + u · ∇u = −∇p + j× B + ν∆u + f,
∂tB = ∇×(u× B) + η∆B,

with ρ = 1, ∇·u = 0,∇·B = 0 and f(t) = f (t)vTG s.t. one keeps constant
vTG = (sin(k0x) cos(k0y) cos(k0z),− cos(k0x) sin(k0y) cos(k0)z , 0). Plane vTG
not a dynamo but nonlinear u is 3D
Kinetic and magnetic Reynolds numbers as outputs: Re = UrmsLint

ν ,Rm = UrmsLint
η

with Urms =
√
〈u2〉 and Lint =

∫ E(k)
k dk/

∫
E (k)dk

with f =
∫ T
0 f (t)dt/T , 〈f 〉 =

∫
vol f (x)d3x/vol

π

O

z

y

x

k0 = 1 in the imper-
meable box {0, π}3

π

πO
x

y

k0 = 3
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First step: periodic cartesian geometry and nonlinear codes
Taylor-Green vortex

Symmetries are dynamically compatible, i.e. IC as vTG then solution vs symmetric:
vsx =

∑
m,n,p ûsx(m, n, p, t) sinmx cos ny cos pz ,

vsy =
∑

m,n,p ûsy (m, n, p, t) cosmx sin ny cos pz ,
vsz =

∑
m,n,p ûsz(m, n, p, t) cosmx cos ny sin pz

where ûsx(m, n, p, t), ûsy (m, n, p, t), ûsz(m, n, p, t) vanish unless (m, n, p) are
either all even or all odd integers + additional relations.
Corresponding rotational symmetries: of angle π around the axis (x = z = π/2)
and (y = z = π/2); and of angle π/2 around the axis (x = y = π/2). Planes of
mirror symmetry: x = 0, π, y = 0, π, z = 0, π. Velocity parallel to these planes
(impermeable box).
Different choices of symmetry for B and j: Nore et al., PoP 1997, B like vs
(perfect conductor), Krstulovic et al., PRE 2013, multiple choices
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First step: periodic cartesian geometry and nonlinear codes
Results (Nore et al., PoP 1997)

early comparisons between a TG symmetric code and a general periodic code.
Generation of magnetic field: slab mode with periodic code (∼ equatorial dipole),
use of scale separation for the TG symmetric code (B like vs , perfect conductor)

TG symmetric code k0 = 3, isosur-
faces of B2 (green) and ω2 (purple),
Re = 25 and Rm = 44 > Rmc ≈ 40
in {0, π}3

Periodic code
with k0 = 1,
〈ω2〉, 〈u2〉, 〈j2〉, 〈B2〉 vs
time

Periodic code k0 = 1,
vectors B, Re = 10 and
Rm = 41 > Rmc ≈ 10
in {0, 2π}3
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First step: periodic cartesian geometry and nonlinear codes
Results (Ponty et al., NJP 2007, Dubrulle et al., NJP 2007, Ponty, Laval et al., PRL 2007)

Growth rates for the kinematic
dynamo generated by time-
averaged flow versus Rm ⇒ two
dynamo branches: 1st slab, 2nd

similar to equatorial m = 1 mode

Evolution of Rmc for the kine-
matic runs from the time-
averaged flow (diamond) and the
dynamical runs in full line versus
the Reynolds number Re ⇒ only
slab mode
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First step: periodic cartesian geometry and nonlinear codes
Results (Ponty et al., NJP 2007, Dubrulle et al., NJP 2007, Ponty, Laval et al., PRL 2007)

hysteretic behavior due to hydrodynamic changes induced by the action of the
Lorentz force

Bifurcation curves and hystere-
sis cycles when an external mag-
netic field is applied (diamond)
or without one (circle)
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First step: periodic cartesian geometry and nonlinear codes
Results (Krstulovic et al., PRE, 2011)

use of mirror symmetries (impermeable box) for u and simplified BC for B→ 6
distinct families of magnetic field: ICI, ICC, IIC, III, CCC, CCI where I is perfect
ferromagnetic material and C is perfect conductor

linear dynamo action at Re = 30 (higher Rmc at Re = 150):

Case ICI ICC IIC III CCC CCI
Rmc 9 26 66 73 231 254

Table : Magnetic thresholds for Re = 30

The III growing mode is an axial dipole (Pc
m = 73/30 ≈ 2.4).

nonlinear dynamo action for III case: super and sub-critical regimes due to
hydrodynamic pitchfork bifurcation at Re = 22. If following a line
Rm = PmRe , supercritical dynamo bifurcation for Pm large enough,
subcritical for Pm small enough.
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First step: periodic cartesian geometry and nonlinear codes
Linear and nonlinear dynamo action for III case

Figure : (a) B in red, j in yellow and density plot of highest magnetic energy zones of the
growing mode at Rm = 80 in {0, π}3; (b) qualitative bifurcation diagram: blue for DNS,
green for qualitative lines, filled (empty) triangles for a nonvanishing (vanishing)
magnetic field at saturation, half-filled triangles for bistable zone

Similar to VKS dynamo for streamlines but not for localization of magnetic energy
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Second step: axially periodic cylindrical and kinematic code
VKE flow

Use of the time and azimuthal-averaged flow VKE from a half-scale water
experiment using LDV (small scales, non-axisymmetric and fluctuating perturbations
filtered out): Cowling’s thm ⇒ B(m = 0) mode impossible
Numerical method pseudo-spectral in (θ, z) and finite differences in r , matching
with exact solutions outside (Léorat AIAA, 1994).
Solution B(r , θ, z , t) =

∑
n,m Bn,m(r , t) exp(i(mθ + nz))

Symmetrized velocity field (Marié et al., EPJB 2003, Ravelet et al., PoF 2005)

measured VKE symmetrized VKE
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Second step: axially periodic cylindrical and kinematic code
Results (Ravelet et al., PoF 2005)

optimization with different TM (TM28, TM73, TM60, etc)
growing magnetic field is a m = 1 steady mode, equatorial dipole and two
vertical structures aligned with the cylinder axis; compatible with Cowling’s
thm
influence of the static side layers (same conductivity): Rmc decreases with w

w = 0 w = 0.6 Rmc vs w
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Third step: finite cylinder and kinematic code
MND2 flow

MND flow for 0 ≤ r ≤ 1 and
−1 ≤ z ≤ 1:

vr = −π2 r(1− r)2(1 + 2r) cos(πz),
vθ = 4εr(1− r) sin(πz/2),
vz = (1− r)(1 + r − 5r2) sin(πz).

ε = T/P = 0.7259 (optimal
value for the dynamo action) Figure : Kinematic m = 1 mode with w = 0 = l

(vacuum) at Rm = 65 > Rmc = 63.5, SFEMaNS

Numerical methods
Stefani, Xu (2004, Integral Equation Approach IEA [steady or time-dependent
kinematic dynamos using Biot and Savart’s law in conducting domain and BEM in
vacuum], Differential Equation Approach DEA) same σ for fluid and wall
Iskakov et al., JCP 2004; Giesecke et al., GAFD 2010 (FV-BEM code)
SFEMaNS

2Marié, Normand, Daviaud, PoF 2006
Caroline Nore (LIMSI-CNRS, Paris Sud) Numerical dynamos July 27, 2016 41



Third step: finite cylinder and kinematic code
FV-BEM method

∂tB = − 1
Rm
∇×

(
1
σr
∇× B

µr

)
+∇×(u× B) in the conducting domain

Bn+1 = Bn + ∆tF exp
[
Bn + ∆t

2 F [Bn]
]

+ ∆t
2 (F imp[Bn] + F imp[Bn+1])

with B (resp. E) defined at the center of the cell face (resp. edge) and where
explicit term F exp ∝ ∇×(u× B) and implicit term F imp ∝ ∇×(η∇× B) and
F = F imp + F exp
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Third step: finite cylinder and kinematic code
FV-BEM method

procedure described in Iskakov, Descombes, Dormy, JCP 2004
in a simply connected vacuum, ∇× B = 0⇒ B can be expressed as the
gradient of a scalar field Φ.

B = −∇Φ with ∆Φ = 0, Φ→ O(r−2), r →∞

Adopting Green’s 2.theorem the integration of ∆Φ = 0 yields:

Boundary Integral Equation (BIE)
Γ : surface
Bn: normal component

Φ(r) = −2
∫
Γ

(Φ(r′)
∂G (r, r′)
∂n

+Bn(r′)︷ ︸︸ ︷
−∂Φ(r′)

∂n
G (r, r′))dΓ(r′)

G (r, r′): Greens-Function or fundamental solution

∆G (r, r′) = −δ(r − r′) =⇒ G (r, r′) = − 1
4π |r − r′|
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Third step: finite cylinder and kinematic code
Surface discretization

Bn is computed from FV-scheme
⇒ compute Φ from BIE
⇒ compute Bτ = −êτ ·∇Φ used by
FV
discretisation: boundary element ∼
surface of a grid cell
introduce global ordering scheme
i = 1...N

1
2
Φi = −

∑
j

∫
Γj

∂G
∂n

(~ri ,~r ′)dΓ′j


︸ ︷︷ ︸

Aij

Φj −
∑

j

∫
Γj

G(~ri ,~r ′)dΓ′j


︸ ︷︷ ︸

Cij

Bn
j

Bτi =
∑

j

∫
Γj

2~̂eτ · ∇r
∂G
∂n

(~ri ,~r ′)dΓ′j


︸ ︷︷ ︸

Dij

Φj −
∑

j

∫
Γj

2~̂eτ · ∇rG(~ri ,~r ′)dΓ′j


︸ ︷︷ ︸

Fij

Bn
j
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Third step: finite cylinder and kinematic code
Boundary Matrix

Matrix Equation for Bτ

1
2Φi = −AijΦj − CijBn

j

Bτ
i = DijΦj −FijBn

j

Bτ =

(
−D

(
1
2

+A
)−1

C − F

)
︸ ︷︷ ︸

H

·Bn

numerical computation of
matrix elements with
2D-Gauss-Legendre quadrature
method
special treatment of diagonal
elements (singularities)
necessary

linear, non-local expression for the tangential field components: Bτ = HBn

where H is a fully occupied matrix.
computation of Bτ

i at a single point requires the knowledge of Bn
j at every

grid cell (j) at the surface.
matrix Hij only depends on the geometry and needs only be computed once
(which, however, requires a huge amount of memory).
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Third step: finite cylinder and kinematic code
Results

Stefani et al., EJMB, 2006: using MND and VKE flows, study of the
influence of the walls (side and lid) ⇒ detrimental role of (rotating) lid layers
Laguerre et al., CR Mécanique, 2006: using MND flow, with different
conductivities X = σshell/σfluid = 1 or 5 and different (static) layers w , l (side
and lid layers) ⇒ same detrimental role of lid layers
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Gissinger, Iskakov et al., EPL, 2008: infinite permeability BC decreases Rmc
Gissinger (EPL 2009): MND+strong non-axi vortices lead to the generation of a
nearly axisymmetric dipole (but no reproducible results by COMSOL,
FV-BEM nor SFEMaNS)
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Fourth step: alpha-VKS in kinematic code
Mean-field induction equation using B = BLS + B′, u = uLS + u′ ⇒

∂tBLS = ∇× (uLS × BLS + EEE − η∇×BLS)
with electromotive force EEE = (u′ × B′)LS

BLS slightly varies around (r, t) ⇒ Ei ≈ αijBLS
j + βijk∂kBLS

j + . . .

simplest case isotropic, non-mirror symmetric turbulence: αij = αδij and
βijk = −ηT εijk (ηT turbulent diffusivity)
relation between α-effect and kinetic helicity: α ≈ − 1

3τcorr (u · ∇ × u)LS

kinematic approach with blades modeled by an αθθ-effect using

∂tB = ∇× (Ũ× B + α(B · eθ)eθ)−∇×( 1
Rm
∇×B)

with Ũ measured VKE flow and different conductivities σi in the walls. Study
of influence of top/bottom BC (z = ±H/2R0 and 0 ≤ r ≤ R0): vacuum (I)
or perfect ferromagnetic (F)
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Fourth step: alpha-VKS in kinematic code
Results

early computations by Laguerre et al., PRL 2008

numerical domain and VKE radial helical vortices between
blades

localized αθθ-effect

⇒ good shape but irrealistic value of α-effect (numerics α ∼ −30m s−1 vs rough
estimate α ∼ −uRblades

m = −u2h/η = −1.8m s−1 for umax ≈ 15m s−1)
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Fourth step: alpha-VKS in kinematic code
Results

early computations by Laguerre et al., PRL 2008

numerical domain and VKE radial helical vortices between
blades

m = 0 (F) growing magnetic
field for Rmc = 32, |α| = 2.2 >
|αc | = 2.1 (∼ 30m s−1)

⇒ good shape but irrealistic value of α-effect (numerics α ∼ −30m s−1 vs rough
estimate α ∼ −uRblades

m = −u2h/η = −1.8m s−1 for umax ≈ 15m s−1)
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Fourth step: alpha-VKS in kinematic code
Results

early computations by Laguerre et al., PRL 2008

⇒ good shape but irrealistic value of α-effect (numerics α ∼ −30m s−1 vs rough
estimate α ∼ −uRblades

m = −u2h/η = −1.8m s−1 for umax ≈ 15m s−1)
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Fourth step: alpha-VKS in kinematic code
Results (Giesecke, Nore et al., GAFD 2010)

validation with two different codes: FV-BEM and SFEMaNS for vacuum BC

localized α-effect field amplitude growthrates for lo-
calized α-effect

Rmcrit vs α: black curves, lo-
calized α-effect; grey curves, ho-
mogenous α-effect

⇒ simple profiles of α need large and unrealistic values of α (∼ −60m s−1) to
explain the VKS experimental results; smaller values with homogeneous α
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Fourth step: alpha-VKS in kinematic code
Results (Giesecke et al., PRL 2010)

modeling of blades in kinematic code using MND flow

MND flow and impellers with straight blades 8 straight blades
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Fourth step: alpha-VKS in kinematic code
Results (Giesecke et al., PRL 2010)

modeling of blades in kinematic code using MND flow

growth rates of B with no α-effect growth rates of B(m = 0) with homoge-
neous α-effect

⇒ no growing axisymmetric mode with α = 0 (Cowling’s thm)
⇒ growing m = 0 mode if very small α is included: efficient interaction of α with
µr within the impeller region
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Fourth step: alpha-VKS in kinematic code
Results (Giesecke et al., PRL 2010)

modeling of blades in kinematic code using MND flow

density plot of magnetic
energy with small α

growth rates of B(m = 0) with homo-
geneous α-effect

⇒ no growing axisymmetric mode with α = 0 (Cowling’s thm)
⇒ growing m = 0 mode if very small α is included: efficient interaction of α with
µr within the impeller region
⇒ good shape but homogeneous α-effect not really realistic
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Fifth step: Direct Numerical Simulation
The non-dimensionalised MHD equations:

Navier-Stokes equations for an incompressible fluid:
∂tu + u · ∇u− 1

Re
∆u +∇p = (∇× B

µr
)× B + f,

∇·u = 0.
Maxwell equations for the induction field B (magnetic field H = B/µr ):

∂tB = − 1
Rm
∇×

(
1
σr
∇× B

µr

)
+∇×(u× B),

∇·B = 0.
Kinetic and magnetic Reynolds numbers with ν kinematic viscosity, µ0
vacuum magnetic permeability, σ0 fluid electrical conductivity (and magnetic
Prandtl number):

Re =
UrefLref

ν
, Rm = µ0σ0UrefLref, Pm =

Rm

Re
= µ0σ0ν.
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SFEMaNS code from 2002 to now
Code developed by J.-L. Guermond, myself, PhD students and post-docs since
2002 (R. Laguerre, A. Ribeiro, K. Boronska, F. Luddens, D. Castanon-Quiroz and
L. Cappanera)

Basics
Axisymmetric geometry
Fourier decomposition in the azimuthal direction
Lagrange finite elements in the meridian plane (P1-P2 polynoms)

Code capabilities
Hydrodynamic, thermal convection, magnetic and MHD studies
Description of vacuum
Permeability and conductivity jumps (in radial and axial directions)
Parallelization with respect to Fourier modes and domain decomposition in
the meridian plane
Entropy viscosity method-LES to reach higher Re (Guermond et al., 2008)
Pseudo-penalty method to impose obstacles (Pasquetti et al., ANM 2008)
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Scheme of SFEMaNS

Figure : SFEMaNS using f (r , θ, z , t) =
∑M

m=0 f c
m(r , z , t) cosmθ+

∑M
m=1 f s

m(r , z , t) sinmθ
and f c

m(r , z , t) approximation in F.E. space (P1-P2 polynoms)
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Figure : Meridian mesh with finite elements (hwall = 0.01 and hblades = 0.0025)

Magnetic domain with different regions: Ω = {(r , θ, z) ∈ [0, 1]× [0, 2π)× [−1, 1]}
for fluid and Ωout = {(r , θ, z) ∈ [1, 1.6]× [0, 2π)× [−1, 1]} for the stagnant
sodium layer and the copper outer wall
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Impellers in SFEMaNS using a pseudo-penalty method

Pseudo-penalty (Pasquetti et al., Appl. Num. Math., 58, 2008)
un+1 − χun

τ
− R−1

e ∆un+1 +∇pn+1 = χfn+1,

∇·un+1 = 0,
with χ penalty function (1 in fluid, 0 in solid)

One mesh and order 1 in time method (error in τR−1
e )

Nonlinear terms from pseudo-penalty explicitly treated
Adaptation to a predictor-corrector scheme (penalty on pressure increments)
Extension to moving solid obstacles with speed uobs

Ferromagnetic moving impellers treated as varying relative permeability zones
with 1 ≤ µr (r , θ, z , t) ≤ µmax
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Navier-Stokes scheme

un+1 − χn+1un

τ
− 1

Re
∆un+1 = −∇pn + χn+1 (−(∇×un)× un −∇ψn) +

(1− χn+1)
un+1

obst
τ

,

with χ penalty function (1 in fluid, 0 in solid) and ∇·un+1 = 0

Maxwell scheme

Bn+1 − Bn

τ
+

1
Rm
∇×

[
1
σr
∇×

(
Bn+1 − Bn

µ

)]

= − 1
Rm
∇×

[
1
σr

(
∇×B

n

µnr

)]
+∇×(un+1 × Bn)

with τ timestep, σr relative conductivity, µ ≤ µr and Rm = µ0σ0UrefLref
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Von Kármán flow

Experimental set-up
Metal impellers TM73 used by VKS2
(Monchaux et al. 2007)
8 blades on each disk with
Rimp/Rcyl = 0.75
Curvature angle of 24o

Counter-rotating impellers
Unscooping sense ("dos cuillère")

Numerical study of the hydrodynamic regime

Control parameter Re = R2
cylω/ν

DNS with 128 or 192 Fourier modes and
non-uniform meridian mesh (hwall = 0.01 and hblades = 0.0025)
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Hydrodynamic regime for 500 ≤ Re ≤ 2500

Unsteady flow
Breaking of axisymmetry
m = 2 mode predominant for Re = 500
m = 3 mode predominant for Re ≥ 675 −→
all u modes coupled

Fluid exchange between upper &
lower parts at Re = 500

Helical vortices between blades (Ravelet et al. 2012, Kreuzahler et al. 2014)

Re = 500 Re = 1000 Re = 2500

Figure : |u| near bottom impeller
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Hydrodynamic regime for 200 ≤ Re ≤ 2500
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Figure : Time averaged spectra of the kinetic energy as a function of the azimuthal mode

for Re < 500 only m = 0 and 8 (and harmonics) are populated
at Re = 500, m = 0 and 2 in u dominate −→ splitting between even H
family [0-family] and odd H family [1-family] (via EMF u× B)
for Re > 800, all u modes are coupled −→ no splitting for H
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MHD regime

Experimental set-up
Metal impellers TM73 used by VKS2
(Monchaux et al. 2007)
8 blades on each disk with
Rimp/Rcyl = 0.75
Curvature angle of 24o

Counter-rotating impellers
Unscooping sense ("dos cuillère") Figure : Re = 2500, |∇×u|

Numerical study of the MHD regime at Re = R2
cylω/ν = 500 and 1500 with

Rm = µ0σ0R2
cylω

at Re = 500, m = 0 and 2 in u dominate −→ splitting between even H
family [0-family] and odd H family [1-family] (via EMF u× B)
at Re = 1500, all u modes are coupled −→ no splitting for H

Caroline Nore (LIMSI-CNRS, Paris Sud) Numerical dynamos July 27, 2016 60



MHD regime at Re = 500
Onset of dynamo action monitored by the total magnetic energy,
M(t) = 1

2

∫
Ω
H(r, t) · B(r, t)dr, as well as the modal energies

Mm(t) =
∫

Ω
1
2 |Ĥ(r ,m, z , t)|2drdz

Linear dynamo action M(t) ≈ exp((λr + iλi )t) with λr > 0
Nonlinear dynamo action when M(t) saturates
Variation of the relative permeability of impellers µr
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Figure : Mm(t) for m = 0, 1, 2, 3 and for Rm ∈ [50, 300] at Re = 500 and µr = 5
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MHD regime at Re = 500
Onset of dynamo action monitored by the total magnetic energy,
M(t) = 1

2

∫
Ω
H(r, t) · B(r, t)dr, as well as the modal energies

Mm(t) =
∫

Ω
1
2 |Ĥ(r ,m, z , t)|2drdz

Linear dynamo action M(t) ≈ exp((λr + iλi )t) with λr > 0
Nonlinear dynamo action when M(t) saturates
Variation of the relative permeability of impellers µr

µr Rc
m(0-family) Rc

m(1-family) Pc
m(0-family) Pc

m(1-family)
5 240 ±5 147 ±1 0.48 0.29
50 130 ±2 138 ±2 0.26 0.28
100 82 ±2 144 ±2 0.16 0.29

Table : Magnetic thresholds for Re = 500
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MHD regime at Re = 500
Onset of dynamo action monitored by the total magnetic energy,
M(t) = 1

2

∫
Ω
H(r, t) · B(r, t)dr, as well as the modal energies

Mm(t) =
∫

Ω
1
2 |Ĥ(r ,m, z , t)|2drdz

Linear dynamo action M(t) ≈ exp((λr + iλi )t) with λr > 0
Nonlinear dynamo action when M(t) saturates
Variation of the relative permeability of impellers µr

µr Rc
m(0-family) Rc

m(1-family) Pc
m(0-family) Pc

m(1-family)
5 240 ±5 147 ±1 0.48 0.29
50 130 ±2 138 ±2 0.26 0.28
100 82 ±2 144 ±2 0.16 0.29

Table : Magnetic thresholds for Re = 500

1-family thresholds non sensitive to µr → bulk mode
0-family thresholds very sensitive to µr → ferromagnetic impellers are crucial
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MHD regime at Re = 500

µr = 5, 1-family µr = 5, 1-family µr = 100, 0-family

Figure : MHD simulations at Re = 500, Rm = 150 and (a-b) µr = 5 (1-family, equatorial
dipole and 2 vertical structures), (c) µr = 100 (0-family, axial dipole)
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MHD regime at Re = 500, Rm = 100 and µr = 100

(Hy ,Hz ) vector field, Hx color Hz at z = 0.8 Bz and j at z = 0.8
(top blade seen from
bottom)

axial dipole and toroidal Hθ similar to experimental magnetic field
Hz located between blades, Bz concentrated in blades
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MHD regime at Re = 1500
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Figure : Mm(t) for m ∈ [0, 4] and for Rm ∈ {50, 100} at Re = 1500 and µr = 50

all H modes are coupled (same slope in linear regime)
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MHD regime at Re = 1500

µr Rc
m Pc

m

5 150 ±5 0.10
50 90 ±5 0.06

Table : Magnetic thresholds for Re = 1500
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MHD regime at Re = 1500

Instantaneous magnetic field Time averaged magnetic field

Figure : MHD simulations at Re = 1500, Rm = 150 and µr = 50, dominated by an
axisymmetric axial dipole
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MHD regime in the TM73 VKS configuration at Re = 1500,
Rm = 150 and µr = 50

Caroline Nore (LIMSI-CNRS, Paris Sud) Numerical dynamos July 27, 2016 66



MHD regime in the TM73 VKS configuration at Re = 1500,
Rm = 150 and µr = 50

Caroline Nore (LIMSI-CNRS, Paris Sud) Numerical dynamos July 27, 2016 67



Speculative mechanism

A solid-fluid mechanism
The Ω-effect due to the rotating
impellers generates a
toroidal/azimuthal magnetic field
from poloidal/axial magnetic field
seeds;
This azimuthal magnetic field is
stored in the high permeability disk;
It is then collected in the blades and
collimated into a poloidal field by
the helical vortices (α-effect).

Exp. H Num. H

Figure : Good agreement between
experimental (Boisson et al. 2012) and
numerical results
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Speculative mechanism

A solid-fluid mechanism
The Ω-effect due to the rotating
impellers generates a
toroidal/azimuthal magnetic field
from poloidal/axial magnetic field
seeds;
This azimuthal magnetic field is
stored in the high permeability disk;
It is then collected in the blades and
collimated into a poloidal field by
the helical vortices (α-effect).

Bθ

ω

jθV

Figure : α− Ω mechanism (Pétrélis et al., GAFD

2007, Laguerre et al., PRL 2008)
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Conclusion for dynamo action in VKS
µr Rc

m(0-family) Rc
m(1-family)

5 240 ±5 147 ±1
50 130 ±2 138 ±2
100 82 ±2 144 ±2

Table : Magnetic thresholds for Re = 500

µr Rc
m

5 150 ±5
50 90 ±5

Table : Magnetic thresholds for
Re = 1500

Ferromagnetic impellers enhance axisymmetric magnetic field
Increasing Re lowers the dynamo threshold Rc

m

Speculative mechanism (similar to Yannick Ponty’s one)
Rc

m(VKS) ≈ 55 at Re ≈ 107 with soft iron impellers µr ≈ 60!

Caroline Nore (LIMSI-CNRS, Paris Sud) Numerical dynamos July 27, 2016 69



Conclusion for dynamo action in VKS
µr Rc

m(0-family) Rc
m(1-family)

5 240 ±5 147 ±1
50 130 ±2 138 ±2
100 82 ±2 144 ±2

Table : Magnetic thresholds for Re = 500

µr Rc
m

5 150 ±5
50 90 ±5

Table : Magnetic thresholds for
Re = 1500

Ferromagnetic impellers enhance axisymmetric magnetic field
Increasing Re lowers the dynamo threshold Rc

m

Speculative mechanism (similar to Yannick Ponty’s one)
Rc

m(VKS) ≈ 55 at Re ≈ 107 with soft iron impellers µr ≈ 60!

Future work
Study higher Re numbers in Von Kármán flows to compare with experiments
(CEA Saclay, Dubrulle et al.)
Rc

m → constant as Re →∞?
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Outline

1 Introduction

2 Overview of the numerical methods
1D or 2D models
3D periodic Cartesian geometry
Two periodic directions
Two periodic directions with vacuum
Sphere
Finite domains

3 Numerical models for von Kármán Sodium dynamo (VKS)
First step: periodic cartesian geometry and nonlinear codes
Second step: axially periodic cylindrical and kinematic code
Third step: finite cylinder and kinematic code
Fourth step: alpha-VKS in kinematic code
Fifth step: Direct Numerical Simulation

4 Conclusion
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Conclusion
topic of Numerical dynamos is large (my talk is not exhaustive!) and active
what next?

I optimization of kinematic dynamos (Chen et al., JFM 2015, Herreman, JFM 2016)

I reach high Re using LES models ⇒ question about super/subcriticality
bifurcation with decreasing Pm

I scale separation for optimizing Pref = PL/ρη3 ∝ R3
mL/lf (Sadek et al., PRL 2016)

I wait for the new dynamo experiment in Dresden using a precessing cylinder

Dresdyn cylinder Axial spin: vorticity stream-
lines in red, B in yellow/green

Re = 1200, Rm = 2400 >
Rmc ≈ 775
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Thank you for your attention
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