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Indirect effects related to their role as condensation nuclei in clouds

Direct effects 
Albedo, Greenhouse

 Influence on cloud droplet size distributions? 
 Repercussions on the lifecycle of clouds? 
 Consequences on global circulation?

Effets climatiques des aérosolsInfluence of aerosols on climate

 Lifetime? 
 Spatial distribution? 
 Scattering properties?

+



 

turbulent 
mixing of 
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broadening of 
size distribution

timescales?

turbulent 
settling

convection

condensation

coalescences
turbulent accelerations

mixing between dry 
and wet air

latent 
heat

Multi-physics of warm clouds

Turbulent fluctuations are ubiquitous!



protostar nebula

planetary system

circumstellar disk
gravitational 

collapse

migration toward 
the equatorial plane

gravitational 
interactions + 

collisions between 
large bodies  

(1m to moons)

Development of 
turbulence in the gas 
motion + accretion 

of dust particles

creation of 
medium-size 

bodies (mm to m)
Time scales?

Planet formation



Atmospheric dispersion

Fluctuations are important for risk assessments

Models/Observations: space and/or time averages
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Lecture 1: Richardson 2/3 scaling 
– Turbulent transport and concentration fluctuations 
– Relation with Lagrangian relative motion 
– Spontaneous stochasticity and dissipative anomaly 
– Richardson law / scaling 
– Models for relative dispersion 

Lecture 2: Anomalous scaling laws 
– Intermittency and fronts 
– Kraichnan model and zero modes 
– Coalescences of droplets 
– Breakdown of kinetic models
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Advection-diffusion equation

Batchelor scale: 

Concentration field: passive scalar

Kolmogorov viscous dissipative scale

fluid kinematic viscosity

kinetic energy dissipation rate
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1µm aerosol
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advection by a 
prescribed velocity field diffusion source
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Mean vs. meandering plumes

!

Averaged concentration is well described by eddy diffusivity

PDFs have tails rather far from Gaussian
Spatial correlations relates to relative motion of tracers
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Sawford, Ann. Rev. Fluid Mech. 2001 



sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2

&k2"L!2'(d"+)/2 , (46)

with 0,+,2. In physical space,

Dij&r'#D0) ij!
1
2

dij&r', (47)

where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.

925Falkovich, Gawȩdzki, & Vergassola: Particles and fields in fluid turbulence

Rev. Mod. Phys., Vol. 73, No. 4, October 2001

Spontaneous stochasticity

⇒ not Lipschitz ⇒ non-uniqueness

(Bernard et al., J. Stat. Phys. 1998; Eyink, Physica D 2008)
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Turbulent mixing is infinitely 
more efficient than any 
chaotic flow!

Diffusion is not the unique source of randomness
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Dissipative anomaly
Scalar dissipation

Fronts
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Larchevêque & Lesieur, J. Méc. 1981 
Nelkin & Kerr, PoF 1981 ; Thomson, JFM 1996
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Backward motion

Relation with the turbulent anomalous 
dissipation of kinetic energy?

Burgers equation: Eyink & Drivas, J. Stat. Phys. 2015 



h · ir0

R(t) = x1(t)� x2(t)

|R(0)| = r0

Pair dispersion: ballistic regime
Statistics of the two-point motion

Batchelor regime

conditioned on a fixed initial distance 

Batchelor, Proc. Camb. Phil. Soc. 1952
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Richardson–Obukhov law

Explosive separation

Figure from Scatamacchia 
et al., PRL 2013

Richardson, Proc. Roy. Soc. Lond. 1926
Obukhov, Izv. Akad. Nauk SSSR 1941

Behavior for times larger than t0
dR

dt
= �u(R) ⇠ ("|R|)1/3

t0

r0

t0 ⌧ t ⌧ TLfor

Scaling regime?

Independent of the initial separation r0

suggests for t � t0

Difficult to observe numerically and experimentally because of the large 
temporal scale separation that is required:

⇒ sub-leading terms? Mechanisms?Review by Salazar & Collins 
Ann. Rev. Fluid Mech. 2009
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+       Lagrangian 
trajectories

Numerics
1

R� ⌫ ⌘ ⌧⌘ L TL N3

730 10�5 7.2 · 10�4 0.05 1.85 9.6 40963

LaTu: MPI pseudo-spectral solver (Homann et al. 2007)
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4.2 Timescales of two-particle dispersion 55
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Figure 4.4: Rescaled mean-square separation between two trajectories as
a function of time for Rλ = 730 and different initial separations r0. The
dashed line represents the two leading terms of the ballistic behavior (4.22).
The solid line is a fit to the Richardson’s regime, Eq. (4.23), with g = 0.525
and C = 2.5.

4.2.3 Convergence to the super-diffusive behavior

It is important to note that the data collapse observed in Fig. 4.4 extends to
times larger than t0 when the mean squared separation tends to Richardson
t3 regime. Such unexpected fact implies that t0 is not only the timescale of
departure from the ballistic regime, but also that of convergence to Richard-
son’s law. In particular, numerical data suggest that the large-time behavior
takes the form

〈

|R(t)−R(0)|2
〉

r0

= g ε t3
[

1 + C
t0
t

]

+ h.o.t. (4.23)

The term C appearing here does not strongly depend on the Reynolds number
and actually, for both values of the Reynolds number, we obtain the same
results, up to statistical errors. This is evidenced in Fig. 4.5, which shows the
compensated mean squared increase of the distance ⟨|R(t) − R(0)|2⟩/(ε t3)
for the two investigated values of the Reynolds number. In this figure, the
time has been again rescaled by t0 = S2(r0)/(2ε). Data confirm that the
subdominant terms in Richardson explosive regime are ∝ t2, as postulated
in Eq. (4.23). One also observes that the constant C is independent of r0

Transition Ballistic/Explosive

R� = 730

Explosive regime + corrections

Ballistic regime + corrections
h|R(t)�R(0)|2ir0 ' S2(r0) t

2 � 2 " t3

h|R(t)�R(0)|2ir0 ' g " t3[1 + C (t0/t)]

Bitane et al., PRE 2013



Transition probability

K(r) ⇠ "1/3r4/3

Richardson diffusion

+ K41(Obukhov)

⇒

Assumption: velocity differences uncorrelated ⇒ separation diffuses
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Shortcoming: velocity difference get uncorrelated on times

Formalized for Kraichnan model: Gaussian velocity with correlation
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Gawedzki, Vergassola, 
Rev. Mod. Phys. 2001
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Distribution of distances
Comparison to Richardson’s distribution

Straight line = 
Richardson’s distribution

broader tails due 
to “trapping” at 

dependence on     
still visible

memory on the initial velocity distribution?
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Rast & Pinton 2011
Scatamacchia et al. 2012

Such a 
representation 
emphasizes the 
collapse of the 
core of the 
distribution…



t � ⌧⌘A
law⌘ p
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dV
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Markov models

whenCentral-Limit Theorem:

with

components correlated over a time O(⌧⌘)

Assumption: acceleration differences are short correlated

correlations of acceleration 
differences conditioned on �u

⇒ Fokker–Planck equation for

General form: 
dR = V dt

dV = a(R,V , t)dt+ B(R,V , t) dW

⇢

Consistency with Eulerian statistics               is a stationary solution 
associated to an initial uniform distribution in space (Thomson 1991)

Kurbanmuradov & 
Sabelfeld (1995); 
Sawford (2001)
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pE(r,v)
Admissibility condition: “well-mixing”



Time-correlation of acceleration

~ Stretched exponential
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Limits of Markov modeling

Most models lead to an asymptotic diffusion of velocities.         
Is this the mechanism explaining Richardson’s scaling              ? 
⇒ Is it compatible with the observed intermittent behaviors?  
    e.g. exit times (Boffetta et al., PRE 1999; Boffetta & Sokolov, PRL 2002) 

⇒ Are finite-Re effects solely responsible for lack of scaling? 
    (Scatamacchia et al., PRL 2012)

R ⇠ t3/2

Is turbulent relative motion really a Markov process? 
⇒ Relation to Lévy walks / waiting times approaches  
   (Shlesinger et al., PRL 1987; Faller, JFM 1996; Rast & Pinton, PRL 2011) 

⇒ Some deviations might be due to memory effects  
   (Ilyin et al., PRE 2010; Eyink & Benveniste, PRE 2013)

Is acceleration really short-time correlated? 
⇒ OK for components but not amplitude (Mordant et al., PRL 2004) 

⇒ Stretched exponential correlations (non-mixing process)  
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Figure 2. (Color online) Left: Sketch of a piecewise-ballistic scenario. Right: A typical realiza-
tion of � as a function of the physical logarithmic time ✓, and the corresponding evolution of
⇢ = ln(r/r0) (inset). Here, ↵ is uniform between �1 and 1, and log � is Gaussian with zero mean
and unit variance (Please see the text for the definitions).

inputs are the statistics of

↵k =
�u

k
k

|�uk|
and �k =

|�uk|3

2 " |rk|
. (3.2)

The variables ↵k 2 [�1, 1] should have an asymmetric distribution in order to reproduce
the skewness of longitudinal velocity di↵erences in turbulence. The variables �k account
for the fluctuations in the rate of energy transfer and, under K41 assumptions, should be
independent of the rk’s. The time lapses between two consecutive turning points may be
thought of as correlation times: It is then natural to prescribe that both ↵k and �k be
independently distributed. We later refer to the distributions of the noises ↵k and �k as
↵ and � — without a subscript — and denote with h·i the average over their realizations.

Under these assumptions the dynamics of the distance rk = |rk| reduces to

rk+1 = rk

�
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2
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�1/2
and tk+1 = tk + (2 ")�1/3 (�k rk)2/3

. (3.3)

Note that this process is not purely multiplicative. As discussed in the previous section,
if the time increments ⌧k = tk+1 � tk were constant, then the distributions of the log-
arithms of the distance at a given observation time would evolve towards a Gaussian
distribution given by the Central Limit Theorem. This is however not the case here, as
the time associated to a given pair of tracers is itself a random variable, which is neither
additive nor multiplicative. In the present paper, we do not need to prescribe further the
distributions of ↵ and �. The only constraint concerns the quantity hln

�
1 + 2↵� + �

2
�
i.

It is required to be positive in order to ensure that the times tk go to infinity as the
number of turning points diverges. This prevents the sequence tk from converging and
the two tracers from touching each other in a finite time.

3.2. Statistics of the separations from the piecewise ballistic perspective

We shall not here attempt to work out in full mathematical details the statistics of the
separations which the model predicts. Rather, we focus on a general and qualitative
description of those, based on simple physical arguments.

3.2.1. Self-Similarity

The piecewise-ballistic scenario as modeled by the system (3.3) yields a whole family
of self-similar distributions for the separations. To understand the origin of this self-

the       ’s are independent from each other

A piecewise-ballistic scenario
Ballistic regime is key in the convergence to the explosive behavior
Build a simple model that reproduces some essential mechanisms
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Is                    a self-averaging quantity?  
     Law of large numbers? Central-limit theorem? Large deviations?

ln(|R(t)|/r0)



The ballistic scenario suggests                            as a relevant quantity

Are distances a multiplicative process?
⇢ = ln(|R(t)|/r0)
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Standard Deviation
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Richardson’s distribution: h⇢(t)i = (3/2) ln(t/t0) + (1/2) ln g � 0.46

h[⇢(t)� h⇢(t)i]2i1/2 = 0.748

Thalabard et al. JFM 2014
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Figure 3. (Color online) Probability density function of the logarithm of the inter-particle dis-

tance ⇢ = ln(r(t)/r0) for various r0 and, in each case, at time t ⇡ 9 ⌧r0 with ⌧r0 = "�1/3r2/30 . The
dashed line is Richardson’s distribution. The black solid line is the steady distribution obtained
numerically from the ballistic model for ln� ⇠ N (0, 1) and p(↵) = (5/6) ((↵+ 1)/2)�1/3.

the fixed time t ⇡ 9 ⌧r0 . With such a choice, the distribution of the logarithmic distances
seems to converge towards a single distribution, regardless of r0. The collapse of the full

distribution makes the explosive nature of pair separation explicit. It is also once again
clear that the limiting distribution is not Richardson’s (dashed line). Note that a casual
choice for the statistics of ↵ and � makes the piecewise ballistic steady distribution (solid
line) fit the data better. The model predicts a sharp cuto↵ at large values. However, the
current statistical accuracy does not enable us to discriminate between such a behaviour
and the double exponential obtained in the framework of eddy-di↵usivity approaches.

To conclude, let us stress again that the piecewise-ballistic phenomenology provides a
new and intuitive way of thinking about the problem of pair dispersion and reproduces
some salient statistical features of tracer separation. While it might also be used to
investigate possible e↵ects of the fluid flow intermittency, we limited here our study
to the K41 framework. The proposed toy model displays a number of general trends
that include (i) the explosive nature of the statistics, or in other words the property
that the steady distributions do not depend on the initial separation; (ii) their self-
similarity, which makes the statistics of the logarithm of the separation collapse towards
a single distribution; (iii) the presence of a right-end cuto↵ in the associated probability
density; (iv) the growth of the average of the logarithmic separation as three halves of
the logarithmic time, compatible with the t

3 law, resulting from the multiplicative nature
of the separation process.
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Open questions

Time irreversibility 
Relative dispersion is faster backward in time than forward 
What are the underlying mechanisms? How to quantify? 
⇒ In the model, the only symmetry-breaking quantity is      

Effect of the fluid velocity intermittency 
How is the scaling behavior affected when K41 is not fulfilled? 
⇒ Studying extensions of the model assuming multifractal statistics     

↵n = �uk
n/|�~un|

�n = |�~un|3/("rn)
rn+1 = rn

p
1 + 2↵n�n + �2

n

⇢

tn+1 = tn + "�1/3�2/3
n r2/3n

�n / r3hn�1
ne.g.                    with p(hn) / r3�D(hn)

n

↵n

How is the “Richardson constant” altered when                 ?↵n 7! �↵n

The model might not be enough to address this issue: 
in real flows,    and    are correlated↵ �

⇒ Is the long-time behavior still following a scaling regime?



Lecture 2: Anomalous scaling

Second lecture:  
⇒ n-point motion / higher-order statistics is intrinsically 
intermittent (Kraichnan flow) 
⇒ A concrete example where this matters

Summary of lecture 1 
2-point motion / 2nd-order statistics in the “explosive regime” 
pretty well described by Richardson–Obukhov scaling: 

p2(r, t | r0, 0) ⇠
1

"1/2 t3/2
 
⇣ r

"1/2 t3/2

⌘
r ⇠ "1/2 t3/2

⇒ Possible intermittent corrections?

e.g.p2(r, t | r0, 0) ⇠
1

"1/2t3/2
 ̄
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Origin? Not turbulent transport itself but maybe fluid velocity 
anomalous scaling



Passive scalar intermittency

Exact relation (Yaglom 1949):

Structure functions of a passive scalar

�✓ = ✓(x+ r, t)� ✓(x, t)
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Figure 29. Comparison of the scaling exponents for run 2. ICR is for the
inertial-convective range 200 < r/η < 400, and VCPR is for the viscous-
convective precursor range 30 < r/η < 60. C & C is the DNS data from Chen
and Cao [45].

Figure 30 compares the scaling exponents ζL
q and ζθL

q for run 2 which were obtained by averaging
the values over the range 100 < r/η < 300. Both curves pass through the point ζL

3 = ζθL
3 = 1;

again we see ζL
q > ζθL

q . Also plotted are the curves for the She–Lévêque model

ξq = d0 + (1 − γ)
q

3
− d0

(
1 − γ

d0

)q/3

, (30)

with parameters γ = 2
3 , d0 = 2 for the velocity; case 1: γ = 2

3 , d0 = 1; case 2: γ = 2
3 , d0 = 10

9
for the passive scalar. Agreement between the curves from the model for case 2 and from the
DNS data is satisfactory, as reported by Lévêque et al [55, 56]. The value d0 = 10

9 close to unity
suggests a sheet-like diffusive structure. The scaling exponents are listed in table 2.

5.5. Structure of the scalar and scalar dissipation fields

The energy and scalar dissipation rates ϵ(x) and χ(x) fluctuate in space and time. These
fluctuations are considered to cause intermittency of the turbulence and scalar fields. It is
therefore very interesting to see their spatial structures. Figures 31–33 show two-dimensional
slices through the scalar field, the energy and scalar dissipation fields at the same time. The side
of the square is 2π. The colour scale is determined by the following formula:

φ = sign(θ)

( |θ(x)|
θrms

)1/2

,

ψA = sign
(

ln
(

A(x)

⟨A⟩

)) (
ln

(
A(x)

⟨A⟩

))1/2

, (31)

New Journal of Physics 6 (2004) 40 (http://www.njp.org/)

from Watanabe & Gotoh, NJP (2004) 
see also Gotoh & Watanabe, PRL (2015); Bec, Krstulovic & Homann, PRL (2014)
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Anomalous scaling

Dimensional scaling (K41):
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Geometric structure of intermittency

r

Strong intermittency related to the presence of “multifractal fronts”

�r✓ / rh

/ rd�D(h)with prob.

⇣q = inf
h
[qh+ d�D(h)]

R� = 730
40963



Lagrangian interpretation

�✓q  ! q

Time evolution of both size and shape 
of the cloud of tracers

R

Lagrangian viewpoint
d

dt
X(t) = u(X(t), t) +

p
2⌘(t)

X1, . . . ,Xq

X̄ =
1

q

X

n

Xn

X̃n = Xn � X̄

single-particle motion

R2 =
1

q

X

q

|X̃n|2

X̂n = X̃n/R =) shape



Lessons from Kraichnan model
Gaussian velocity field, ẟ-correlated in time, self-similar in space

Falkovich, Gawedzki, Vergassola, Rev. Mod. Phys. 2001

hui(x, t)uj(x0, t0)i = �(t� t0) [2D0�
ij�dij(x�x

0)]

dij(r) = D1 r
⇠[(d� 1+⇠) �ij � ⇠ rirj/r2]

q-point motion:

⇠ = 4/3  ! turbulence

Backward Kolmogorov (≈ Fokker–Planck): @tpq = Mq pq

There exists zero modes                    with non-trivial scaling properties:Mq fq = 0
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of

10-4
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C
3
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Rζ3

FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!

p
2 and

r2 ! "r1 1 r2 2 2r3#!
p

6, the shape of the triangle is
controlled by the two variables

x ! 1!2 tan21

"

2r1 ? r2

"r2
1 2 r2

2#

#

; w ! 2
jr1 3 r2j

R
. (3)

Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).

425

Lagrangian statistical conservation law
Zero modes are preserved by the dynamics

Bernard, Gawedzki, Kupiainen, J. Stat. Phys. 
(1997); Pumir, Shraiman, Chertkov, PRL (2000)
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Time-evolution of the number          of particles with mass         ?

An application: Growth by coalescences

How fast are large 
aggregates/drops 
created?

Initially: almost mono-
disperse size distribution

monomers with mass ⇡ m1

Planet formation Rain initiation

In both cases: very dilute solid particles suspended in a turbulent gas⎧ ⎨ ⎩
ni(t)

Abrupt growth of large aggregates by correlated coalescences in turbulent flow
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
1X

j=1

i,j ni nj . (4)



Smoluchowski coagulation equation

Kinetic approach

: collision rate between particles with masses i and j

How is this global picture influenced by turbulent fluctuations?
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
1X

j=1

i,j ni nj . (4)
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Short-time asymptotics

                      and creations are dominant

ṅ2 =
1

2
1,1n

2
1 ) n2(t) =

1

2
1,1n

2
1 t

n1(t) ⇡ n1(0)

2

This is the celebrated Smoluchowski coagulation equation.20

The stationary rates i,j are usually referred to as the col-
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where the times ti are the geometric means of the times �1
p,q

associated to the different combinations of coalescences lead-
ing to a particle i . The consistency of the assumptions lead-
ing to this behavior can be checked a posteriori. We indeed
see that within this asymptotics, the creation terms in (4) are
always / ti�2 while the dominant destruction term is / ti�1;
the second is thus indeed sub-dominant at short times.

The main approximation underlying the kinetic model (4)
is the separation between relevant timescales. can be valid
only if the typical between successive collisions ��1

i,j is much

shorter than the time of variation of

time ⌧
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FIG. 1. Left: Distance traveled by tracers during a time ⇡ ⌧L
as a function of their final position in a 2D slice of a 3D turbulent
flow (yellow correspond to large distances, and blue to small). Right:
Sketch of the event leading to correlated successive collision. At
the initial time (top), two particles i and k are located at a collision
distance r <⇠ ⌘, while a third one j is at distance r0 � ⌘ far from
this couple. A time ⌧ later (bottom) j has approached i at a distance
R0 <⇠ ⌘ while k, having it collided or not, has escaped to R � ⌘.
Such an event occurs with a rate �i,j(⌧).

• We next move to the results of the simulations. We need to
describe the settings, the algorithm for collision detection, etc.
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
1X

j=1

i,j ni nj . (4)

Abrupt growth of large aggregates by correlated coalescences in turbulent flow

Jérémie Bec,1 Samriddhi Sankar Ray,2 Ewe Wei Saw,3 and Holger Homann1
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field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
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crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
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of processes ranging from polymerization, emulsification
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such an approach fails when the coagulating species are di-
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unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
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the precursors for a run-away growth and possibly trigger the
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progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
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fields.18,19 In the context of growth by coagulation, they are
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the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large
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balance approaches. The value of this exponent is expressed
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the third-order correlations of an advected passive scalar.
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time. Simple population-balance considerations lead to
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where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s
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steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution
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This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to
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ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s
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�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution
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This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to
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where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =
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�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution
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This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s
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�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution
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This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to
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ber of coalescences i + j occurring between times t and
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with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
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This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
1X

j=1

i,j ni nj . (4)
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1
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i�1X

j=1

i�j,j ni�j nj �
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j=1

i,j ni nj . (4)
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
1X

j=1

i,j ni nj . (4)
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
1X

j=1

i,j ni nj . (4)
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
1X

j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
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j=1

i,j ni nj . (4)

neglects possible correlations
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2

i�1X

j=1

Qi�j,j(t) �
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j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution
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. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1

2

i�1X

j=1

i�j,j ni�j nj �
1X

j=1

i,j ni nj . (4)

pi,j(⌧) ) �i,j(⌧) = const = i,j

coagulation kernels

Time to next collision: exponential distribution with non-constant rate 

Abrupt growth of large aggregates by correlated coalescences in turbulent flow

Jérémie Bec,1 Samriddhi Sankar Ray,2 Ewe Wei Saw,3 and Holger Homann1
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to
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where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =
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0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to

ṅi(t) =
1

2
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j=1

Qi�j,j(t) �
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j=1

Qi,j(t), (1)

where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =

Z t

0
�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to

ṅi =
1
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i�1X
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i�j,j ni�j nj �
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i,j ni nj . (4)
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The time evolution of a population undergoing coales-
cence or aggregation is classically adressed in terms of the
Smoluchowski’s kinetic coagulation equation. This mean-
field statistical model is used to describe a broad range
of processes ranging from polymerization, emulsification
and flocculation to cloud droplet growth and planet for-
mation. It relies on the assumption that successive merg-
ers are uncorrelated from each other. We find here that
such an approach fails when the coagulating species are di-
lute and transported by a turbulent flow. The Lagrangian
motion involves correlated violent events that lead to an
unexpected fast growth of the largest particles. This new
phenomena has drastic effects on macroscopic processes
that are triggered by the early-stage emergence of large
aggregates. It can for instance explain the fast formation
of planet or raindrop embryos.

The formation of planets in circum-stellar disks1,2 as well
as the initiation of rain in warm clouds3,4 involve the coagu-
lation of small dilute bodies suspended in a highly turbulent
gas. It is in both cases crucial to determine the speed at which
the largest objects are formed. Massive planetary embryos or
lucky raindrops decouple from the underlying gas flow and ac-
crete more efficiently smaller particles.5–7 They are very likely
the precursors for a run-away growth and possibly trigger the
full coagulation process. Turbulent fluctuations might be es-
sential in the formation of such large objects8,9 but their pre-
cise role is still far from being fully cleared up. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to gas turbulence. The attention
has been drawn to two mechanisms present in the particle dy-
namics: preferential concentration,10 giving rise to high den-
sities, and the sling effect11 or caustic formation,12 responsi-
ble for large velocity differences, that both enhance the rate
at which particles approach each other. Precise quantitative
models accounting for these two effects require appreciating
the influence of turbulence.13,14 However, their origin is not
directly related to turbulent fluctuations but rather comes from
the inertia of the suspended particles and the resulting detach-
ment of their trajectories from the fluid flow. Their impact on
collision rates can then be studied in simple random flow.15–17

In this letter we show that, by its own, turbulent transport
speeds up the growth of large objects. In the Lagrangian evo-
lution of advected tracers, scaling and geometry are tied up by
non-trivial memory effects. These interdependences lead to
intermittent multiscaling properties of advected passive scalar
fields.18,19 In the context of growth by coagulation, they are
responsible for a power-law tail in the distribution of times be-
tween successive collisions, yielding intricate correlations in
the sequence of coalescences experienced by individual parti-
cles. Because of this effect, we find that the number of large

objects grows as a power law at short times, with an exponent
much smaller than the one obtained from kinetic population-
balance approaches. The value of this exponent is expressed
in terms of the intermittent scaling exponent ⇣3 associated to
the third-order correlations of an advected passive scalar.

To simplify the presentation, we focus on an initially mono-
disperse suspension consisting of n1 monomers 1 with mass
m1. The extension to poly-disperse situations is straightfor-
ward. These particles evolve in a turbulent flow and might
coalesce, summing-up their masses, when they collide. This
dynamics leads after sometime to the formation of a broad
spectrum of particle sizes. We denote by i those constituted
of i monomers and thus with a mass i⇥m1. Our goal is to de-
termine how fast the number ni(t) of particles i grows with
time. Simple population-balance considerations lead to
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where the dot denotes time derivative. Qi,j(t) dt is the num-
ber of coalescences i + j occurring between times t and
t + dt. The first term in the right-hand side, the source, ac-
counts for the rate at which particles i are created. The sec-
ond, the sink, handles the coalescences of such particles with
all others. When ni(0) = 0, the global coalescence rate Qi,j

can be written in terms of the individual particle rate by sum-
ming over all the creations of i ’s

Qi,j(t) =
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�i,j(t � s|s) nj(t) ṅi(s) ds. (2)

�i,j(⌧ |s) is the rate at which an i , created at time s, coalesce
with a j at time s+ ⌧ . If the particle dynamics is statistically
steady, this quantity is independent of the creation time s and
�i,j(⌧ |s) = �i,j(⌧). Also, this rate relates to the probability
distribution pi,j(⌧) of the time to next collision, which is given
by the non-constant rate exponential distribution

pi,j(⌧) = �i,j(⌧) e�
R ⌧
0 �i,j(⌧

0) d⌧ 0
. (3)

This is the distribution of waiting time associated to the inho-
mogeneous Poisson process with rate parameter �i,j(⌧).

When successive collisions of a single particle are uncorre-
lated events, the time to next collision is a memoryless process
and the distribution pi,j(⌧) is exponential. The coalescence
rate is then constant, i.e. �i,j(⌧) = i,j , and the population-
balance system (1)-(2) reduces to
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Contribution from turbulent transport
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dt
x(t) = u(x(t), t) |u(x1)� u(x2)| ⇠ |x1 � x2|1/3

|x1 � x2| ⇠ t3/2 (Richardson law)

Coalescing particles are almost tracers
|x1 � x2| � ⌘

|x1 � x2| . ⌘

For                        (inertial range)

For                       details of the microphysics matters 
  finite size, inertia, hydrodynamical interactions, repulsive forces…

Dilute settings: coalescing particles come from far apart 
Two contributions to the coalescence rate:
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Dimensional estimates
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Naive phenomenology:
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Two contributions to the turbulent rate:

Richardson scaling
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Wrong! We are actually dealing with the 3-point motion



Actual turbulent rates
Collision rate:
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Conclusions
Kinetic approach for coagulation fails at short times 
Number of large particles grows as              

and not ti

“Rapid” successive collisions are correlated (mean-
field breaks), when they involve inertial-range 
physics. 

This is a purely turbulent-mixing effect. 

New kinetic models (with e.g. multiple collisions) ?
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Turbulent transport intermittency gives here the leading behavior


