

## Fluctuations and scaling in turbulent transport and mixing

**Jérémie Bec** Laboratoire J-L Lagrange Université Côte d'Azur, CNRS Observatoire de la Côte d'Azur, Nice, France







## Influence of aerosols on climate

**Direct effects** Albedo, Greenhouse

- Lifetime?
- Spatial distribution?
- Scattering properties?



#### Indirect effects related to their role as condensation nuclei in clouds



Influence on cloud droplet size distributions? Repercussions on the lifecycle of clouds? Consequences on global circulation?

## Multi-physics of warm clouds

#### coalescences

turbulent accelerations

0000

timescales?

mixing between dry and wet air

turbulent

settling

#### **Turbulent fluctuations are ubiquitous!**

turbulent mixing of water vapor + condensation nuclei

broadening of size distribution

latent

heat

condensation

0

convection

#### protostar nebula



gravitational collapse

migration toward the equatorial plane

Development of **turbulence** in the gas motion + **accretion** of dust particles





#### planetary system



## Planet formation

#### circumstellar disk





creation of medium-size bodies (mm to m) **Time scales?** 

gravitational interactions + collisions between large bodies (1m to moons)



## Atmospheric dispersion





# Fluctuations are important for risk assessments Models/Observations: space and/or time averages









- Turbulent transport and concentration fluctuations
- Relation with Lagrangian relative motion
- Spontaneous stochasticity and dissipative anomaly
- Richardson law / scaling
- Models for relative dispersion
- Lecture 2: Anomalous scaling laws
  - Intermittency and fronts
  - Kraichnan model and zero modes
  - Coalescences of droplets
  - Breakdown of kinetic models

### Content

## Length and time scales of turbulence

#### Incompressible Navier–Stokes equation

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho_f} \nabla p + \nu \nabla^2 \boldsymbol{u} + \mathbf{n}$$
  
transfer between scales dissipation



+ f,  $\nabla \cdot u = 0$   $\uparrow$   $\uparrow$ incompressibility injection



 $\leftrightarrow$ 

 $\simeq L$ 

 $\simeq \eta$ 

**Reynolds number:** 

$$Re = \frac{u\,\ell}{\nu} \gg 1$$

measures how weak is viscous dissipation

 $Re = (L/\eta)^{4/3}$ 

 $\begin{array}{ll} L & {\rm scale \ of \ injection} \\ \eta & {\rm dissipative \ scale} \\ & ({\rm Kolmogorov}) \end{array}$ 

"inertial range"

 $\eta \ll \ell \ll L$ 

Energy cascades downscale with a  $\approx$  constant rate  $\varepsilon$ 

Kolmogorov 1941 scaling  $\delta_{\ell} u = |u(x + \ell) - u(x)| \sim (\varepsilon \ell)^{1/3}$   $\tau_{\ell} = \ell / \delta_{\ell} u \sim \varepsilon^{-1/3} \ell^{2/3}$ 

## **Advection-diffusion equation**



advection by a prescribed velocity field

#### **Batchelor scale:** $\ell_{\rm B} = \eta \sqrt{\kappa/\nu}$

 $\nu$  fluid kinematic viscosity

 $\varepsilon$  kinetic energy dissipation rate



 $\eta = \varepsilon^{-1/4} \nu^{3/4}$  Kolmogorov viscous dissipative scale

ozone in air  $\kappa \approx 0.14 \,\mathrm{cm}^2 \,\mathrm{s}^{-1} \Rightarrow \ell_{\mathrm{B}} \approx 0.8 \,\eta \approx 0.8 \,\mathrm{mm}$ 1µm aerosol  $\kappa \approx 2.10^{-7} \text{cm}^2 \text{s}^{-1} \Rightarrow \ell_B \approx 10^{-3} \eta \approx 1 \,\mu\text{m}$ 



$$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \kappa \nabla^2 \theta \qquad \theta$$

Tracers = characteristics of t  
advection equation
$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}(t) = \boldsymbol{u}(\boldsymbol{x}(t), t) + \sqrt{2\kappa} \,\boldsymbol{\eta}$$

$$\Rightarrow \theta(\boldsymbol{x},t) = \langle \theta_0(\boldsymbol{x}(0)) \mid \boldsymbol{u} \rangle_{\kappa}$$

### **Turbulent diffusion** (Taylor 1921) Mean-field description for the averaged concentration $\left\langle |\boldsymbol{x}(t) - \boldsymbol{x}(0)|^2 \right\rangle = \int_0^t \int_0^t \left\langle \boldsymbol{u}(\boldsymbol{x}(s), s) \cdot \boldsymbol{u}(\boldsymbol{x}(s'), s')) \right\rangle \mathrm{d}s \, \mathrm{d}s' + 2\kappa t \simeq 2(T_\mathrm{L} u_\mathrm{rms}^2 + \kappa) t$

$$\Rightarrow \ \partial_t \langle \theta \rangle = -\nabla \cdot \langle \boldsymbol{u} \, \theta \rangle + \kappa \nabla^2 \langle \theta \rangle \approx (\kappa_{\text{eff}} + \kappa) \, \nabla^2 \langle \theta \rangle$$

### **Taylor diffusion**



## Mean vs. meandering plumes

#### Averaged concentration is well described by eddy diffusivity



#### PDFs have tails rather far from Gaussian Spatial correlations relates to relative motion of tracers

## Fluctuations and relative dispersion

Spatial correlations of the co  

$$\langle \theta(\boldsymbol{x} + \boldsymbol{r}, t) \, \theta(\boldsymbol{x}, t) \rangle = \iint \langle \theta_0(\boldsymbol{x}_1^0) \rangle$$

$$p_2(\boldsymbol{x}_1, \boldsymbol{x}_2, t \,|\, \boldsymbol{x}_1^0, \boldsymbol{x}_2^0, 0) = join$$



#### ncentration

 $\left| \theta_0(\boldsymbol{x}_2^0) \right\rangle p_2(\boldsymbol{x}+\boldsymbol{r},\boldsymbol{x},t \,|\, \boldsymbol{x}_1^0,\boldsymbol{x}_2^0,0) \,\mathrm{d}\boldsymbol{x}_1^0 \mathrm{d}\boldsymbol{x}_2^0$ 

Int transition probability density of two tracers  $\boldsymbol{x}_1(t)$  and  $\boldsymbol{x}_2(t)$ 

Sawford, Ann. Rev. Fluid Mech. 2001

space

## Spontaneous stochasticity



## Dissipative anomaly

Larchevêque & Lesieur, J. Méc. 1981 Scalar dissipation Nelkin & Kerr, PoF 1981 ; Thomson, JFM 1996

$$\begin{aligned} \varepsilon_{\theta} &= -\kappa \langle (\nabla \theta)^2 \rangle \to const \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle \theta(\boldsymbol{x}, t)^2 \rangle &= \iint \langle \theta_0(\boldsymbol{x}_1^0) \theta_0 \\ \partial_t p_2(\boldsymbol{x}, \boldsymbol{x}, t | \boldsymbol{x}_1^0, \boldsymbol{x}) \\ \text{Backward motion} \end{aligned}$$



Relation with the turbulent anomalous dissipation of kinetic energy?

Burgers equation: Eyink & Drivas, J. Stat. Phys. 2015

- when  $\kappa, \nu \to 0$  with fixed Pr
- $(oldsymbol{x}_2^0)
  angle imes$  $oldsymbol{x}_2^0,0)\,\mathrm{d}oldsymbol{x}_1^0\mathrm{d}oldsymbol{x}_2^0$ **Fronts**

## Pair dispersion: ballistic regime



Statistics of the two-point mo  $\langle \cdot \rangle_{r_0}$  conditioned on a fixed initial distance  $|\mathbf{R}(0)| = r_0$ 

#### **Batchelor regime**

Batchelor, Proc. Camb. Phil. Soc. 1

Short-time expansion: R(t) =

 $\delta u = u(x_1(0), 0) - u(x_2(0), 0), D_u(x_2(0), 0), D_u(x_2(0), 0))$ 

$$\left\langle |\boldsymbol{R}(t) - \boldsymbol{R}(0)|^2 \right\rangle_{r_0} = t^2 S_2(r_0) + t^3 \left\langle \delta \boldsymbol{u} \cdot \delta \mathbf{D}_t \boldsymbol{u} \right\rangle + \mathcal{O}(t^4)$$

$$S_2(r_0) = \left\langle |\delta \boldsymbol{u}|^2 \right\rangle \sim (\varepsilon r_0)^{2/3} \qquad \left\langle \delta \boldsymbol{u} \cdot D_t \boldsymbol{u} \right\rangle = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle |\delta \boldsymbol{u}|^2 \right\rangle = -2\varepsilon$$



**Ballistic separation for**  $t \ll t$ 

otion 
$$R(t) = x_1(t) - x_2(t)$$

$$\mathbf{R}(0) + t\,\delta\mathbf{u} + \frac{t^2}{2}\delta D_t\mathbf{u} + O(t^3)$$
$$_t\mathbf{u} = \partial_t\mathbf{u} + \mathbf{u} \cdot \nabla\mathbf{u}$$

$$t_0 \sim \varepsilon^{-1/3} r_0^{2/3}$$



Difficult to observe numerically and experimentally because of the large temporal scale separation that is required:  $\tau_{\eta} \ll t_0 \ll t \ll T_L$ Review by Salazar & Collins ⇒ sub-leading terms? Mechanisms? Ann. Rev. Fluid Mech. 2009

## Richardson-Obukhov law



$$(0, 0) \sim \frac{1}{\varepsilon^{1/2} t^{3/2}} \Psi\left(\frac{r}{\varepsilon^{1/2} t^{3/2}}\right) \text{ for } t \gg t_0$$

### Numerics

#### LaTu: MPI pseudo-spectral solver (Homann et al. 2007)



## **Transition Ballistic/Explosive**



Bitane *et al., PRE* 2013

## **Richardson diffusion**



 $\langle u^i(\boldsymbol{x},t) u^j(\boldsymbol{x}',t') \rangle = \delta(t-t') \left[ 2D_0 \delta^{ij} - d^{ij}(\boldsymbol{x}-\boldsymbol{x}') \right]$  $d^{ij}(\mathbf{r}) = D_1 r^{\xi} [(d-1+\xi) \,\delta^{ij} - \xi \,r^i r^j / r^2]$ 

Phenomenology  $\Rightarrow$  correlation time  $\tau_r \sim r^{2/3}$ 

**Assumption:** velocity differences **uncorrelated**  $\Rightarrow$  separation diffuses Transition probability  $p_2(r, t | r_0, 0)$ 

$$p_2 = \nabla \cdot \left( K(r) \nabla p_2 \right)$$

- + K41(Obukhov)  $K(r) \sim \varepsilon^{1/3} r^{4/3}$
- $\Rightarrow p_2(r,t|r_0,0) \propto \frac{r^2}{t^{9/2}} e^{-Cr^{2/3}/(\varepsilon t)} \text{ and } \left\langle |\mathbf{R}(t)|^2 \right\rangle_{r_0} \sim g \varepsilon t^3$
- Formalized for Kraichnan model: Gaussian velocity with correlation see Falkovich, Gawedzki, Vergassola, Rev. Mod. Phys. 2001
- **Shortcoming:** velocity difference get uncorrelated on times O(t) $+r^2 \sim t^3 \Rightarrow \tau_r \sim t \dots$

## **Distribution of distances**

## Comparison to Richardson's distribution $p_2(r, t | r_0, 0) \propto \frac{r^2}{4^{9/2}} e^{-C r^{2/3}/(\varepsilon t)}$



4



 $r_0 = 2 \eta$ 

Such a representation emphasizes the collapse of the core of the distribution...

memory on the initial velocity distribution? 3.5 2.5 3

### Markov models

Assumption: acceleration differences are short correlated  $\frac{\mathrm{d} \boldsymbol{V}}{\mathrm{d} t} = \boldsymbol{A} = \delta \mathrm{D}_t \boldsymbol{u} \quad \text{components correlated over a time } \mathrm{O}(\tau_\eta)$ 

Central-Limit Theorem:  $A \stackrel{\text{law}}{\equiv} \sqrt{2}$ 

with  $\mathbb{A}^{\mathsf{T}}\mathbb{A} = \langle \delta \mathrm{D}_t \boldsymbol{u} \otimes \delta \mathrm{D}_t \boldsymbol{u} | \delta \boldsymbol{u} \rangle$  correlations of acceleration

General form:  $\begin{cases} d\mathbf{R} = \mathbf{V} dt \\ d\mathbf{V} = \mathbf{a}(\mathbf{R}, \mathbf{V}, t)^{T} \end{cases}$ 

 $\Rightarrow$  Fokker–Planck equation for  $p(\mathbf{r}, \mathbf{v}, t | \mathbf{r}_0, \mathbf{v}_0, 0)$  $\partial_t p + \partial_{r_i} (v_i p) + \partial_{v_i} (a_i p) = \frac{1}{2} \partial_{v_i} \partial_{v_j} [B_{ik} B_{jk} p]$ 

Admissibility condition: "well-mixing" Consistency with Eulerian statistics  $p_E(\boldsymbol{r}, \boldsymbol{v})$  is a stationary solution associated to an initial uniform distribution in space (Thomson 1991)

$$\overline{\tau_{\eta}} \mathbb{A}(\boldsymbol{R}, \boldsymbol{V}) \circ \boldsymbol{\eta}(t)$$
 when  $t \gg \tau_{\eta}$ 

differences conditioned on  $\delta u$ 

$$dt + \mathbb{B}(\boldsymbol{R}, \boldsymbol{V}, t) d\boldsymbol{W}$$

Kurbanmuradov & Sabelfeld (1995); Sawford (2001)

## Time-correlation of acceleration



Bitane *et al., JoT* 2013

## Limits of Markov modeling

- Is acceleration really short-time correlated? ⇒ OK for components but not amplitude (Mordant *et al., PRL* 2004) ⇒ Stretched exponential correlations (non-mixing process)
- Most models lead to an asymptotic diffusion of velocities. Is this the mechanism explaining Richardson's scaling  $R \sim t^{3/2}$ ?  $\Rightarrow$  Is it compatible with the observed intermittent behaviors? e.g. exit times (Boffetta et al., PRE 1999; Boffetta & Sokolov, PRL 2002)  $\Rightarrow$  Are finite-Re effects solely responsible for lack of scaling?
- (Scatamacchia et al., PRL 2012)
- ▶ Is turbulent relative motion really a Markov process? ⇒ Relation to Lévy walks / waiting times approaches (Shlesinger et al., PRL 1987; Faller, JFM 1996; Rast & Pinton, PRL 2011)
  - $\Rightarrow$  Some deviations might be due to memory effects (Ilyin et al., PRE 2010; Eyink & Benveniste, PRE 2013)

## A piecewise-ballistic scenario





 $r_{n+1} \simeq r_n + X_n r_n \quad \Rightarrow \ln(r_n/r_0) \simeq \sum_k t_{n+1} \simeq t_n + Y_n r_n^{2/3} \quad \Rightarrow t_n \simeq \sum Y_n r_n^{2/3}$ 

Is  $\ln(|\mathbf{R}(t)|/r_0)$  a self-averaging quantity? Law of large numbers? Central-limit theorem? Large deviations?

Ballistic regime is key in the convergence to the explosive behavior Build a simple model that reproduces some essential mechanisms

$$\begin{array}{l|l} \textbf{value} & \vec{r_n} \mapsto \vec{r_{n+1}} = \vec{r_n} + \Delta t_n \delta \vec{u_n} \\ & t_n \mapsto t_{n+1} = \vec{r_n} + \Delta t_n \delta \vec{u_n} \\ & \textbf{walk} + \Delta t_n \\ \textbf{and } \Delta t_n \text{ depend on } r_n \\ & \textbf{and } \Delta t_n \text{ depend on } r_n \\ & \delta u_n \text{ 's are independent from each other} \\ & \textbf{Markovian } \vec{w.r.t.} \text{ to the continuous time} \\ & \textbf{walk} \\ \textbf{version:} \begin{array}{l} \delta u_n \sim^0 (\hat{\varepsilon} r_{n\theta})^{(1/3)} \\ & \theta \end{array}$$

## Are distances a multiplicative process?

Richardson's distribution:  $\langle \rho(t) \rangle = (3/2) \ln(t/t_0) + (1/2) \ln g - 0.46$ 



#### The ballistic scenario suggests $\rho = \ln(|\mathbf{R}(t)|/r_0)$ as a relevant quantity

 $\langle [\rho(t) - \langle \rho(t) \rangle]^2 \rangle^{1/2} = 0.748$ 

### Further modeling

Time increment: dissipation time 
$$\Delta t_n = |\delta \vec{u}_n|^2 / \varepsilon$$
  
 $\alpha_n = \delta u_n^{\parallel} / |\delta \vec{u}_n|$  with statistics  
 $\beta_n = |\delta \vec{u}_n|^3 / (\varepsilon r_n)$  independent of  $r_n$   $\begin{cases} r_{n+1} = r_n \sqrt{1 + 2\alpha_n \beta_n + \beta_n^2} \\ t_{n+1} = t_n + \varepsilon^{-1/3} \beta_n^{2/3} r_n^{2/3} \end{cases}$   
Change of variables:  $\gamma_n = \ln(r_n/r_0) - (3/2) \ln(t/t_0)$   $t_0 = \varepsilon^{-1/3} r_0^{2/3}$   
 $\gamma_{n+1} = \gamma_n + \frac{3}{2} \ln \frac{(1 + 2\alpha_n \beta_n + \beta_n^2)^{1/3}}{1 + \beta_n^{2/3} e^{(2/3)\gamma_n}}$   
Recurrence point  $\gamma_*$   
 $\Rightarrow$  the  $\gamma_n$ 's are becoming stationary  
 $\gamma_{n+1} = \gamma_n + \frac{3}{2} \ln \frac{(1 + 2\alpha_n \beta_n + \beta_n^2)^{1/3}}{1 + \beta_n^{2/3} e^{(2/3)\gamma_n}}$ 

This suggests for  $\rho = \ln(|\mathbf{R}(t)|/r_0)$  $\langle \rho \rangle \simeq (3/2) \ln(t/t_0) + \langle \gamma \rangle$   $\operatorname{Var}[\rho] \simeq \operatorname{Var}[\gamma] = \operatorname{const}$   $\operatorname{PDF}(\rho) \simeq \Psi(\rho - \langle \rho \rangle)$ 

## **Distribution of the log-separation**

#### Scale invariance for the distribution of $\rho = \ln(|\mathbf{R}(t)|/r_0)$



The collapsing distribution can be reproduced by properly choosing the distribution of  $\alpha_n = \delta u_n^{\parallel}/|\delta \vec{u}_n|$  and  $\beta_n = |\delta \vec{u}_n|^3/(\varepsilon r_n)$ 



 $\begin{cases} r_{n+1} = r_n \sqrt{1 + 2\alpha_n \beta_n + \beta_n^2} \\ t_{n+1} = t_n + \varepsilon^{-1/3} \beta_n^{2/3} r_n^{2/3} \end{cases}$ 

**Effect of the fluid velocity intermittency** How is the scaling behavior affected when K41 is not fulfilled?  $\Rightarrow$  Studying extensions of the model assuming multifractal statistics e.g.  $\beta_n \propto r_n^{3h_n-1}$  with  $p(h_n) \propto r_n^{3-D(h_n)}$  $\Rightarrow$  Is the long-time behavior still following a scaling regime?

#### **Time irreversibility**

Relative dispersion is faster backward in time than forward What are the underlying mechanisms? How to quantify?  $\Rightarrow$  In the model, the only symmetry-breaking quantity is  $\alpha_n$ How is the "Richardson constant" altered when  $\alpha_n \mapsto -\alpha_n$ ? The model might not be enough to address this issue: in real flows, oand  $\beta$ are correlated

## **Open questions**

$$\alpha_n = \delta u_n^{\parallel} / |\delta \vec{u}_n|$$
$$\beta_n = |\delta \vec{u}_n|^3 / (\varepsilon r_n)$$

### Lecture 2: Anomalous scaling

#### Summary of lecture 1

pretty well described by **Richardson–Obukhov scaling**:

 $r \sim \varepsilon^{1/2} t^{3/2}$   $p_2(r, t \mid r_0, 0) \sim$ 

 $\Rightarrow$  Possible intermittent corrections?  $p_2(r,t \mid r_0, 0) \sim \frac{1}{\varepsilon^{1/2} t^{3/2}} \bar{\Psi} \left( \frac{r}{\varepsilon^{1/2} t^{3/2}} \right)$ 

Origin? Not turbulent transport itself but maybe fluid velocity anomalous scaling

#### **Second lecture:**

 $\Rightarrow$  *n*-point motion / higher-order statistics is intrinsically intermittent (Kraichnan flow)

 $\Rightarrow$  A concrete example where this matters

2-point motion / 2nd-order statistics in the "explosive regime"

$$\sim \frac{1}{\varepsilon^{1/2} t^{3/2}} \Psi\left(\frac{r}{\varepsilon^{1/2} t^{3/2}}\right)$$

$$\frac{r}{B^{2/2}}, \frac{r}{L}$$
 e.g.  $\bar{\Psi} = \left(\frac{r}{L}\right)^{\alpha} \Psi\left(\frac{r}{\varepsilon^{1/2}t^{3/2}}\right)$ 

## Passive scalar intermittency

Structure functions of a passive scalar  $\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \kappa \nabla^2 \theta + \phi$  $\delta\theta = \theta(\boldsymbol{x} + \boldsymbol{r}, t) - \theta(\boldsymbol{x}, t)$  $\langle \delta \theta^q \rangle \sim r^{\zeta_q}$ 

Exact relation (Yaglom 1949):  $\left\langle \delta^{\parallel} u \left[ \delta \theta \right]^2 \right\rangle = -\frac{4}{3} \varepsilon_{\theta} r$ zq  $\delta^{\parallel} u = \hat{\boldsymbol{r}} \cdot \delta \boldsymbol{u} \qquad \varepsilon_{\theta} = \kappa \left\langle (\nabla \theta)^2 \right\rangle$ 

Dimensional scaling (K41):  $\zeta_q = q/3$ 

from Watanabe & Gotoh, NJP (2004) see also Gotoh & Watanabe, PRL (2015); Bec, Krstulovic & Homann, PRL (2014)



q

### Geometric structure of intermittency

#### Strong intermittency related to the presence of "multifractal fronts"



 $\delta_r \theta \propto r^h$ with prob.  $\propto r^{d-D(h)}$  $\zeta_q = \inf_h [qh + d - D(h)]$ 

$$4096^3$$
$$R_{\lambda} = 730$$

## Lagrangian interpretation

Lagrangian viewpoint  

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{X}(t) = \boldsymbol{u}(\boldsymbol{X}(t), t) + \sqrt{2\kappa} \boldsymbol{\eta}(t)$$

$$\delta \theta^{q} \longleftrightarrow \boldsymbol{X}_{1}, \dots, \boldsymbol{X}_{q}$$

$$\bar{\boldsymbol{X}} = \frac{1}{\kappa} \sum \boldsymbol{X}_{n} \quad \text{single-particle metric}$$

 $\tilde{X}_n = X_n - \bar{X}$ 

Time evolution of both **size** and **shape** of the cloud of tracers

$$\mathcal{R}^2 = rac{1}{q} \sum_q | ilde{X}_n|^2$$
  
 $\hat{X}_n = ilde{X}_n / \mathcal{R} \Longrightarrow ext{ shape}$ 

(t)

otion



### Lessons from Kraichnan mode

 $\langle u^i(\boldsymbol{x},t) \, u^j(\boldsymbol{x}',t') \rangle = \delta(t-t') \left[ 2D_0 \delta^{ij} - d^{ij}(\boldsymbol{x}-\boldsymbol{x}') \right]$ 

*q*-point motion:  $p_q(X_1, \ldots, X_q)$ 

Backward Kolmogorov ( $\approx$  Fokker–Planck):  $\partial_t p_q = \mathcal{M}_q p_q$  $\mathcal{M}_q = \sum \left[ d^{ij} (\boldsymbol{x}_n - \boldsymbol{x}_m) + 2\kappa \delta^{ij} \right] \partial_{x_n^i} \partial_{x_m^j}$ n < m

 $f_q(\lambda x_1,\ldots,\lambda x_q) = \lambda^{\zeta_q} f_q(x_1,\ldots,x_q)$ 

Falkovich, Gawedzki, Vergassola, Rev. Mod. Phys. 2001

Gaussian velocity field,  $\delta$ -correlated in time, self-similar in space  $d^{ij}(\mathbf{r}) = D_1 r^{\xi} [(d-1+\xi) \,\delta^{ij} - \xi \,r^i r^j / r^2] \qquad \xi = 4/3 \,\longleftrightarrow \, \text{turbulence}$ 

$$q, t \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_q, 0)$$

- There exists **zero modes**  $\mathcal{M}_q f_q = 0$  with non-trivial scaling properties:

## Lagrangian statistical conservation law



# q = 3



## An application: Growth by coalescences



Initially: almost monodisperse size distribution monomers with mass  $\approx m_1$ 

Time-evolution of the number  $n_i(t)$  of particles with mass  $i \times m_1$ ?

#### In both cases: very **dilute** solid particles suspended in a **turbulent** gas



How fast are large aggregates/drops created?

## Kinetic approach

#### **Smoluchowski** coagulation equation $i m_1 + j m_1 \xrightarrow{\kappa_{i,j}} (i+j) m_1$

$$\dot{n}_{i} = \frac{1}{2} \sum_{j=1}^{i-1} \kappa_{i-j,j} n_{i-j} n_{j} - \sum_{j=1}^{\infty} \kappa_{i,j} n_{i} n_{j}$$

 $\kappa_{i,j}$  : collision rate between particles with masses *i* and *j* 

#### How is this global picture influenced by turbulent fluctuations?

### **Short-time asymptotics** $n_1(t) \approx n_1(0)$ and creations are dominant $\dot{n}_2 = \frac{1}{2}\kappa_{1,1}n_1^2 \implies n_2(t) = \frac{1}{2}\kappa_{1,1}n_1^2 t$ $\dot{n}_3 = \kappa_{1,2} n_1 n_2 \implies n_3(t) = \frac{1}{4} \kappa_{1,1} \kappa_{1,2} n_1^3 t^2$ $n_i(t) \simeq n_1^i \left(\frac{t}{t_i}\right)^{i-1}$

The exponents do not depend on the kernel



## Short-time growth of large particles

Numerics: incompressible Navier–Stokes



# pseudo-spectral 2048<sup>3</sup> ( $R_{\lambda} \approx 460$ ) initially $n_1(0) = 10^9$ particles $a_1 \approx \eta/10$

Data show  $n_i(t) \propto t^{0.73(i-2)+1}$ at short times instead of  $n_i(t) \propto t^{i-1}$ 

JB, Ray, Saw, Homann, PRE 2016





### **Kinetics not valid**



Smoluchowski kinetics is not valid at short times / large sizes

### Time evolution of the size distribution

Back to basics: 

**Population balance**  $\dot{n}_i(t) = \frac{1}{2}$ 

 $Q_{i,j}(t) dt$  average number of coalescences (i) + (j) in [t, t + dt]

Expression for the collision rate:  $n_i(0) = 0$ 

$$\begin{aligned} \mathcal{Q}_{i,j}(t) &= \int_0^t \lambda_{i,j}(t-s|s) n_j(t) n_j(t) \\ & \uparrow \\ & \uparrow \\ & \text{neglects possible correlation} \end{aligned}$$

 $\lambda_{i,j}(\tau|s) = \text{rate at which a particle}(i)$ , created at time s, coalesce with a particle (j) at time  $s + \tau$ 

$$\sum_{j=1}^{i-1} \mathcal{Q}_{i-j,j}(t) - \sum_{j=1}^{\infty} \mathcal{Q}_{i,j}(t)$$



### Inter-collision times

#### The collisions define a non-homogeneous Poisson process with rate: $\lambda_{i,j}(\tau|s) = \lambda_{i,j}(\tau)$

#### $p_{i,j}(\tau) = \lambda_{i,j}$

#### **Smoluchowski kinetics:**

Successive coalescences are uncorrelated events

$$Q_{i,j}(t) = \int_0^t \lambda_{i,j}(t-s)n_j(t) \dot{n}_i(s) \, \mathrm{d}s = \kappa_{i,j} \, n_i(t) \, n_j(t)$$
$$\dot{n}_i = \frac{1}{2} \sum_{j=1}^{i-1} \kappa_{i-j,j} \, n_{i-j} \, n_j - \sum_{j=1}^{\infty} \kappa_{i,j} \, n_i \, n_j$$

Time to next collision: exponential distribution with non-constant rate

$$_{i}(\tau) \,\mathrm{e}^{-\int_{0}^{\tau}\lambda_{i,j}(\tau')\,\mathrm{d} au'}$$

Memoryless process:  $p_{i,j}(\tau)$  exponential  $\Rightarrow \lambda_{i,j}(\tau) = \text{const} = \kappa_{i,j}$ coagulation kernels

### Long-range correlated collisions

#### Probability distribution of particles **mean-free times** (inter-collision times) $p_{i,j}(\tau) = \lambda_{i,j}(\tau) e^{-\int_0^\tau \lambda_{i,j}(\tau') d\tau'}$



with  $\lambda_{i,j} \propto au^{-0.27}$ 

Weibull distribution with shape parameter  $k \approx 0.73$ 

### **Contribution from turbulent transport**

**Dilute settings**: coalescing particles come from far apart Two contributions to the coalescence rate:

$$\lambda_{i,j}(\tau) = \lambda_{i,j}^{\mathrm{turb}}(\tau)$$

to a distance  $\leq \eta$ 

For  $|x_1 - x_2| \gg \eta$  (inertial range) Coalescing particles are almost tracers  $\frac{d}{dt} x(t) = u(x(t), t) \quad ||u(x_1) - u(x_2)| \sim |x_1 - x_2|^{1/3}$  $|\boldsymbol{x}_1 - \boldsymbol{x}_2| \sim t^{3/2}$  (Richardson law)

For  $|x_1 - x_2| \lesssim \eta$  details of the microphysics matters



finite size, inertia, hydrodynamical interactions, repulsive forces...

#### **Naive phenomenology:**



 $n(r) = r^2 / L^3$ 

created (1+2):

 $p(\eta, \tau \,|\, r, 0)$ 

## **Approaching rate:** $\lambda_{i,j}^{\mathrm{turb}}(\tau) \propto \int u_{\eta} p(\eta, \tau \,|\, r, 0) \, n(r) \, \mathrm{d}r$

**Wrong!** We are actually dealing with the 3-point motion

#### **Two contributions to the turbulent rate:**

Density of particles ③ at distance r.

Probability that a particle ③ initially at distance rapproaches at a distance  $\eta$  from the newly

$$) \simeq \left(\frac{\eta}{r}\right)^2 \frac{1}{\tau^{3/2}} \Psi\left(\frac{r}{\tau^{3/2}}\right)$$
  
solid angle Richardson scaling

$$\mathrm{d}r \sim \frac{\eta^2 u_{\eta}}{L^3} \int \Psi\left(\frac{r}{\tau^{3/2}}\right) \frac{\mathrm{d}r}{\tau^{3/2}} = \mathrm{const}$$

### Actual turbulent rates

Again two contributions:

**Consequences on population dynamics:**  $\Rightarrow \mathcal{Q}_{i,j}(t) \propto \int_0^t |t-s|^{\frac{3}{2}(\zeta_3-1)} n_j(t) n_i(s) \,\mathrm{d}s$ 

 $n_i(t) \propto t^{\left[1 - \frac{3}{2}(\zeta_3 - 1)\right](i - 2) + 1}$ 



$$\zeta_3 \approx 0.82 \implies n_i(t) \propto t^{0.73 \, (i-2)+1}$$

Short-time growth is much faster than the kinetic prediction  $\propto t^{i-1}!$ 



#### Kinetic approach for coagulation fails at short times

• Number of large particles grows as  $n_i(t) \propto t^{0.73i}$ and not  $t^i$ 

\*"Rapid" successive collisions are correlated (meanfield breaks), when they involve inertial-range physics.

This is a purely turbulent-mixing effect.

◆ New kinetic models (with e.g. multiple collisions) ?

#### 

## Conclusions



- **Turbulent transport intermittency gives here the leading behavior**