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2 Lectures

® This morning: general introduction to
quantum turbulence

® This afternoon: helicity in quantum flows
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Plan of Talk

Perfect fluids: Euler equation and its
variational formulations...

Superfluids: Gross-Pitaevskii Equation
Coherence length and Quantum vortices
Classical and Quantum turbulence

Finite temperature effects in the GPE



What is a perfect fluid?

® Real classical fluids are viscous and conduct
heat

® Perfect fluids are idealized models in which
these mechanisms are neglected

® Perfect fluids have zero shear stresses,
viscosities, and heat conduction

® Good approximation in some physical cases



Physical quasi-perfect
flows

Next slide is extracted from :
Applied Aerodynamics: A Digital Textbook

http://docs.desktop.aero/appliedaero/preface/

welcome.html



http://docs.desktop.aero/appliedaero/preface/welcome.html

Euler Equations

The Euler equations with the equations of energy and continuity are often solved by finite differences whereby
the values of each velocity component, the density, and the internal energy are computed at each point. From
these quantities constitutive relations (perfect gas law or isentropic pressure relation) are used to find pressure.

Since Euler equations permit rotational flow and enthalpy losses (through shock waves), they are very useful in
solving transonic flow problems, propeller or rotor aerodynamics, and flows with vortical structures in the field.



Euler Equations

® A perfect fluid can be completely
characterized by its velocity and two
independent thermodynamic variables.

® |f only one thermodynamic variable exists
(e.g. isentropic perfect fluid) the fluid is

barotropic.

® The density of a barotropic fluid is a
function of pressure only.



Barotropic Euler
equations

1

@tv —+ Vv - Vv = ——Vp
o,
Op+ V(pv) =0

Barotropic: p(x,t) = f(p(x,1))

Acoustic propagation: c= 1] =

Note that the system is time-reversible:

t— —1;V—>—=V:.:p—=p;p—>DpP



Two useful limits

|.incompressible: p = cte
Vv =0

C — OO

There is no equation of state and p is determined by
maintaining the incompressibility

2. irrotational: V X Vv =
| Op
C= 4| —
v =V Ip

Only compressible modes...



Variational approach

® For the general case see e.g.:R. L. Seliger
and G. B.Whitham,Variational Principles in
Continuum Mechanics, Proc. R. Soc. Lond. A.

1968 305 1-25.

® Here I'll show how to deal only with the
compressible irrotational case..



lrrotational case

p(Vo)?
L= pgp; A (2)19@)
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taking the gradient of the last equation:
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What is a superfluid?
s it just an Eulerian perfect fluid?
No! Superfluids obey the Gross-
Pitaevskii equation (GPE)

The quantum nature of the GPE
does disturb some classical
traditions of fluid mechanics. This
often makes it unpopular...
One should fight this attitude!



Say no to Superphobia!

superphobia

noun

unreasoning hostility, aversion,
etc., toward superfluid flows.
Origin of superphobia
super(fluidity) + phobia



The Gross-Pitaeveski
Equation (GPE)

iho, ¥ = — - V20 4+ g| U0

- * 711
U =./p/mexpiPP
® Describes a superfluid Bose-Einstein condensate at zero
temperature
® Applies to a complex field

® Madelung’s transformation gives hydrodynamical form

e Contains quantum vortices with quantized velocity
circulation h/m



Variatitional
formulation of the GPE
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GPE and Madelung

2 = po[-2vy + gPallviy .
1 .
set) =25 g (Mo n). V=V ¢b

Speed of sound c = +/g|Ag|?/m
Coherence length ¢ = \/h2/2m|Ao|%g.

2 AVp

p 1 2 _ 201 _ 22
at+V (pV ¢)=0, P (V¢) =c“(1-p)+c¢ o

Continuity and Bernoulli equations for a compressible fluid

Irrotational fluid, except near nodal lines of ¢ = superfluid vortices, with
quantum of circulation I = 4mcE/+/2, which can naturally reconnect in this
model.



Superfluid Helium

B818|C




Experiments

Superfluidity exists in actual experiments

There is a «Quantum turbulencey
community actually planning and
performing experiments

The next slides are about a few of these
experiments...



Experimental superfluids

Superfluid Helium

e 1930 Kapitsa-Allen-
Misener

e L.andau and Tisza two-

fuid model.

e 1950 Mutual friction.
Hall and Vinen

e 1980 Schwartz model
Recent experiments:

visualizations using hydrogen
solid particles

BEC
1925 Bose-Einstein

Bogoliubov, Gross and
Pitaevskii theories.

1995 Cornell-Weiman

1995 Finite-temperature
theories

Recent experiments:
emergence of turbulence in
oscillating BEC



Experiments in oscilating

BEC

|8 Selected for a Viewpoint in Physics week ending
PRL 103, 045301 (2009) PHYSICAL REVIEW LETTERS 24 JULY 2009

S

Emergence of Turbulence in an Oscillating Bose-Einstein Condensate

E.A.L. Henn,”< J.A. Seman,1 G. Roati,2 K.M.F Magalhﬁes,1 and V. S. Bagnato1

Unstituto de Fisica de Sdo Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-970 Sdo Carlos, SP. Brazil
2LENS and Dipartimento di Fisica, Universita di Firenze, and INFM-CNR, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
(Received 23 April 2009; revised manuscript received 10 June 2009; published 20 July 2009)
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FIG. 2. (a) Atomic optical density after 15 ms of free expan- 1 i 4
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The phase diagram of He*.



Experiments in superfluid He

+ - Daniel P. Lathrop's
®

Nonlinear Dynamics Lab

Technique

Our visualization technique begins with the injection of hydrogen gas into the liquid helium
above the superfluid transition temperature. The hydrogen forms solid particles of sizes of
order 1 micron. Evaporative cooling is used to lower the temperature of the liquid helium
below the superfluid transition. The solid hydrogen is attracted to and trapped by the
filaments of the vortices and may then be used to directly visualize the formation and
dynamics of the line vortices in the bulk of the superfluid.




Experimental movie

+ - Daniel P. Lathrop's
L

Nonlinear Dynamics Lab



SHREK experiment

I8

http://perso.neel.cnrs.fr/philippe.roche/
SUPERFLUIDE/SHREK /SHREK_photoPale. JPC

Large scale fiow in the cell Picture of the propellers



100 em

SHREK coll

Cryostat (before fioor construction)



SHREK probes




What is Quantum
Turbulence!

Finite dissipation in turbulence when
viscosity vanishes...

Mathematical problem: singularity in Euler?

Physical problem: superfluids can flow
without dissipation... [a macroscopic
quantum effect]

Turbulence in superfluids!?



Two types of Quantum
turbulence

® Co-flow [similar to classical]
® Counter-flow [only in superfluids]

® Ve studied co-flow GPE turbulence at
zero temperature with C. Nore |8 years
ago...

® How can one numerically study finite
temperatures effects [and counter-flow] ?



In Landau’s two-fluid model, Helium is a mixture
(in an amount depending on temperature) of a
normal component and a superfluid component.
Landau’s model gives no description of the
dynamics of quantum vortices and their interaction
with the normal fluid.

The Gross- Pitaevskii equation describes very well
these vortices, but only at zero temperature!

The traditional approach is to introduce quantum
vortices in the two-fluid model postulating ad hoc
rules to describe the motion of vortices, their
reconnection and their interaction with the
normal fluid.

|dea: extend GPE to finite temperatures!



Truncated (or projected)
(Gross-Pitaeveskii

Description of BEC at finite
temperature:
thermal fluctuations
overwhelm quantum
fluctuations

It is only one of the
(many) models of finite-

temperature eftects in
BEC

PHD TUTORIAL

Finite-temperature models of
Bose—Einstein condensation

Nick P Proukakis and Brian Jackson!

NGIN =0.93 NOfN =045 Nﬁ;’N =0.02

Figure 10. Typical thermalized (equilibrium) images of a classical
field consisting of a fixed number of 2000 atoms at three different
energies (i.e. temperatures). Plotted are the density profiles

| (x, y, 0)|? of an anisotropic (w, /w, = ~/8) trapped 3D Bose gas
arising from a single run of the PGPE, with colour representing the
atomic density (plotted on the logarithmic scale—black /blue: zero
density, red /dark brown: maximum density). The enhancement of
fluctuations at higher temperatures corresponding to a lower
condensate fraction Ny/N (indicated in figure) is evident. (Images
provided by Matt Davis—see also [182].)



PHD TUTORIAL

Finite-temperature models of
Bose-Einstein condensation

Nick P Proukakis and Brian Jackson'

INDICATIVE GUIDELINES FOR POSSIBLE CHOICE OF 'MINIMUM THEORY' ACCORDING TO REGIME UNDER STUDY

Quantum Boltzmann

Regime under CehgiEhee Possible Sec
9 (Phase Temperature L y : Applicability & Related Comments
Study 1 Minimum Theory' ! tion
Fluctuations)
Equili Near | Non Quasi
brci]um Equili | Equili|BEC| BEC [[T=0|/0<T<Tc| T=Tc || (no unique choice) (see main text for details & further clarifications)
brium | brium (Low D)
\/ \/ \/ Static Bogoliubov 22 Suitable for very limited regime close to T=0
Hartree-Fock 312 Simplest equilibrium theory for describing partially-condensed bosonic gases
(Static) Vi (Hartree-Fock Energy Spectrum)
‘/ ‘/ ‘/ HFB - Popov (Static) i 3.3.1 As above - but additionally includes (T=0) dressing to quasiparticles
Genca(rsal:;zttiecc; Fid 3.4 As above - but additionally includes some many-body effects
Number-conserving 503 Ensures number-conservation by construction. More cumbersome to implement.
Bogoliubov (Static) T Includes corrections due to finite size and shape effects
\/ ‘/ ‘/ Modified Mean Field Full treatment of phase fluctuations. Ab initio determination of density profiles and
: L 5.1 ] ] T | [
(Low dimensions) correlation functions at equilibrium for all dimensions d=1, 2 and 3
Hartree-lfock 4.2 No particle exchange between condensate & thermal cloud, or many-body effects
‘/ ‘/ ‘/ (Dynamical)
Number-cgnservmg Essentially as above, but without relying on symmetry-breaking.
Bogoliubov 5.3 T . | 4.y
) Additionally includes many-body effects & corrections due to finite size.
(Dynamical)
Self-Co'nS|sten.t. Includes particle exchange between condensate and thermal cloud (not restricted to
Gross-Pitaevskii- ¥ ] ¥ qy
\/ \/ \/ 4.4.3 ergodicity). Describes well both elementary and macroscopic excitations.
Boltzmann ] ] ) [ g B 4
( ZNG) Not suitable for (low-dimensional) regimes exhibiting strong phase fluctuations.
Quantum noise included in initial conditions of simulation only, with dynamics governed by
Truncated Wigner ! 6.2.1 || the Gross-Pitaevskii equation. Most suitable for study of quantum effects at short times
and relatively low temperatures.
) : Based on the assumption that all relevant (low-lying) modes of the system are highly
Classical Field i : ; ! .
‘/* (Projected 6.1 occupied and therefore behave predominantly in a classical manner. Arbitrary (non-
)€ I 3 equilibrium) initial conditions are propagated to equilibrium by the (Projected) Gross-
‘/ ‘/ ‘/ Gross-Pitaevskii) S i (
Pitaevskii equation.
Accurately describes fluctuations at phase transition. (Quasi)condensate (low-lying modes]
Stochastic of the system) equilibrates in contact with thermal cloud (higher-lying modes), including
‘/ Gross-Pitaevskii 6.2.2 || dynamical (thermal / quantum) noise. Existing numerical implementations include noise
& 6.2.3 || throughout the simulations but are currently restricted (for purely numerical reasons) to a

static thermal cloud (heat bath) and a classical (instead of the usual Bose) distribution

function for the low-lying modes.

*
‘/ This approach has been used by some authors to describe the route towards condensation and the shift in the critical temperature.

<—1'GPE



What is TGPE (or PGPE)?

o Clasical GPE contains density waves (sound
with dispersive effects at large k)

e These phonon modes should be quantized
e Can they be treated classically?
e Analogy with black body...

e See e.g. www.pnas.org/cgi/doi/10.1073/pnas.
1312549111



http://www.pnas.org/cgi/doi/10.1073/pnas.1312549111

Black body and truncation...
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Classical truncated systems

where first introduced in 1952 by TD Lee in
hydrodynamics

T.D. Lee, Quartv. Appl. Math.l, 10(1):69 (195/2).

—NOTES—

ON SOME STATISTICAL PROPERTIES OF HYDRODYNAMICAL AND
MAGNETO-HYDRODYNAMICAL FIELDS*

By T, D. LEE ({Iniversity of California, Berkeley)

equilibrium distribution every mode of the lourier components of meagnetlie field and
veloeity field must be in encrgy cquipartition, Let 4/(&) be the corresponding energy
gpecetrum of magnetie field per unit volume, then we have

M) = F(i) « k. (‘312)

= Taarhiilanrcra avd masnafasa taebiislonen T 10 aoes af o ‘I!.ﬂﬂ‘i ﬁ“‘if‘] a"]l'lﬂ 11 +ha anove..



(seneral definition of
truncated systems

e The basic idea is to perform a truncation (in
Fourier space) of the partial differential
equation (PDE), as is always done whenever
performing an actual numerical computation

e The truncated system is a large number of
ordinary differential equations (ODE) with
standard statistical mechanical properties

e [t contains dissipative processes, thus
furnishing a description finite temperature
effects



Fourier-(GGalerkin truncation

Example: Let F be a non-linear function

PDE: {8@;1(}(7 t) = Flu, d;u, di;u, . . |

Periodic B.C. on € = [0, 27]"”
with a conserved quantity E
Non linear terms imply

u(x,t) = Z a(k,t)e’ ™ convolutions in Fourier

il space
ou A

= (k,t) = Fla, K

Pof et i



(Galerkin-truncated equation

ou il
E(ka t) I F[“? k]

ﬁ(k, t) =0 lf ‘k| Z kmax

*[Finite-dimensional system of ODE
ePDE is approximated by the truncated system only

as long as the spectral convergence is ensured
(dynamics is not influenced by the cut-off)

*Inherits some conservation laws of the original PDE
Statistical stationary solutions given by the associated

Liouville equation P[ia(k)] = Ne "™ absolute equilibria



General properties of
truncated system

e System relaxes toward the thermodynamical
equilibrium

e Partial thermalization at small scales
e Thermalized modes generate an effective

dissipation acting at large scales. (Kolmogorov regime
for truncated Euler and mutual friction for TGPE)



Classical hydrodynamics

L e e i Aacanie . P

YOI Dl AU
Truncated Euler equation
PRL 95, 264502 (2005) PHYSICAL REVIEW LETTERS o e

Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows

Cyril Cichowlas,' Pauline Bonaiti,' Fabrice Debbasch,”> and Marc Brachet!

'Laboratoire de Physique Statistique de I’Ecole Normale Supérieure, associé au CNRS et aux Universités,
Paris VI et VII, 24 Rue Lhomond, 75231 Paris, France
2ERGA, CNRS UMR 8112, 4 Place Jussieu, F-75231 Paris Cedex 05, France
(Received 21 October 2004; published 22 December 2005)

A new transient regime in the relaxation towards absolute equilibrium of the conservative and time-
reversible 3D Euler equation with a high-wave-number spectral truncation is characterized. Large-scale
dissipative effects, caused by the thermalized modes that spontaneously appear between a transition wave
number and the maximum wave number, are calculated using fluctuation dissipation relations. The large-
scale dynamics is found to be similar to that of high-Reynolds number Navier-Stokes equations and thus
obeys (at least approximately) Kolmogorov scaling.



Truncated Euler equation

TD. LEE (Quart Appl Math 1952), RH. KRAICHNAN 1967-1973, C. Cichowlas et al.
(PRL 2005), W. BOS and J. Bertoglio (Phys. Fluids 2005), Frisch et al. (PRL 2008), ...

Euler PDE: 8tu+(u-V)u = —Vp

/ V.-u=0

u(x,t) = Z a(k,t)e™ ™

I )
atuoz(ka t) i _§Paﬁ’y Zuﬁ p7 (k P, )

where 73@57 e kgpa»y—l-kfypag with Pag e 5a5—kak5/k



Truncated Euler equation

Conserved quantities

Energz I E — (2711_)3 / ‘u(;()‘Q PIBE i ZE(k)

Helie;
—%’ H:(Qi)S/u(X),w(X)d%:ZH(k) U= IV X0

H. Moffatt, J. Moreau in the 60’s. Discovered 200 vears after Euler work

SR
Shak’ 1)
AT/ <k stkiz Ak/2,01 7 L

&
~—~
N
e
|

H(k) = a(k’,1)-d(-k',1)
k—Ak/2<|K'|<k+Ak/2

Both Energy and Helicity are exactly conserved by the
truncated dynamics



Kraichnan’s Helical
Absolute Equilibrium

J. FlLLuids Mech. 73)

ﬁ(k) ) e—ﬁE—OzH

(Gaussian field

i ]{72 47'(' )

]{7406 ST 4
il e

| 52 1—a2k‘2/52 1K

E(k)

For the case presented here: o’k; .. /3° < 1



Numerical sstmulation ABC flow

. U (k)
Resolution of 5123 VX Uapc = AxUape
G. Krstulovic, P. D. Mininni, M. E. Brachet and A. Pouquet PRE 79(5) 056304, 2009

kz 47 2 k404 8 4

E(k) = ~ k H(k) = ~
(k) 81— a2k2/32 (k) 32 1_ a2k2/32
1| " PDE regime
E o , Truncation effect
kﬁ -~ Rarpidl IDHeanyaligacion
0.01¢ L’
10"45 ’¢””’2
e E(k) ’ K
* H(k)



Truncated Euler:
basic facts

® Relaxation toward Kraichnan helical absolute
equilibrium

® Transient mixed energy and helicity cascades

® Thermalized small-scales act as microworld
providing an effective dissipation in the system




Superfluid hydrodynamics
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Truncated Gross-Pitaevskii equation

week ending

PRL 106, 115303 (2011) RS- Coa PR B VTE W SLETTER S 18 MARCH 2011

Dispersive Bottleneck Delaying Thermalization of Turbulent Bose-Einstein Condensates

Giorgio Krstulovic and Marc Brachet

Laboratoire de Physique Statistique de [’Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII,

24 Rue Lhomond, 75231 Paris, France
(Received 26 July 2010; revised manuscript received 10 January 2011; published 16 March 2011)

A new mechanism of thermalization involving a direct energy cascade is obtained in the truncated
Gross-Pitaevskii dynamics. A long transient with partial thermalization at small scales is observed before
the system reaches equilibrium. Vortices are found to disappear as a prelude to final thermalization. A
bottleneck that produces spontaneous effective self-truncation and delays thermalization is characterized
when large dispersive effects are present at the truncation wave number. Order of magnitude estimates
indicate that self-truncation takes place in turbulent Bose-Einstein condensates. This effect should also be
present in classical hydrodynamics and models of turbulence.



Kolmorogov regime in the

GPE

FIG. 5. Same visualization as in Fig. 1, but at time ¢ = 8.
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FIG. 2. Plot of the incompressible kinetic energy spectrum,
Eiin(k). The bottom curve (a) (circles) corresponds to time
t = (0 (same conditions as in Fig. 1). The spectrum of a
single axisymmetric 2D vortex multiplied by (//27) = 175 is
shown as the bottom solid line. The top curve (b) (plusses)
corresponds to time ¢ = 5.5. A least-square fit over the interval
2 = k = 16 with a power law Eg (k) = Ak™" gives n = 1.70
(top solid line).

e K41 regime first found in the GPE 19 years ago:

C. Nore, M. Abid, and M. E. Brachet, Phys. Rev. Lett. 78, 3896 (1997)
C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644 (1997)

M Kobayashi and M Tsubota. phy. Rev. Lett. 94(6):065302, Jan 2005.
Yepez et al. Phys. Rev. Lett. 103(8):084501, Aug 2009



Wave propagation ., _ 4 —ikt 4 50

Bogoliubov dispersion relation:

m 2 412

Speed of sound c = \/g|Ao]2/m
Coherence length & = v/h2/2m|Ao[?g.

Important dimensionless parameter for TGPE

é’ k Amount of dispersion of
ImMax

thermal waves



Hydrodynamic deseription
of GPE

V(x,t) = \/’O(X’ ') exp [z%gb(x, t)l, V=V¢

™

dp
—+V (pV ¢)=0, Zb I(V(b)z—cz(l p) +c*€ \/;_-

o= @[S S (0= s (TR

2 2m?
/ | /
Eior = Fxin +  Elnt + By
|




Taylor-Green vortex




Energy transter from incompressible
kinetic energy to sound waves.

0.14
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0.08 ® E tot
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i i ® .
- - Ekin comp
0.02 ;
0.00 |
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FIG. 13. Time evolution of total energy E,, (dot-dashed), incompressible
kinetic energy E}. (solid), compressible kinetic energy Ef. (dotted), quan-
tum energy E, (dashed), and internal energy E;, (long—dashed) for run d.
Note the transfer of energy from the incompressible part to the other con-
tributions.

Nore et al. pnys. Fluids 9 (9), 1997, PRL 78 (30), 1997



Truncation of GPE

5’1& h?
815 — Pel 2m

- [ d% (—WW [PGWP).

P WAIC] i H(kmax M k)ﬁgk

Heaviside function

V2 + gPq| Y]

Description of BEC at finite temperature: Thermal
fluctuations overwhelm quantum fluctuations



Conserved quantities

Energy, number of particles and momentum

il 3 h? 2 9,14
il /le‘(%\vw +§|¢|)
N [ P

f
it
P — /V %(¢vw—¢vw) d>x.

Conservation laws are valid in the truncated system, if
dealiasing is done carefully enough



Thermalized microcanonical states
Condensation transition in TGPE

It was previously known that
the k=0 mode of ZD vanishes at finite energy

M]J. Davis, SA. Morgan and K. Burnett

PRL 87, (2001)

(N,)/N

FIG. 1. Condensate fraction plotted against total energy after
each individual simulation has reached equilibrium. The barely
discernible vertical lines on each point indicate the magnitude

of the fluctuations.

Y 3
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C. Connaughton,C. Josserand, A. Picozzi,
Y. Pomeau and S. Rica. PRL 95, 263901.(2005)

Diiring et al. Physica D 2009, vol. 238
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FIG. 2 (color online). Condensate fraction n,/N vs total en-
ergy density (H)/V, where (H) = E + E,, E, being the con-
densate energy [see Eq. (9)]. Points (<) refer to numerical
simulations of the NLS Eq. (1) with 64° modes (N/V = 1/2).
The straight line (1) [(i1)] corresponds to the continuous Eq. (6)
[discretized Eq. (7)] approximation. Curve (iii) refers to con-
densation in the presence of nonlinear interactions [from
Eq. (9)], which makes the transition to condensation subcritical,
as illustrated in the inset (with 1024° modes). Each point (<)
corresponds to an average over 103 time units.



What is an absolute equilibrium for
GPE?



(5rand canonical

New algorithm to generate absolute equilibrium

Pstat:%e_ﬁF F=H—uN >< Non (Gaussian

0 Ay 1 OF
T Tl A el | TS k’
™ V OA vg " (et

(C(x,1)¢"(x, 1)) = 0(t — 1')d(x —x),

3 12 2h
af—P [2 V2 + pap — gPa||w]?] i%@ﬂ VﬂpGK( 1)

Partition function can be analytically obtained at low temperatures



Micro canonical versus grand
canonical

*  SGLE
+ TGPE

b)

*  SGLE

+ TGPE

4
H | T |TGPE time steps|SGLE time steps

0.09(0.09 40000 9600
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1.96| 1.8 20000 9600

4.68| 4 20000 5000

Density
histograms



o 1Ay%/p at const p 64°
IAI%/p at const p 64°
IA’/p at const p 64°
IA%/p at const p 128°




2D BKT transition

Vishwanath Shukla, Marc Brachet and Rahul Pandit

Turbulence in the two-dimensional Fourier-truncated Gross—Pitaevskii equation

New J. Phys. 15 113025 (2013)

Below transition
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Dynamics of
thermalization in the

GPE



spKin, spKinInc and spKinComp at t=0

@ Ekin inc (k)
® Fiin Comp(k)




Taylor-Green vortex




Taylor-Green vortex




Taylor-Green vortex




Taylor-Green vortex




Dispersive “bottleneck” for
thermalization of waves
Variable fk max (¢fixed, different resolutions)

Kinetic energy spectrum
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Self truncation in 2D

Vishwanath Shukla, Marc Brachet and Rahul Pandit
Turbulence in the two-dimensional Fourier-truncated Gross—Pitaevskii equation
New J. Phys. 15 113025 (2013)
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Mutual friction and
counterflow effects in
Truncated Gross-Pitaevskii
equation

PHYSICAL REVIEW B 83, 132506 (2011)

Anomalous vortex-ring velocities induced by thermally excited Kelvin waves and counterflow
effects in superfluids

Giorgio Krstulovic and Marc Brachet
Laboratoire de Physique Statistique de I’ Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII,
24 Rue Lhomond, F-75231 Paris, France
(Received 15 February 2011; published 21 April 2011)

Dynamical counterflow effects on vortex evolution under the truncated Gross-Pitaevskii equation are
investigated. Standard longitudinal mutual-friction effects are produced and a dilatation of vortex rings is obtained
at large counterflows. A strong temperature-dependent anomalous slowdown of vortex rings is observed and
attributed to the presence of thermally excited Kelvin waves. This generic effect of finite-temperature superfluids
is estimated using energy equipartition and orders of magnitude are given for weakly interacting Bose-Einstein
condensates and superfluid *He. The relevance of thermally excited Kelvin waves is discussed in the context of
quantum turbulence.



GRAND-CANONICAL
ALGORITHM
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FINITE-TEMPERATURE VORTEX DYNAMICS
PHENOMENOLOGY

V1 :VORTEX LINE VELOCITY

VL = Vg tas’ X (vp —vg) —a’s' x [s" X (v —va)l,

= BLE L pli
20 20

Vg] = Vg T+ U; : LOCAL SUPERFLUID VELOCITY

Ug . SUPERFLUID VELOCITY U; . SELF~-INDUCED VELOCITY

Un - NORMAL VELOCITY

Fig. from C. F. Barenghi and R. J. Donnelly.
Fluid Dyn. Res. 41 (2009) 051401




FINITE-TEMPERATURE TGPE VORTEX
DYNAMICS

COUNTERFLOW EFFECT ON TGPE
SIMPLEST CONFIGURATION IN A PERIODICAL SYSTEM:

wini R wcryst al X weq

£ :VORTEX CORE SIZE

( :INTER-VORTEX DISTANCE

LiMIT £/d — (:1SOLATED VORTEX.






SIMPLEST CONFIGURATION

v, = Vg tas X (v —vg) —a's’ x [s' X (v, —vg)],
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2D equivalent is more
complicated!

Temperature scan
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TBKT: energy-entropy-argument based estimate of the BKT transition temperature.

Superfluid Mutual-friction Coefficients from Vortex Dynamics in the Two-dimensional Galerkin-truncated
Gross-Pitaevskii Equation, Vishwanath Shukla, Marc Brachet, Rahul Pandit, http://arxiv.org/abs/1412.0706


http://arxiv.org/abs/1412.0706

MUTUAL FRICTION AND COUNTER-=-
FLOW EFFECTS ON RINGS

Vi, = Vg +as’ X (v —vg) —a's' x [s' X (v, —vg)],
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MUTUAL FRICTION AND
FOUNTER-FLOW EFFEGTES
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MUTUAL FRICTION AND
FOUNTER-FLOW EFFECTS

Temporal evolution of Vortex Length
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KELVIN WAVES & VORTEX RINGS

C.E. Barenghi, R. Hinninen and M. Tsubota

TimeStep: 0

FIG. 1. (Color online) Snapshots of the vortex ring of radius
R=0.1 cm perturbed by N=10 Kelvin waves of various amplitude
A taken during the motion of the vortex. In the left panel (a) the
amplitude of the Kelvin waves is small, A/R=0.05, but the per-
turbed vortex ring (red color) already moves slower than the unper-
turbed vortex (blue color). In the center panel (b) the Kelvin waves
have large amplitude, A/R=0.35, and the perturbed vortex ring
moves backwards (negative z direction) on average. The top right
panel (c) shows the top (xy) view of the large amplitude vortex at
t=0 s (blue) and r=26 s (red, outermost). For comparison, a non-
disturbed vortex is shown with dashed line (green). The lower right
panel (d) gives the averaged location of the ring as a function of
time. From top to bottom the curves correspond to A/R
=010.0:0530.105...; ,0.35.

+ KELVIN WAVES INDUCE

ANOMALOUS TRANSLATIONAL
VELOCITY.

+L. Kiknadze and Y Mamaladze, JLTP,126(1-2):
321-326, 2002.

+C. F Barenghi, R. Hanninen and M.Tsubota.
PRE, 74(4):046303, 2006
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+ EQUIPARTITION OF ENERGY
BETWEEN WAVES AND
THERMAL BATH



THERMALLY INDUCED KELVIN WAVES
EFFECT STRONGER THAN MUTUAL

FRICTION! -
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Mutual friction and
counterilow Summary

® Mutual Friction and counter-flow effects are
present in TGPE dynamics

® TGPE description naturally includes thermal
fluctuations

® Thermally excited Kelvin waves induce
slowdown of vortex ring velocity




Particles in the GPE

Galerkin-truncated GP equation

= Pe | (~coVP+gPalbPl-ut Y Vplr—a))b(x, )

0P (x, t)
ot

Newtonian dynamics for the particle
moq; = fo,i + Fext,i;

Force exerted by the fluid on the particle

f,; = 20 ) Y|V Vp(r — q;)d*x.
J

Vishwanath Shukla, Particles and Fields in Superfluid Turbulence: Numerical and Theoretical Studies, PhD
Thesis, Indian Institute of Science, Bangalore, India, 2015.




Particle potential: o partc ollsion

Vp(r) = Vo exp(—r?/(2d3);

Short-range repulsion energy for the many-particle case: A E r§2
1 —NoNo Usr = R.
= — —— )
ESR =352 55 YR rl2

Head-on collision
Attractive Potential
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Sticking transition

Coefficient of restitution: e = 2=

uy—u
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Vishwanath Shukla, Marc Brachet and Rahul Pandit, manuscript in preparation, 2015.



Conclusion

Turbulence is still an open problem
[physically and mathematically]

It is, perhaps, the most important unsolved
problem of nonlinear science

Analogy between classical viscous and
coflow superfluid turbulence is challenging

Navier-Stokes versus Gross-Pitaeveskii



Conclusion

New experiments are under construction

SHREK will study quantum versus classical
regimes

Computer power is still increasing
exponentially

New ideas are needed...



Conclusion

® Perhaps turbulence is simpler to resolve
starting from GPE rather than Navier-

Stokes?

® Statistical mechanics of interacting and
reconnecting vortex lines!?

® Anyway, large-scale TGPE computations are
needed to study finite-T effects
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