Helicity, lopology and Kelvin Waves in
Quantum Turbulence

Marc Brachet
LPS/ENS

Summer School Cargese, Corsica
26th July -5th August 2016
ADVANCES IN GEOPHYSICAL AND ASTROPHYSICAL TURBULENCE



Work done in
collaboration with

® Pablo Mininni

® Patricio Di Leoni




2 Main results for Gross-
Pitaevskii Superfluids:

® Detecting Kelvin VWaves using
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Detecting Kelvin Waves using
spatiotemporal spectrum

® Main results:

® Space-time resolved spectra allow to find needles in
haystacks : Kelvin waves in spatial spectrum

® A practical method to quantify their presence



GPE, Madelung and
quantum vortices
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Spatiotemporal spectra

® Finding Kelvin waves in the energy spectra
is like looking for needles in a haystack...

® |nstantaneous flow visualization is
insufficient to identify and extract all the
waves in a turbulent flow.

® TJo quantify their amplitudes as a function of
frequency and wave number : calculate
space-time resolved spectra.



Space-time resolved Mass spectrum, Taylor Green
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Helicity and Kelvin Vaves in
reconnecting quantum knots

® Main results

® Helicity can be directly computed from the GPE 3D
complex wave function field using our new regularization

method

® Conservation or non-conservation of quantum helicity is
an open problem involving not only topological changes,
but also excitation (and decay) of Kelvin waves



Relicity in quantum

flows
['= ¢.v(l)dl = 4ra, a = h/(2m).




Singularity of v

(notice that these definitions are analogous to those de-
rived via the Madelung transformation ¥ = ./ne*?,
where the velocity is given by v = 2aV¢). At a distance
r — 0 from a straight vortex line these quantities are
known [27] to behave as n ~ 7% and v = 2aey/r where
ey 1s the azimuthal unit vector and r the radial distance
in a cylindrical coordinate system (e, eg,e,) having its
origin on the alght vortex line ' ne velocity
has an r~! singularity perpendicular to the vortex line.



Need to regularize v

Therefore, as the vorticity (see Eq.(2)) also has a sin-
gularity parallel to those lines, the standard definition of

helicity

is not well behaved, as it involves the product of two
singular distributions. The idea of the reqularized helicity
is to replace in Eq. (6) the field v by a regularized smooth
field v,z having no divergences perpendicular to the line,
and the same regular behavior as v parallel to the line.
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Definition of regular v
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is a smooth field oriented along the vortex line. Then,
we can define the regularized helicity

(8)
with Vieg = vyW/1/W;W;| We show next how this regu-
0

larized helicify sfi ds The geometrical interpretations
valid for the standard one.




or and isolated structure,
helicity can be decomposed into twist (loosely speaking,
the total number of helical turns a ribbon does), and
writhe (the “coiling” of the structure). Let’s start by
analyzing the relation between the regularized helicity

and the writhe. For a single curve, the writhe Wr is, by
definition (28], given by the expression
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It is easy to see that if one uses a velocity field V(r)
given by the Biot-Savart law
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where r; corresponds to the position of the vortex lines,
and the vorticity as defined in Eq. (2), then helicity H
is given by

H = /V(r) cw(r)dV = F/V(r) - dr,

_ I'2 [ [dr-(dry X (r —11))
47 |(r —ry)[3 '

From the identity (a x b)-¢c =a- (b X c¢) one finds that
in this simple case (for a single line)

H =T2Wr.



Regularized helicity defined as the twist of con-
stant phase ribbon. First we recall that the twist T'w
of a ribbon (defined by both a curve r(s), and a vector

U(s) perpendicular to the curve) is defined by the inte-
gral over the curve

1 dU dr
One can further show that [6]
1
Tw= N + o /T(s)ds, (12)

where 7 is the torsion, and N the number of turns round
the curve of U in the Frenet-Serret frame (see Methods).
The regularized helicity can be presented in a purely ge-
ometrical way. Under the GPE, constant phase surfaces
will intersect on the vortex lines. Now consider a line at
a close distance of the vortex line and lying on a constant
phase surface (note that we could construct an equivalent
line in the classical Biot-Savart case by requiring the line
to be perpendicular to the velocity field). The vortex line
and the constant phase line defines a ribbon. Now, using
Egs. (2), (7) and (11) we can see that

H =T?Tw.



Constant phase surfaces : 2 linked rings and trefoil knot

FIG. 1. Renderings of the surface of zero phase for two knots
in a quantum fluid. Top: two linked rings, note the surface has
one hole. Bottom: trefoil knot, with three holes. The number
of holes is associated to the number of turns the vector that
lies on the surface perpendicular to the vortex lines does as it
moves along the curve.
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FIG. 2. Time evolution of the helicity for four quantum vortex

configurations. At the top, snapshots of the configurations at 25
different times are shown. The single ring only moves at con-
stant speed. The two rings and the trefoil reconnect at times 2 ()

marked by the vertical arrows. When reconnection takes place
between two anti-parallel vortex lines (as in the two rings), he-
licity does not change. In the trefoil reconnection takes place
simultaneously at three points and helicity changes abruptly
at the time indicated by the red arrow; later it decays slowly
to its final value. The (1,6)-torus knot deforms without re-
connecting, and its helicity does not change.

helicity versus time
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The helicity of this
ABC superflow is

450 000 quanta




Time-evolution of ABC superflow helicity
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FIG. 1. Time evolution of the incompressible kinetic energy
E; and the regularized helicity H. Inset: evolution of the
regularized helicity H and of the non-regularized helicity Hs,
both values coincide, but the regularized one is less noisy.



Quantum tornados?




Link with classical vortex tubes

Helicity and the Calugareanu invariant

By H. K. MorraTT AND RENZO L. Riccaf

Department of Applied Mathematics and Theoretical Physics, Silver Street,
Cambridge CB3 9EW, UK.
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Link with classical vortex tubes
Helicity and the Calugdreanu invariant 425
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Figure 12. (@) Writhe, (b) torsion and (¢) twist contributions of a ribbon to the Calugareanu
invariant. If a coiled ribbon is stretched so that its centre-line becomes straight, then the initial
torsion of the centre-line is converted to the final twist of the ribbon about its centre-line.



Space-time resolved spectra allow to
detect and quantify Kelvin Waves

Regularized helicity is directly computable
from 3D complex wave function field,
which is very useful for e.g. the study
large-scale helical ABC quantum flows

Conservation or non-conservation of
quantum helicity is an open problem
involving not only topological changes but
also excitation (and decay) of Kelvin waves

Much remains to be understood!



Thank you!



