Disques, Jets et Champs Magnétiques -II

Jonathan Ferreira

Laboratoire d'Astrophysique de Grenoble

Collaborateurs: P. Garcia (Portugal), C. Dougados (LAOG) S. Cabrit (Obs. Paris), F. Casse (Pays-Bas)

Plan du cours II

1. La MHD et les SMAE

- 1. Des équations MHD multifluides à celles à 1 fluide
- 2. Approche magnétostatique des SMAE
- 3. Approche MHD: invariants des jets, difficultés
- 4. Simulations numériques ?

2. Solutions auto-similaires

- 1. Méthode, résultats
- 2. Validation par simulations numériques
- 3. Comparaison aux observations: méthode, résultats
- 3. Les disques d'accrétion (conditions dans les 2-3 au centraux)
 - 1. La MRI
 - 2. La « zone morte »: existence, fraction d'ionisation des disques, rayons X
 - 3. Valeurs et gradients de grandeurs dans une SMAE

I- La Magnétohydrodynamique (MHD)

Hypothèse: plusieurs espèces en présence suffisamment couplées collisionnellement (fluides: $l_{coll} \ll l \sim n^{-1/3} \ll R$)

$$\begin{split} \rho_{\alpha} \frac{D\vec{v}_{\alpha}}{Dt} &= -\vec{\nabla}P_{\alpha} - \rho_{\alpha}\vec{\nabla}\Phi_{G} + \sum_{\beta}\vec{F}_{\beta\alpha} + n_{\alpha}q_{\alpha}(\vec{E} + \vec{v}_{\alpha} \wedge \vec{B}) \\ \hline \Sigma_{\alpha,\beta}\vec{F}_{\alpha\beta} &= \vec{0} \end{split}$$
Fluide moyen:

$$\rho = \sum_{\alpha} n_{\alpha}m_{\alpha}$$
Hypothèses:

$$\rho = \sum_{\alpha} n_{\alpha}m_{\alpha} \vec{v}_{\alpha}$$
Couplage suffisant:

$$\|\vec{v}_{\alpha} - \vec{u}\| \ll \|\vec{u}\|.$$

$$T_{\alpha} = T$$
Electroneutralité locale:

$$\sum_{\alpha} n_{\alpha}q_{\alpha} = 0$$

$$\Rightarrow \text{Equations du } \ll \text{fluide moyen } \ast$$

$$P = \sum_{\alpha} n_{\alpha}k_{B}T$$

$$\frac{\partial\rho}{\partial t} + \nabla \cdot \rho\vec{u} = 0$$

$$\rho\frac{D\vec{u}}{Dt} = -\nabla P - \rho\nabla\Phi_{G} + \vec{J} \wedge \vec{B}$$

$$\vec{J} \wedge \vec{B} = (1+X)(\vec{F}_{in} + \vec{F}_{en})$$

$$X = \rho_{i}/\rho_{n}$$

Aspects magnétiques: approx MHD

Equations de Maxwell:

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \wedge \vec{B} = \mu_o \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

$$\nabla \cdot \vec{E} = \frac{\rho_*}{\varepsilon_o}$$

$$\nabla \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

=> Conservation de la charge

$$\frac{\partial \rho_*}{\partial t} + \nabla \cdot \vec{J} = 0$$

=> Théorème de Poynting $\frac{\partial W}{\partial t} + \nabla \cdot \vec{S}_{MHD} = -\vec{J} \cdot \vec{E}$ $W = W_e + W_m = \varepsilon_o E^2/2 + B^2/2\mu_o$ $\vec{S}_{MHD} = \frac{\vec{E} \wedge \vec{B}}{\mu_o}$

Loi de Faraday: E/B ~ L/T ~ U => « courants de déplacement » en $(U/c)^2$ \Rightarrow J est le rotationnel de B \Rightarrow Lignes de courant fermées (régime permanent) \Rightarrow W ~ W_m (énergie dans E est ~ $(U/c)^2$) $\vec{J} = \frac{1}{\mu_o} \nabla \wedge \vec{B}$

Comment calculer E ?

Loi d'Ohm généralisée

Electrons très légers: inertie du fluide moyen = ions (et neutres) \Rightarrow Aux échelles de temps utiles, les e⁻ se sont déjà ajustés.

$$\vec{0} = -\nabla P_e + \sum_{\beta} \vec{F}_{\beta e} - en_e(\vec{E} + \vec{v}_e \wedge \vec{B})$$

Loi d'Ohm:

$$\vec{E} + \vec{u} \wedge \vec{B} = \eta \vec{J} + \frac{\vec{J} \wedge \vec{B}}{en_e} - \left(\frac{\rho_n}{\rho}\right)^2 \frac{(\vec{J} \wedge \vec{B}) \wedge \vec{B}}{m_{in} n_i \nu_{in}} - \frac{\nabla P_e}{en_e}$$
Résistivité Effet Hall Diffusion ambipolaire Effet de Perovensque $\rho_n \ll \rho$, on obtient loi d'Ohm usuelle $\vec{E} + \vec{u} \wedge \vec{B} = \eta \vec{J}$

⇒ Equation d'induction du champ magnétique

$$\frac{\partial \vec{B}}{\partial t} = \nabla \wedge (\vec{u} \wedge \vec{B}) - \nabla \wedge (\nu \nabla \wedge \vec{B}$$

MHD idéale: $R_m = L U/v >> 1$

Magnétostatique (1)

MHD idéale: physique des Jets

Collimation due au « hoop-stress » (champ toroidal) Heyvaerts & Norman 89, Okamoto 01

Dépend de distribution I(r) *asymptotique* Il existe nécessairement des surfaces non confinées
 J calculé via rot B ? Source du courant ?

MHD Résistive: physique du disque

- Courants induits par rotation
- I(r) dépend de la zone d'accélération
- Distribution globale du courant (fermeture)

Magnétostatique (2)

Roue de Barlow (loi de Faraday)1) Rotation + Champ Magnétique => e.m.f

 $e = \int \Omega r \ B_z \ dr$

2) e.m.f => courant électrique (2 circuits)

3) Si $R_1 \neq R_2$, jets asymétriques possibles

Rôle majeur des courants !

Ω

Principes de l'éjection magnétocentrifuge

Couple magnétique permet accrétion Disque résistif => nécessité d'un transport turbulent de B Modèle doit fournir flux de masse éjecté: $\dot{M}_{acc} \propto r^{\xi}$ Force de Lorentz accélère et confine le jet

Les Jets: un transport + efficace

A l'intérieur du disque:

Accrétion grâce à un transfert de moment cinétique 1. Couple turbulent « visqueux » (radial)

2. Couple lié au Jet (vertical): $F_{\varphi} = (J \wedge B)_{\varphi} = J_z B_r - J_r B_z \approx \frac{B_{\varphi}^+ B_z}{\mu_0 h} < 0$

 $\nabla \tau_{r\varphi} \approx -\alpha \frac{P}{r}$

0

z/h

Dans le jet: La matière doit être accélérée azimutalement

$$F_{\varphi} = \frac{B_p}{\mu_0 r} \nabla_{//} r B_{\varphi} > 0$$

 \Rightarrow **J**_r doit décroitre sur une échelle de hauteur

$$\Lambda = \frac{\text{Jet torque}}{\text{Viscous torque}} \approx \frac{r}{h} >> 1$$

Injection de masse dans le jet

Efficacité d'éjection: ξ $\dot{M}_{acc}(r) \propto r^{\xi}$ Seule force dirigée vers le haut: \Rightarrow Gradient de pression cinétique \Rightarrow B ~ équipartition Ferreira & Pelletier 95 Casse & Ferreira 00

Conséquences importantes ·

Tous les termes sont dynamiquement importants, pas de « toy model » possible...

Equations MHD

• Mass

$$\boldsymbol{\nabla} \cdot \boldsymbol{\rho} \boldsymbol{u} = 0$$

- Momentum
- Energy
- Perfect gas
- Ohm's law
- Induction

$$\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\boldsymbol{\nabla} P - \rho \boldsymbol{\nabla} \Phi_{G} + \boldsymbol{J} \times \boldsymbol{B} + \boldsymbol{\nabla} \cdot \boldsymbol{T}$$
$$\rho T \frac{dS}{dt} = \rho T \boldsymbol{u}_{\boldsymbol{p}} \cdot \boldsymbol{\nabla} S = Q$$
$$P = \rho \frac{k_{B}}{\mu m_{p}} T$$
$$\eta_{m} J_{\phi} \boldsymbol{e}_{\phi} = \boldsymbol{u}_{\boldsymbol{p}} \times \boldsymbol{B}_{\boldsymbol{p}}$$
$$\boldsymbol{\nabla} \cdot \left(\frac{\nu'_{m}}{r^{2}} \boldsymbol{\nabla} r B_{\phi}\right) = \boldsymbol{\nabla} \cdot \frac{1}{r} (B_{\phi} \boldsymbol{u}_{\boldsymbol{p}} - \boldsymbol{B}_{\boldsymbol{p}} \Omega r)$$

+ une prescription: $v_m = \alpha_m V_A h$ dans le disque

Description MHD de jets stationnaires

Jets axisymétriques formés de surfaces « en gigogne » de flux magnétique constant: a(r,z) = Cst

$$\overline{B}_p = \frac{1}{r} \nabla a \wedge \overrightarrow{e_{\varphi}}$$

Flux a(r,z=0) doit être spécifié

- Description MHD 1 fluide
- Equations non-relativistes
- Souvent: polytrope (équation énergie)
- MHD Idéale (absence viscosité, diffusivité)
 => Invariants le long de chaque surface
 magnétique, spécifiés par conditions aux
 limites

Jet invariants

- 1. Mass flux to magnetic flux ratio $\eta(a)$ $\mu_0 \rho \, \vec{u}_p = \eta(a) B_p^{\bullet}$
- Magnetic surface rotation $\Omega_*(a)$ $\Omega_*(a) = \Omega \eta(a) \frac{B_{\varphi}}{\mu_0 \rho r}$ 2.

3. Total specific angular momentum L(a) $L(a) = \Omega_* r_A^2 = \Omega r^2 - \frac{rB_{\varphi}}{M}$

- 4. Total specific energy **E(a)** $E(a) = \frac{u^2}{2} + \Phi_G + \frac{\gamma}{\nu 1} \frac{P}{\rho} \Omega_* \frac{rB_{\varphi}}{n}$
- 5. Specific entropy K(a) $P = K(a)\rho^{\gamma}$

7 unknown variables: ρ , P, ur, Ω , uz, a(r,z) and $B\phi$ 7 equations and 7 Boundary Conditions:

- 3 regularity conditions (SM, A, FM)
- Assume $\Omega_* = \Omega_K$

3 free, independant BC $\rho(\mathbf{r}), \mathbf{u}_{\mathbf{z}}(\mathbf{r}) \text{ and } \mathbf{B}_{\mathbf{z}}(\mathbf{r})$

 $\mu_0 \rho r$

Rotation dans les Jets

E(a), $\Omega(a)$ et L(a) étant des invariants:

Anderson et al 03

$$J \equiv E - \Omega L = \frac{v^2}{2} + \Phi_g - \Omega \varpi v_\phi$$

Lorsque la gravité devient négligeable

$$\frac{v_{p,\infty}^2 + v_{\phi,\infty}^2}{2} - \Omega_0 \varpi_\infty v_{\phi,\infty} \approx -\frac{3}{2} v_{K,0}^2$$

Vitesse poloidale >> rotation

$$\varpi_0 \approx 0.7 \,\mathrm{AU} \left(\frac{\varpi_\infty}{10 \,\mathrm{AU}}\right)^{2/3} \left(\frac{v_{\phi,\infty}}{10 \,\mathrm{km \, s^{-1}}}\right)^{2/3} \left(\frac{v_{p,\infty}}{100 \,\mathrm{km \, s^{-1}}}\right)^{-4/3} \left(\frac{\mathrm{M}_*}{1 \,\mathrm{M}_\odot}\right)^{1/3}$$

Mesures sur MVC (v < 150 km/s): Pour une valeur $r_{\infty} = 30$ au, Vjet = 50 km/s, on trouve $r_0 = 3.6$ au

Jet transverse equilibrium

The full 2D ($\partial_t = \partial_{\phi} = 0$) Jet obeys the transverse equilibrium equation:

$$(1-m^2)\frac{B_p^2}{\mu_o\mathscr{R}} - \nabla_{\perp}\left(P + \frac{B^2}{2\mu_o}\right) - \rho\nabla_{\perp}\Phi_G + (\rho\Omega^2 r - \frac{B_\phi^2}{\mu_o r})\nabla_{\perp}r = 0$$

3

Tension due to magnetic field and flow Alfvénic Mach number: $m = u_p/V_{Ap}$ Centrifugal term and « hoop-stress »

4

5

Sub-Alfvénic zone: Decollimating forces: 2,4 Collimating forces: 1,3,5

Asymptotic zone: Main decollimating term: 2 Main collimating term: 5

Transfield or **Grad-Shafranov** equation: provides a(r,z) for a given distribution of invariants $\eta(a)$, $\Omega_*(a)$, L(a), E(a) and K(a)

An unsolved mathematical problem...

FM elliptic domain Alfven surface SM surface

Grad-Shafranov equation provides a(r,z)for a given distribution of invariants $\eta(a)$, $\Omega_*(a)$, L(a), E(a) and K(a)BUT, is a PDE of mixed type: \Rightarrow **Elliptic zones** are determined by boundary conditions only (on SM and FM surfaces ??) \Rightarrow **Hyperbolic zone** is determined as an initial value problem.

Overwhelming difficulties:

✓ Unknown shape and localisation of SM and FM surfaces.

✓ What kind of BC ?

No 2D self-consistent $\partial_t = \partial_{\phi} = 0$ solution yet => time-dependent

Simulations MHD de jets Production Accélération/collimation

Uchida & Shibata 85 Kato *et al.* 02 Matt *et al.* 02 Casse & Keppens 02 Ouyed & Pudritz 97,99 Krasnopolski *et al.* 99 Ustyugova *et al.* 99 Fendt & Camenzind 96 Tsinganos & Bogovalov 02

Propagation

Instabilités

Cerqueira *et al.* 99 Gardiner *et al.* 00 Frank et al. 98, 00 Stone & Hardee 00

Appl et al. 00 Lery et al. 00 Ouyed et al. 03 Bati & Keppens 03

II- Solutions auto-similaires

2D solver • $\partial_t = 0$ ill-posed problem (mixed type PDE) • $\partial_t \neq 0$ code MHD Séparation des variables: Auto-Similarité Separation Gravité s'écrit $\Phi = -\frac{GM}{R} = -\frac{GM}{r} \times \frac{1}{\sqrt{1+\frac{z^2}{r^2}}}$ => Solutions de la forme: $A(r,z) \propto r^{\alpha} \times f\left(\frac{z}{r}\right)$

Structures d'Accrétion-Ejection auto-similaires

- Champ B proche équipartition (rôle du gradient de pression)
- Diffusivité magnétique $v_m = \alpha_m V_A h$
- Espace des paramètres space étroit pour jets froids, $\xi \sim 0.01$ M_{acc}

 $\propto r^{\xi}$

- Espace élargi pour jets chauds, $\xi \sim 0.1$
- Toutes les solutions se recollimatent (choc terminal)

Casse & Keppens 02, ApJ, **591**, 988 Casse & Keppens 04 Versatile Advection Code (Toth 96)

Initial Conditions:

- Resistive accretion disc $v_m = \alpha_m V_A H$
- Equipartition vertical field
- Sub-Keplerian rotation law

Open outer Boundary Conditions Inner mass sink at the origin Matter replenished at r_{out} (for z<H)

After 40 inner periods:

- \Rightarrow Super-FM Jet from inner parts
- \Rightarrow Continuous and persistent ejection
- \Rightarrow Radial disc structure with power-laws
- ⇒ Accretion/Ejection mechanism confirmed

Jet thermal structure (1)

Garcia et al. 01a,b

Goal: compute the jet emission lines \Rightarrow Multi-components MHD (e⁻, ions, neutrals) !

(1) Solve the energy equation

$$P\boldsymbol{\nabla}\cdot\boldsymbol{v} + \boldsymbol{\nabla}\cdot U\boldsymbol{v} = \Gamma - \Lambda$$

with ambipolar diffusion heating

$$\Gamma_{\rm MHD} = \overline{\eta} J^2 + \left(\frac{\overline{\rho_{\rm n}}}{\rho}\right)^2 \frac{\frac{1}{c^2} \|\boldsymbol{J} \times \boldsymbol{B}\|^2}{\overline{m_{\rm in} n_{\rm i} \nu_{\rm in}}}$$

(2) Solve the ionization evolution: MAPPINGS Ic code (Binette et al. 85)

- Chemical elements: H,He,C,N,O,Na,Mg,Fe,Ca... (depletion on dust grains)
- Photoionization heating Γ_P (UV-field from boundary layer)
- Collisional ionization cooling Λ_{coll}
- Radiative recombination cooling Λ_{rec}
- Line cooling Λ_{rad} (resonance, inter-combination and forbidden lines)

 $\chi = z/\varpi_0$

 $\chi = z/\varpi_0$

• Ideal MHD, « cold » jets

Images et diagrammes Position-Vitesse

Vents de disques possèdent 4 caractéristiques observées:

- 1) Pic d'émission non résolue (avec offset)
- 2) Collimation sur des échelles courtes (z < 200 au)
- 3) Accélération apparente du jet
- 4) Profils de raies larges à Haute Vitesse.

Echelle de collimation et largeur des jets

 $\dot{M}_{\rm acc} \propto r^{\xi}$

Data: Ray et al (1996) Dougados et al (2000) Woitas et al (2002)

Echelle de collimation < 30 au (à toutes les phases)
 Discrimination de modèles avec ξ trop petit
 => Cohérence avec vitesses observées V_p ≈ V_{ko} / ξ^{1/2}

III- Les disques d'accrétion

Instabilité Magnéto-rotationnelle (MRI) Ecoulements en rotation différentielle: **B=0**

perturbation: cons mom^t cinétique Ωr²= Cst
=> force centrifuge ramène vers équilibre (Rayleigh)
B≠ 0

- perturbation: couple magnétique $F_{\phi} = J_r B_z < 0$ => $\Omega < \Omega_K(r)$: effet déstabilisant, amplification MAIS: tension magnétique stabilisante $F_r = J_{\phi}B_z > 0$ $\partial_t u_r = (\Omega^2 - \Omega^2_K)r + F_r/\rho$ => B doit être petit Chandrasekhar 53 Velikhov 59 Balbus & Hawley 91 Balbus 2003, ARA&A

MRI: conditions d'instabilité

Relation de dispersion (modes axisymétriques, incompressibles, disque isotherme, B_z homogène)

$$\omega^4 - \omega^2 \left(2k^2 v_A^2 + \frac{d\Omega^2}{d\ln r} + 4\Omega^2 \right) + k^2 v_A^2 \left(k^2 v_A^2 + \frac{d\Omega^2}{d\ln r} \right) = 0$$

Il y a instabilité si $\omega^2 < 0$ $k^2 v_A^2 < -\frac{d\Omega^2}{d\ln r}$

 $(k_r = 0)$

Modes radiaux purs ne se propagent pas

Le mode le plus instable a un taux de croissance dynamique et vérifie

$$kv_A = \frac{\sqrt{15}}{4}\Omega$$

Dans un disque d'accrétion $\lambda < \lambda_{max} = h \implies V_A < \Omega h = Cs$

Un champ proche de l'équipartition supprime l'instabilité

MRI: transport turbulent

Dans un disque d'accrétion standard, le transport de moment cinétique est effectué par une « viscosité » turbulente v permettant un taux d'accrétion à travers le disque $\dot{M} \equiv -2\pi R \Sigma v_R$

Conservation de la masse

$$\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial R \Sigma v_R}{\partial R} = 0,$$

Conservation du moment cinétique

$$\frac{\partial}{\partial t}(\Sigma R^2 \Omega) + \frac{1}{R} \frac{\partial}{\partial R}(\Sigma R^3 \Omega v_R - \nu \Sigma R^3 \frac{d\Omega}{dR}) = 0$$

Tenseur des contraintes « visqueuses »

$$\sigma_{R\phi} = \nu \rho \frac{d\Omega}{d\ln R} = \rho < \mathbf{u}_{\mathbf{r}} \, \mathbf{u}_{\phi} > - < \mathbf{B}_{\mathbf{r}} \, \mathbf{B}_{\phi} > /\mu_{\mathbf{0}}$$

Equation d'énergie:
$$\sigma T^4 = Q_e$$
 avec $Q_e = \frac{\nu \Sigma}{2} \left(\frac{d\Omega}{d\ln R}\right)^2 = \frac{9}{8}\nu \Sigma \Omega^2$

Prescription Shakura & Sunyaev (73) $v = \alpha_{ss} Cs h$

$$\alpha_{\rm SS} = \sigma_{\rm R\phi}/P_0$$

MRI: influence de la résistivité Ohmique

En présence de résistivité Ohmique η (collisions ions-électrons) -temps dissipation perturbation échelle λ : λ^2/η -temps développement perturbation: λ/V_A \Rightarrow La MRI est amortie lorsque $\lambda^2/\eta < \lambda/V_A$ Dans un disque, $\lambda < \lambda_{max} = h$ \Rightarrow MRI amortie à toutes les échelles lorsque $R_m = h V_A/\eta < 1$

Seuil critique difficile à définir précisément (Fleming et al 2000) $< B_z > = 0$ Rm_{crit} = h Cs/ $\eta \approx 10^4$ $< B_z > \neq 0$ Rm_{crit} = h Cs/ $\eta \approx 10^2$

Effet Hall a aussi certaine importance: hélicité (Sano & Stone 2002)...

Bilan: MRI lorsque $R_m = h V_A / \eta$ entre 1 et 100 α_{SS} entre 10⁻³ et 10⁻²

La zone « morte »

Gammie 96

MRI amortie à toutes les échelles lorsque $R_m = h V_A/\eta < 1$

Une accrétion non-stationnaire?

Seules les zones actives avec $\Sigma_a = \Sigma_o$ subissent la MRI: \Rightarrow Remplacer Σ par avec Σ_a : $\dot{M} \equiv -2\pi R \Sigma v_R$ varie comme $\Sigma_a v_a$ Or, est Σ_a une constante (r,t) donc M_{acc} varie comme $v_a \# T r^{3/2}$ Température T(r) donnée selon régimes opacités (Bell & Lin 94) Dans tous les cas: $M_{acc}(\mathbf{r})$!!

 \Rightarrow Accumulation de matière dans la zone morte ?

⇒ Evolution temporelle du taux d'accrétion (chauffage ou instabilité gravitationnelle permettant ionisation ou transfert de moment cinétique) ?

 \Rightarrow Explication des objets type FU Orionis ?

SI la MRI est LE moyen de faire une turbulence entretenue dans les disques, il est crucial de calculer correctement la fraction d'ionisation x...

Fraction d'ionisation des disques

En régime stationnaire, densité électronique (Oppenheimer & Dalgarno 74)

$$x_e^3 + \frac{\beta_t}{\beta_d} x_M x_e^2 - \frac{\zeta}{\beta_d n} x_e - \frac{\zeta \beta_t}{\beta_d \beta_r n} x_M = 0 \implies x_e = \sqrt{\frac{\zeta}{\beta n}}$$

 $x_{M} = n_{M}/n_{H}$??

Plusieurs effets:

- Ionisation totale $\zeta = \zeta_{CR} + \zeta_X + \zeta_{rad}$ (rayons cosmiques, X et radioactivité)

- Recombinaison collisionnelle (β_d), radiative ions métalliques (β_r) et transfert de charge (β_t)

A T= 800 K, $x = 10^{-16}$ Umebayashi 83

A T= 900 K, $x = 10^{-13}$ A T > 1000 K, ionisation collisionnelle suffisante

A T= 1000 K x = 10^{-11} => le pb se pose dans régions « froides » r ≥ 0.1 au !

Sources d'ionisation:

- Ionisation par éléments radioactifs K⁺, Na⁺ : $\zeta_{rad} \approx 10^{-22} \text{ s}^{-1}$ (Stepinski 92)
- Ionisation par rayons cosmiques $\zeta_{CR} \approx 10^{-17} \text{ s}^{-1}$ (Spitzer & Tomasko 68, écrantage??)
- Ionisation par les X importants car étoiles jeunes forts émetteurs X (Montmerle et al 93)

Rayons X

(a) X-ray luminosity function (Quiescent)

Etoiles jeunes sont émetteurs X $<L_X> = 5 \ 10^{29} \text{ erg/s}$ états calmes $<L_X> = 5 \ 10^{30} \text{ erg/s}$ flares

Emission peut être décrite par un rayonnement **Bremsstrahlung thermique**

<k T_X> = 2.3 - 2.9 keV états calmes <k T_X> = 3.9 - 5.2 keV flares

Distribution des flares est peu connue Environ 1 flare toutes les 10-20 heures?

Imanishi et al 03

Glassgold et al 97 Igea & Glassgold 99 Ionisation par les X Glassgold et al 00 Fromang *et al* 02 Epaisseur optique: $\tau(E) = \int \sigma(E) n_{\rm H} dr$ Matsumura & Pudritz 03 où opacité $\sigma(E) = \sum z_k \sigma_k(E) = \sigma_0 (E/1 \text{ keV})^{-n} \text{ pour } 1 < E < 20 \text{ keV}$ avec n≈2.485 Henke et al 93, Glassgold et al 97 \Rightarrow Opacité sur la ligne de visée $\tau(E) \approx A_V (E/1 \text{ keV})^{-n}$ T Tauri typique: $A_v \approx 1-2$ Ionisation essentiellement secondaire (cascade e⁻ primaires, Dalgarno et al 99) $\zeta_{\rm X} = \left[\left(\frac{L_{\rm X}}{k T_{\rm Y} 4 \pi d^2} \right) \sigma(k T_{\rm X}) \right] \left(\frac{k T_{\rm X}}{\Lambda \epsilon} \right) J(\tau, x_0) \approx 10^{-8} \, {\rm s}^{-1} \, {\rm J} \quad \text{à } 0.1 \, {\rm au}$ $J(\tau, x_0) = \int_{x_0}^{\infty} x^{-n} e^{-x - \tau (kT_{\mathbf{X}})x^{-n}} dx$ $\tau(kT_{\rm X}) = N_{\rm H}\sigma(kT_{\rm X})$ $\tau = 0, J \approx (E_o/kT_X)^{1-n} \implies$ Influence sur ionisation

Ionisation des disques: bilan

Glassgold et al 97: uniquement rayons X, disque = Minimum Solar Nebula $\Sigma(r) = 1700 \text{ R}^{-3/2} \text{ g cm}^{-2}$ $T(r) = 280 \text{ R}^{-1/2} \text{ K}$ => zone morte entre **1- 10-30+ au**

Fromang et al 02: uniquement rayons X, disque =disque α standard (gradients + plats) $\alpha = 0.001$ => Tout le disque est « mort » $\alpha = 0.01 M_a = 10^{-8} M_{sun}/yr$ => zone entre **0.2-100 au** $\alpha = 0.1 M_a < 10^{-7} M_{sun}/yr$ => pas de zone morte

Matsumura & Pudritz 03: rayons X, CR et rad, disque = Chiang & Goldreich 97

Disque passif $M_a=0$ (plus cohérent ?)

=> Ionisation CR > rayons X (sf si $kT_X \approx 5-10 \text{ keV}$)

=> zone morte seulement entre 0.2- 3 au

=> résultats très dépendants de Σ_0 : calculs avec $\Sigma_0 \approx 10^3$ g cm⁻²

=> proposition: planètes peu massives formées dans zone morte ?

Y a t il vraiment une zone morte?

Zone morte: Σ_a = constante (r,t) -Equilibre vertical non satisfait: quelle est épaisseur h_i ? -Implicitement, Gammie (96) suppose $h_a \approx h, h_a \gg h_i$!

=> Equilibre hydro fournit relation $R(h_a,h_i) : h_i$ indéterminé Hypothèse: $\partial_t=0 \rightarrow h_i(r) : h_i=0$ pour $r > r_{crit}$ ou Σ_d trop grand $(M_d > M_*)$

=> Calculs + approfondis des interrelations (chauffage, mélange)

Energie magnétique

Couple Maxwell

Couple Reynolds

Energie cinétique

La zone morte n'est pas tout à fait morte...

Resistivité

 $\eta(z)$

Ohmique

Echange turbulent de masse entre les 2 régions.

Fleming & Stone 03

SMAE: régions centrales (1)

Pour r = 1 au, M_{acc} = 10⁻⁷ M_{sun}/yr

Disque α = 0.01 standard: H/r \approx 0.1 $\Sigma \approx 500 \text{ g cm}^{-2}$ T $\approx 800 \text{ K}$ B = ?

Pour une SMAE: $H/r \approx 0.05$ $\Sigma \approx (0.5/m_s) \text{ g cm}^2$ $T \approx 200 \text{ K}$ $B \approx 0.1 \text{ G}$

Nombre de Mach sur le plan du disque dépend du couple $m_s = \alpha H/r (1 + \Lambda) \approx \alpha_m \implies$ solutions auto-similaires $\alpha_m \approx 1$ donc $m_s \approx 1$

- \Rightarrow Source de la turbulence, valeur de α_m ?
- \Rightarrow Echelle de temps d'accrétion: $t_{acc} \approx r/u_r \approx \Omega^{-1} (r/H) /m_s << standard...$

SMAE: régions centrales (2)

Les « vents-X »

Ferreira et al 2000

Shu et al 94

Ostriker & Shu 95

Présence d'une zone de reconnexion équatoriale dans les 2 cas
=> configurations identiques (X, B ≈1 G) vis-à-vis des chondres...
-Vent X de reconnexion: ligne neutre due à B opposés.
-Vent de Shu et al: ligne neutre imposée par matière

Questions...

Structure du disque d'accrétion TRES éloignée de celle fournie par la « nébuleuse solaire minimale »:

- 1. Valeur numérique de Σ , gradients $\Sigma(r)$ et T(r)
- 2. Taux d'accrétion dans le disque est-il constant (r,t) ?
- 3. Y-a-t-il une zone morte ? Permettrait-elle de former des planètes peu massives?
- 4. Présence de B à grande échelle ? Impact sur turbulence, jets, interaction étoiledisque, phénomènes énergétiques (déflagrations X liées à reconnexions, cf Mathieu)
- 5. Migration des planètes affectée par présence SMAE dans 2-3 au centraux ?

Problème crucial de l'ionisation des disques:

- 1. Effet de distribution de grains sur ionisation des disques (Sano et al 00) avec X et cosmiques?
- 2. Quel effet du gaz ionisé sur la chimie dans formation planétaire ?
- 3. Effets de mélange par turbulence sur piégeage de « cœurs pré-planétaires »?

