

An on-line turbulence profiler for the VLT's adaptive optics facility (AOF)

Andrés Guesalaga Pontificia Universidad Católica de Chile Visitor at Université Nice, Sophia-Antipolis, Feb. 2018

Centro de Astro-Ingeniería

Staff

- 8 professors (permanent positions)
- 7 postdocs
- 14 graduate students

Some research activities

- High resolution spectroscopy (Vanzi et al.)
 - Echelle spectrographs, Fibre optics characterization
- Planet finding (Jordán, Suc, et al.)
 - Hat-South member
- Cosmic microwave background (Dunner & Cactus group) ACT (145, 220 and 280 GHz)
- Cosmological Simulations (Padilla et al.)
- Wide-field adaptive optics (Bechet, Guesalaga et al) Atmospheric Characterization, Vibrations Mitigation, Laser shaping

CENTRO DE ASTRO-INGENIERIA UC

Centro de Astro-Ingeniería

Teaching Observatory @ Sta. Martina (outskirts of Santiago)

- Undergraduate teaching
- Testing of instruments
- ESO 50 cm, CTIO 40 cm

Laboratory equipment (Adaptive optics)

- 5 optical tables (1 MOAO experimental setup)
- 3 Boston MEMS DM, 140 actuators
- 1 Xinetics DM, 37 actuators
- 3 bimorph DMs, 48 actuators
- 5 Shack-Hartman WFS (24 x24 subapertures)
- Phase-screens for turbulence simulation

"Embedded" (on-line) turbulence profilers

(profilers using WFS of telescopes' facility instruments)

Motivation for embedded profilers:

- An on-line profiler can help to characterize the performance of the AO system
- Predictive control via estimation of wind speed and wind direction
- Gather turbulence statistics of the site
- Characterization of the telescope environment (dome seeing, vibrations, mis-reg.)
- Optimize tomographic reconstructors and conjugation altitudes for DMs according to Cn² (h), L₀(h), wind, dome seeing, etc.

A Profiler for GeMS (Gemini-South MCAO System) (The beginning)

5 WFSs

- 16x16 grid Shack-Hartmann
- 204 active subapertures (total: 1020)
- sampling rate <= 800 Hz

- 917 actuators in total
- 684 valid actuators (seen by the WFSs)
- 233 extrapolated actuators

GeMS: The Cn²(h) and "wind profiler" For T = 0 s, the turbulence profile in altitude is extracted from the baseline For T > 0, the layers present can be detected and their velocity estimated

Cortés et al, MNRAS, 2018

20

Low Res

15

GeMS: statistics for 1000+ profiles

(Several campaigns in 2012, 2013 and 2014)

hours

GeMS: statistics for 300+ $\mathcal{L}_0(h)$ profiles

(Several campaigns in 2012, 2013 and 2014)

Guesalaga et al, MNRAS, 2017

Comparing GeMS wind profiles to Meso-NH model

Red crosses are from GeMS profiler, continuous line is the meso-NH model

Sivo et al, MNRAS, 2018

GeMS: frozen flow study

GeMS: Frozen flow study

Dependence of frozen flow to wind speed

Guesalaga et al, MNRAS, 2014

Problems with GeMS profiler

- Resolution in altitude limited by subaperture diameter.
- Strong effect of L₀(h) on accuracy, specially for layers near the ground or system operating under strong dome turbulence conditions.
- When trying to isolate individual layers, there are multiple functions to deconvolve the cross-correlation image (depending on height and outer-scale), so it is not a practical approach.
- Long processing time (t > 7 mins).

Main conclusion: including L₀(h) in every step of the profiling process **is a must**.

An On-line Profiler for ESO's Adaptive Optics Facility (AOF)

Colaborators from ESO: J.Kolb, S.Oberti, J.Valenzuela

AOF main characteristics:

- 3 operational modes: GALACSI x 2 and GRAAL
- 4 sodium laser asterism
- WFSs: 40 x 40 subapertures (20cm diameter)
- Deformable secondary mirror (1170 actuators)

An On-line Profiler for ESO's Adaptive Optics Facility (AOF)

GALACSI is the AO system developed to increase the performance of the <u>MUSE</u> instrument, a panoramic integral-field spectrograph working at visible wavelength.

GRAAL feeds <u>HAWK-I</u>, a NIR imager (0.85 - 2.5 μ m). The science field of view is 7.5 arcmin square. GRAAL compensates for the lowest layers of the atmospheric turbulence (up to ~ 2 km.

ESO's Adaptive Optics Facility (AOF)

AOF main characteristics:

- 4 sodium laser asterism
- WFSs: 40 x 40 subapertures, 20cm diameter
- 2 altitude resolutions (star separations)
- Deformable mirror for GLAO and LTAO
- 3 operational modes: GALACSI x 2 and GRAAL

	Low Resolution (LR) Baseline			High Resolution (HR) Baseline		
AOF Mode	θ_{LR}	h _{max,LR}	δh	θ_{HR}	h _{max,HR}	δh
	["]	[km]	[km]	["]	[km]	[km]
GAL NFM	14.1	-	-	20	24.5	1.7-0.9
GAL WFM	90.6	12.4	0.55-0.41	127.8	9.14	0.28-0.22
GRAAL	492	2.49	0.102-0.096	696	1.76	0.05-0.049

Range is due to the LGS cone effect

The method: Cross-Correlations of Pseudo Open Loop Slopes (POLS) for pairs of WFSs

The method: Reference or response functions

The first step in the profiling technique is to generate (only once) the reference functions: crosscorrelations between pairs of WFSs POLS for different values of layer height and outer scales.

A grid of 33 altitude divisions and 12 outer-scale values is constructed

- Discrete values for $h : \{1:N\} \cdot \Delta h$, N is chosen $\approx 80\%$ of maximum number of bins
- Discrete values for \mathcal{L}_o : {1, 2, 3, 4, 6, 8, 11, 16, 22, 32, 50, 100}

The method: Search for minimum using interpolated functions from reference grid

The method: Choice of $\mathcal{L}_o(h)$ for the response functions in the reference grid

Discrete values for \mathcal{L}_{o} : {1, 2, 3, 4, 6, 8, 11, 16, 22, 32, 50, 100}

Discrete values for $h : \{1:N\} \cdot \Delta h$, N is chosen $\approx 80\%$ of maximum number of bins

The method: Fitting sequence

The method: Temporal Cross-Correlation (wind speed)

Comparison against an independent technique for seeing and global L₀

Implementation in SPARTA (AOF's RTC)

Conclusions for turbulence profiling

- The information exists for accurate profiling (in quantity and quality)
- Profiles for C_n², L₀ and wind direction & magnitude are currently in use in the AOF (automatic wind profiles under development)
- Including the outer scale in the profiling methods is a must
- In the ELT, the outer scale estimation will be essential
- Reliable estimation of larger outer scales is limited to 3 or 4 times the diameter of the telescope (30m for the VLT; 150m for the ELT)
- Processing times compatible with system operation (*t* < 2 mins @ 8 layers)
- A comprehensive comparison with simultaneous with Durham's Stereo-SCIDAR data is coming soon