

Diffraction modelling for solar coronagraphy

Application to ASPIICS

Raphaël Rougeot

Laboratoire Lagrange, Nice – 12/02/2018

Outline

- 1) Proba-3 mission and ASPIICS
- 2) Diffraction from external occulters
- 3) Penumbra profile
- 4) Light propagation in the coronagraph
- 5) Conclusion

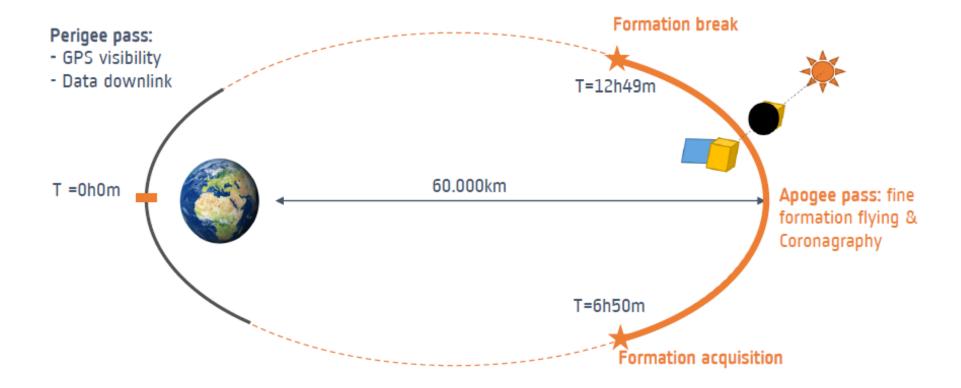
Proba-3 mission and ASPIICS

Proba-3 mission

- In-orbit demonstration of precise Formation Flying
- Two spacecraft flying 144m apart, controlled with a millimeter accuracy
- The Occulter Spacecraft will carry a 1,42m diameter occulter disk
- The Coronagraph Spacecraft will fly the solar coronagraph

Proba-3 mission

• The formation will be co-aligned with the Sun during the 6-hours apogee phase

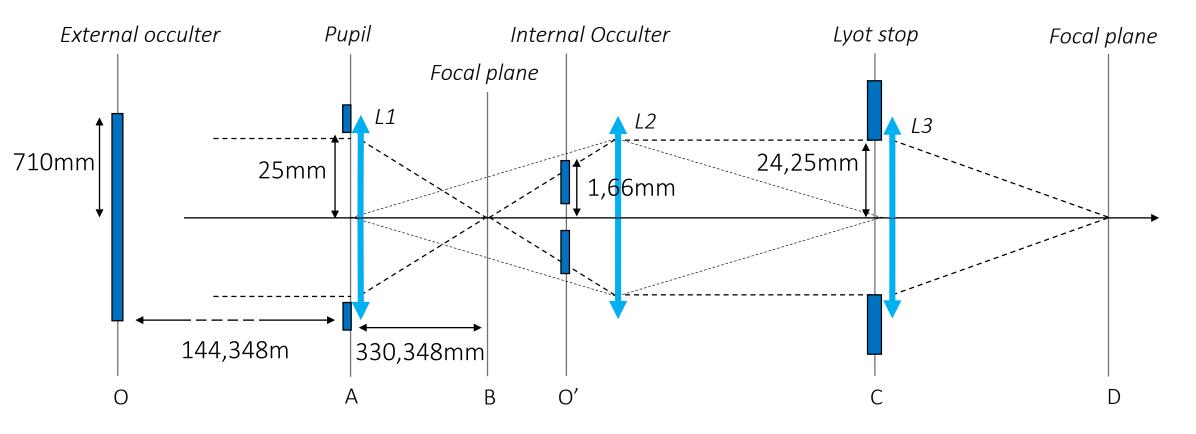


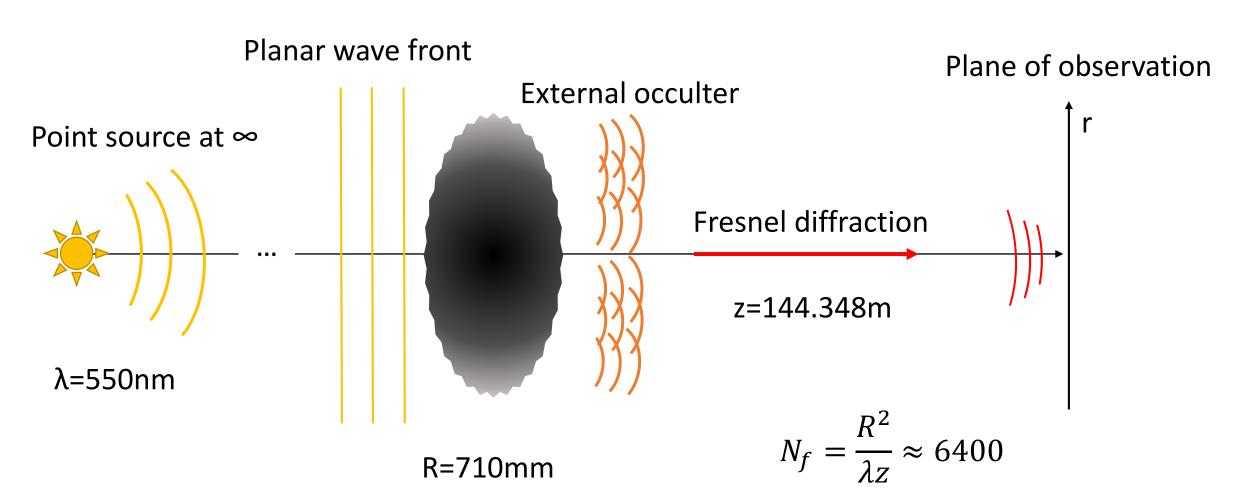
Solar coronagraph ASPIICS

- Associtation de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire
- ASPIICS in a nutshell:
 - white light [540nm; 570nm]
 - 2,81 arcsec/pixel
 - 3 polarizers
 - high cadence
- Observation of the K-corona:
 - Findings on the heating process
 - Alven's waves, dynamics of the plasma
 - Coronal Mass Ejections

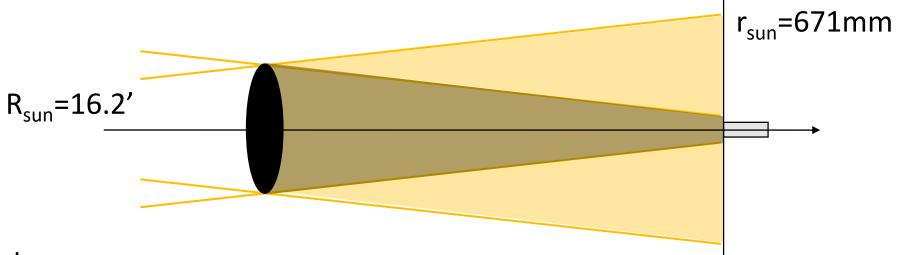
Solar coronagraph ASPIICS

Hybrid externally occulted Lyot-style solar coronagraph





Major point in solar coronagraphy: the Sun is an extended source!



We must:

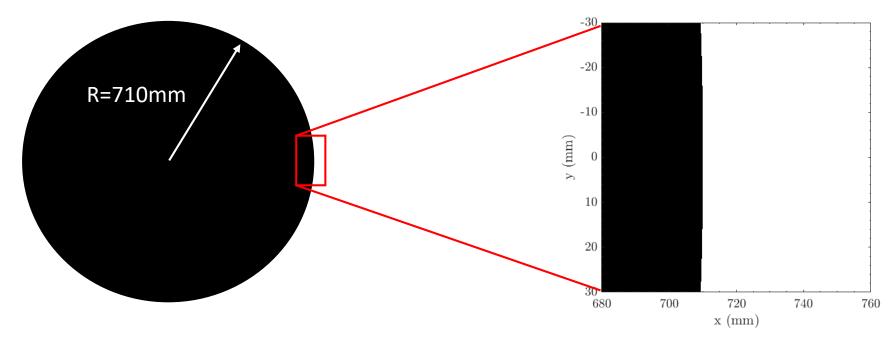
- know the diffraction pattern over a large extent
- perform a convolution with the solar disk
- what happens in the centre (few λ/D) is not sufficient!

stellar coronagraphy

We investigated several numerical methods to compute diffraction (solar case):

- Analytical Hankel transformation:
 - + Exact calculation
 - Axis-symmetry required (only radial apodisation), computational time
- Brute force 2D FFT to compute the two dimension Fresnel integrals:
 - + Any type of occulters
 - Strong sampling requirements, very large size of arrays (order 10⁵ to 10⁶)
- Vanderbei et al. (2007) approach:
 - + Expands the Fresnel integral into a series
 - Not suitable for our solar case
- Maggi-Rubinowicz representation, the boundary diffraction integral:
 - + Fast and accurate
 - Requires a 1-or-0 occulter (no apodization)

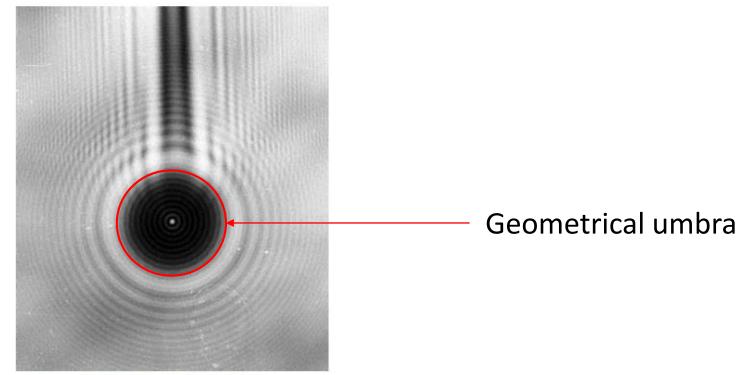
The sharp-edged occulting disk



Occulting ratio of 1,05 solar radius at z_0 =144m

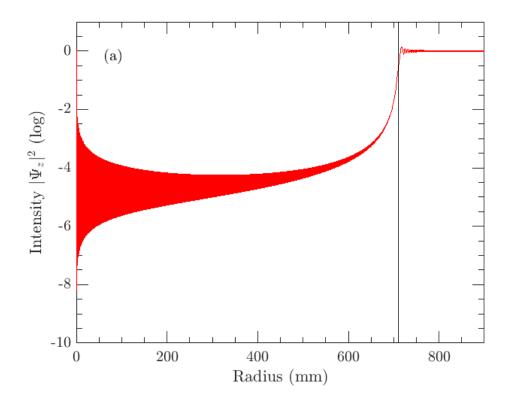
The sharp-edged occulting disk

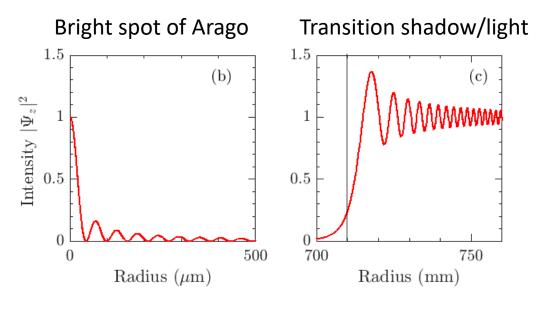
The bright spot of Arago (or Poisson... demonstrated by Fresnel)



Credit: Minerva.union.edu R.Rougeot

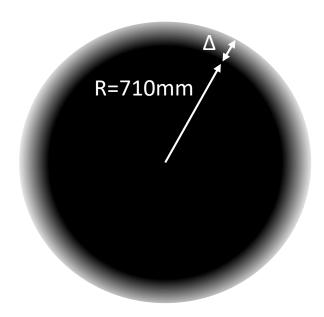
The sharp-edged occulting disk



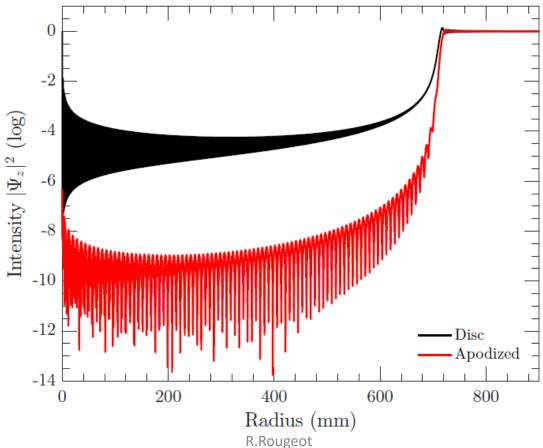


The apodized occulting disk

Variable radial transmission



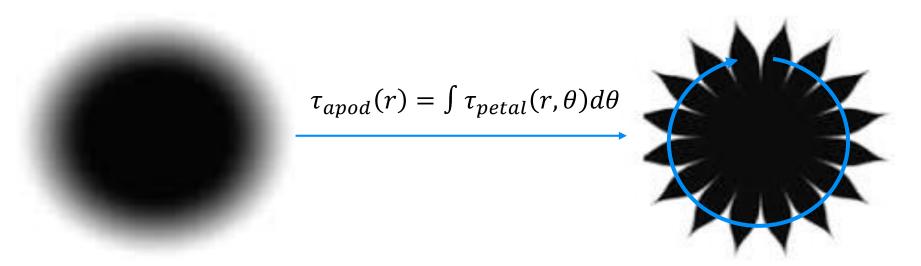
The apodized occulting disk



12/02/2018 R.Rougeot 16

The serrated (or petalized) occulter

In stellar coronagraphy, the reasonning starts from the ideal apodized occulter



The petalized occulter is the discrete substitute

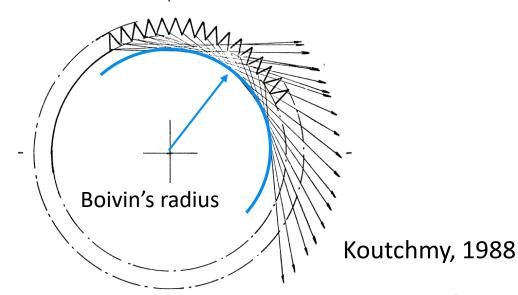
Cady, 2006 Vanderbei et al., 2007

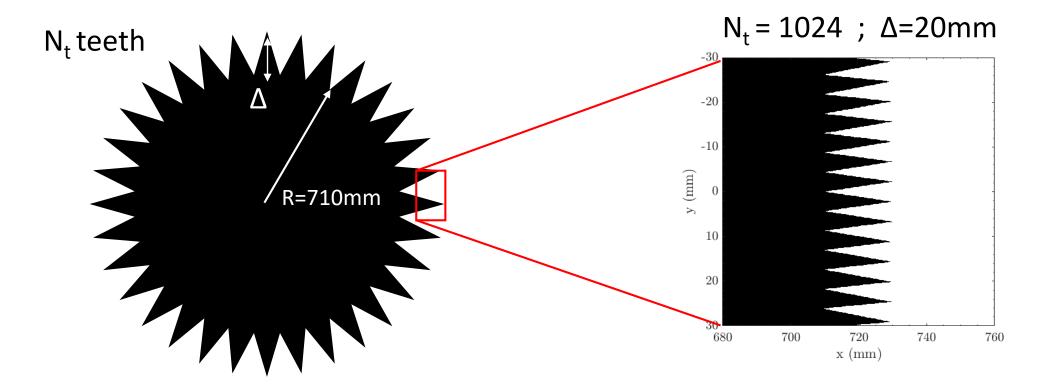
The serrated (or saw-toothed) occulter

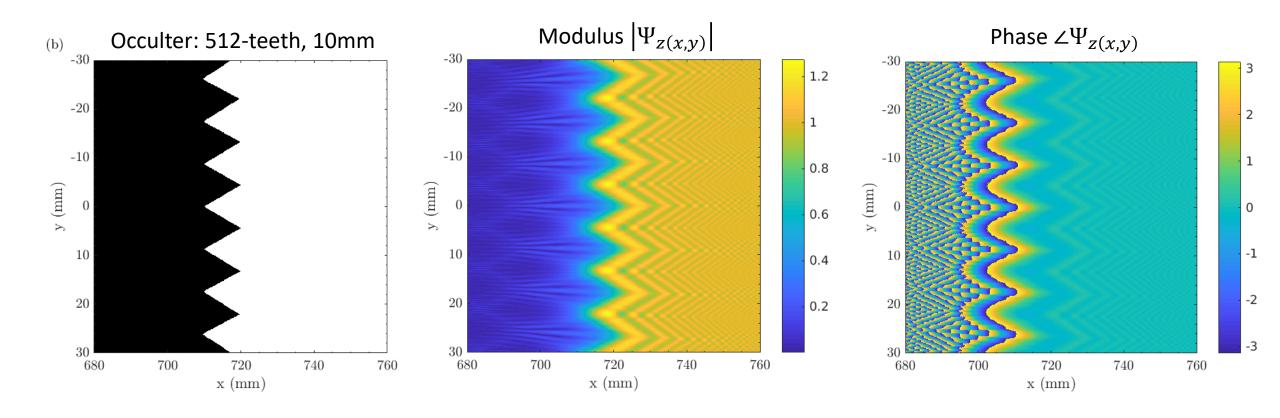
In solar coronagraphy, the reasonning is well different!

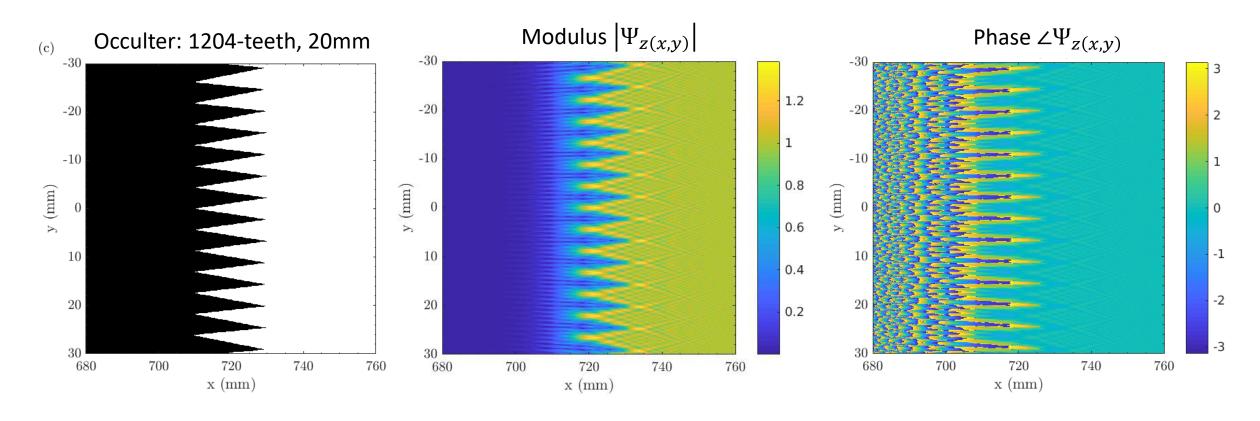
The diffraction occurs perpendicularly to the edge A toothed disc rejects the light outside the central region

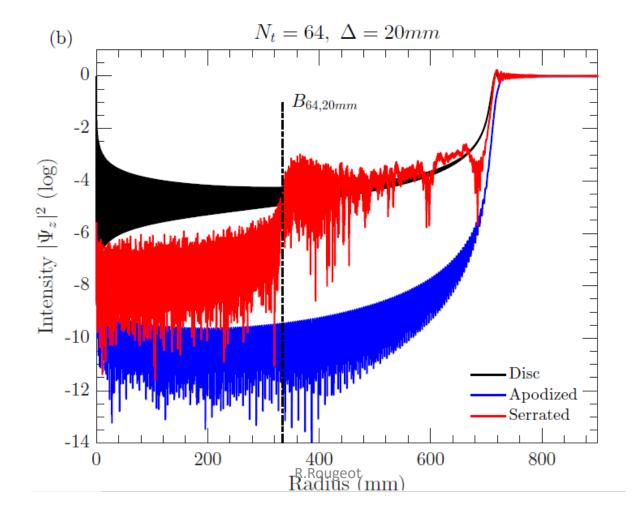
Boivin (1978) predicted the radius of the dark inner region of the diffraction pattern based on geometrical considerations

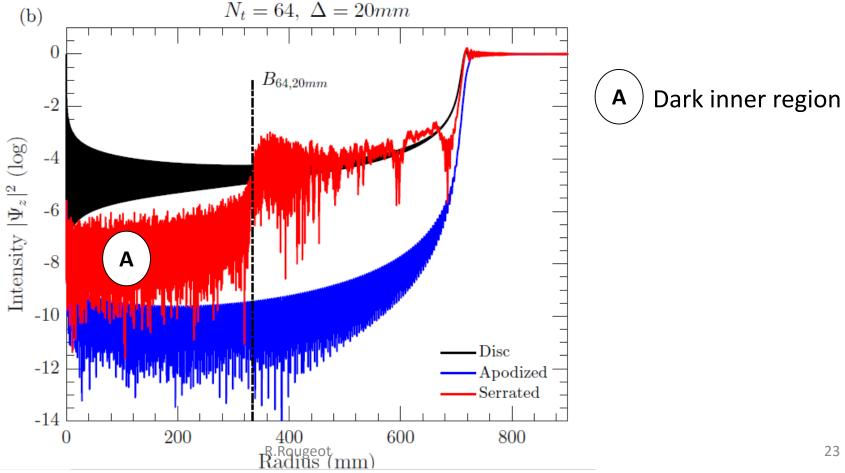


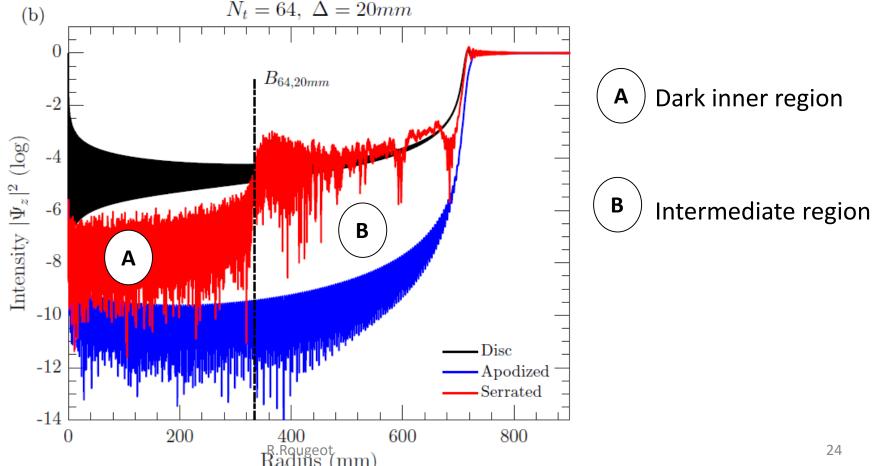






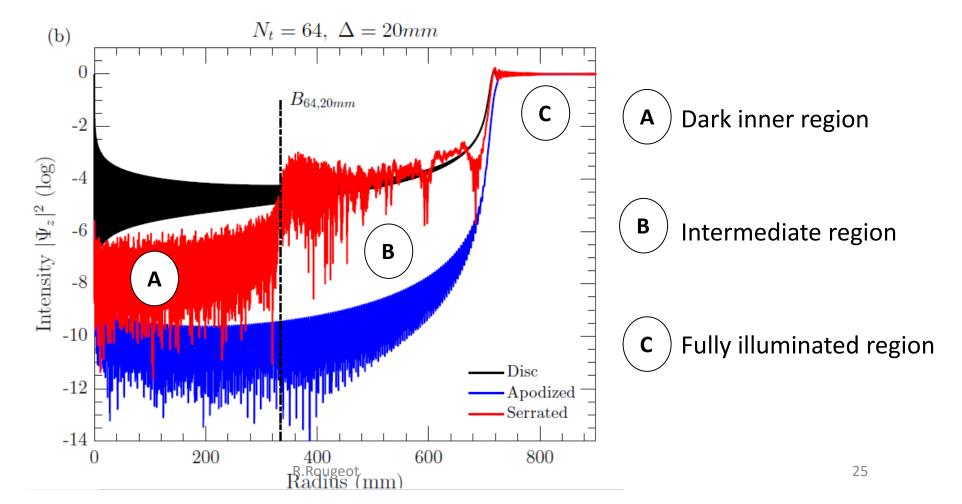




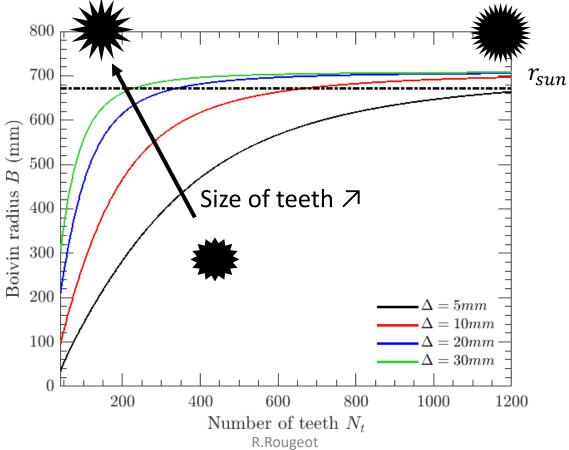


The serrated (or saw-toothed) occulter

12/02/2018

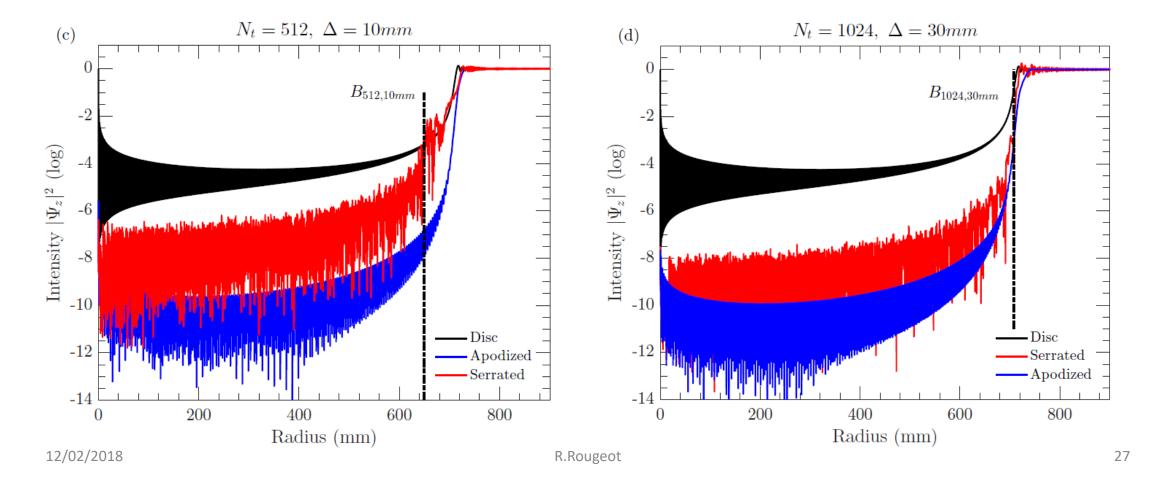


We numerically verified the geometrial predictions of Boivin (1978)

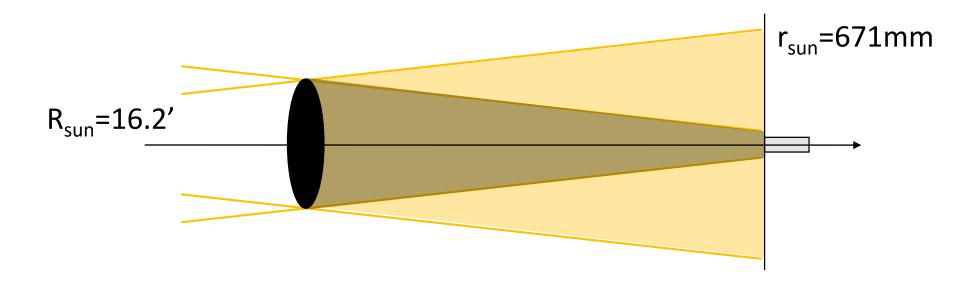


12/02/2018

26



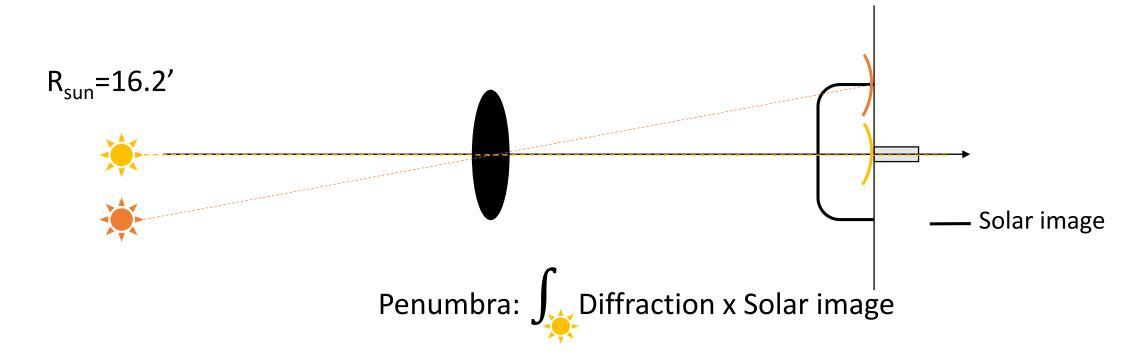
Major point in solar coronagraphy: the Sun is an extended source!



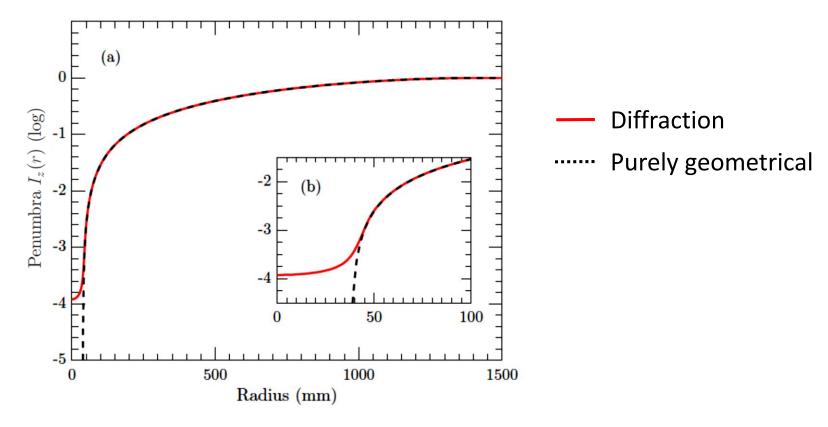
To compute the penumbra, we must:

- know the diffraction pattern over a large extent
- perform a convolution with the solar disk

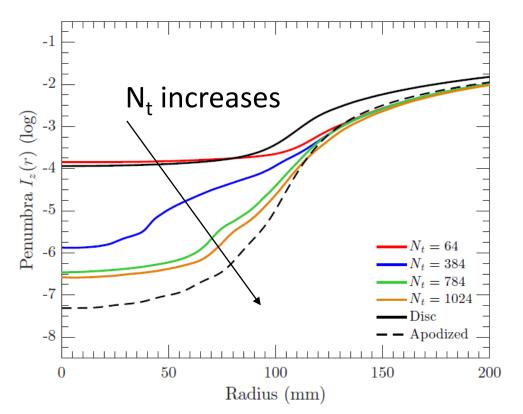
Major point in solar coronagraphy: the Sun is an extended source!

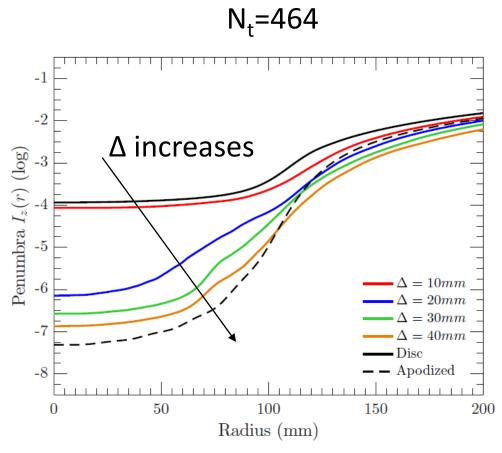


The sharp-edged occulting disk

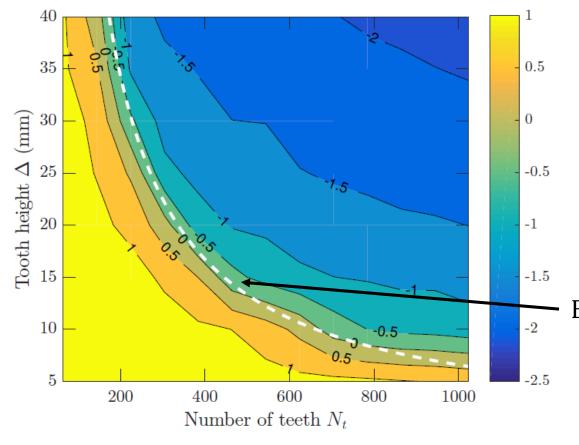


• The serrated (or saw-toothed) occulter Δ =20mm





The serrated (or saw-toothed) occulter



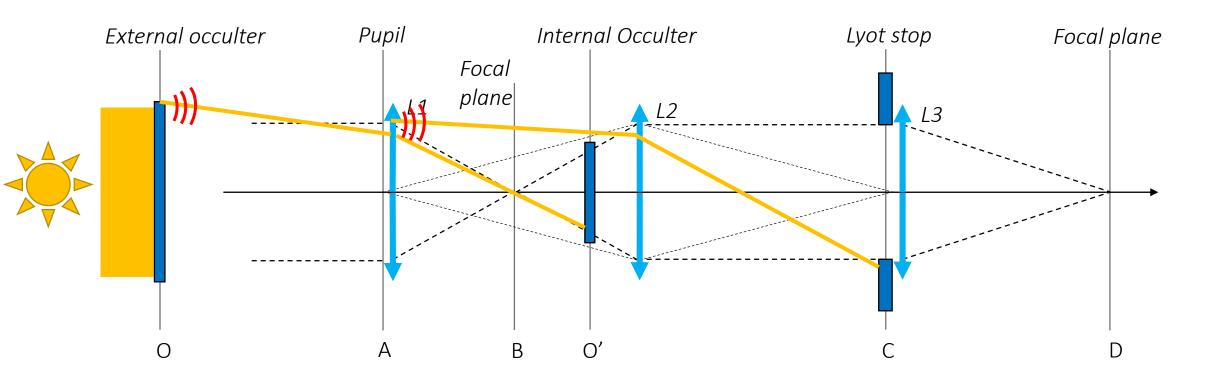
Integrated illumination over the pupil, normalized to the sharp-edged disk case

Boivin radius(N_t , Δ) > r_{sun} =671mm

Propagation inside the coronagraph

Propagation inside the coronagraph

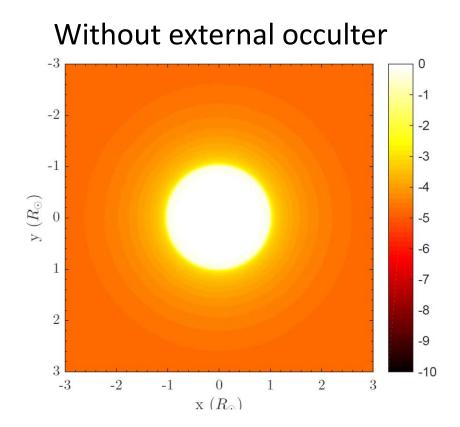
The hybrid externally occulted Lyot solar coronagraph

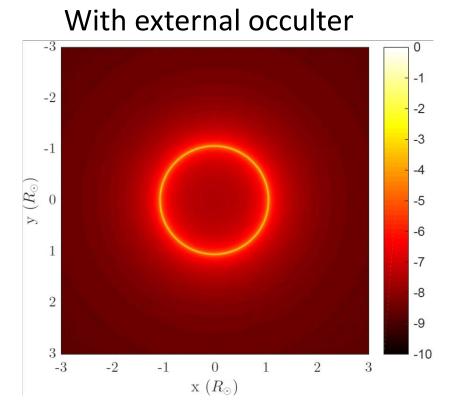


Propagation inside the coronagraph

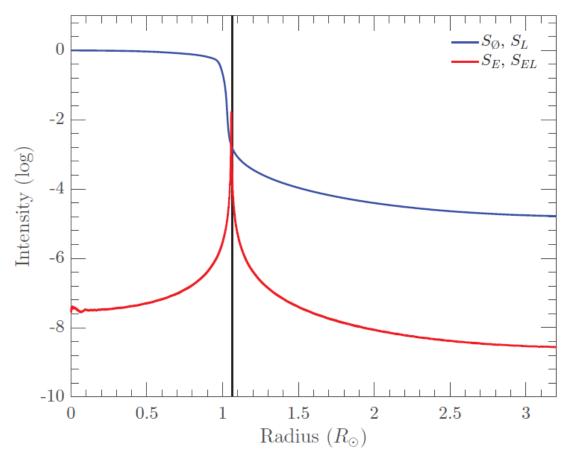
- Propagation of the diffracted wave front from one plane to the next one
 - Fourier optics formalism, Fresnel free-space propagation
 - Ideal optics
 - Perfect axis-symetric geometry
- Integration over the solar disk
- Numerical implementation: successive FFT2 with arrays of large size
- Objective:
 - estimate the level and spatial distribution of the residual diffracted sunlight
 - address the rejection performance of the coronagraph

• Intensity in plane O', with the internal occulter





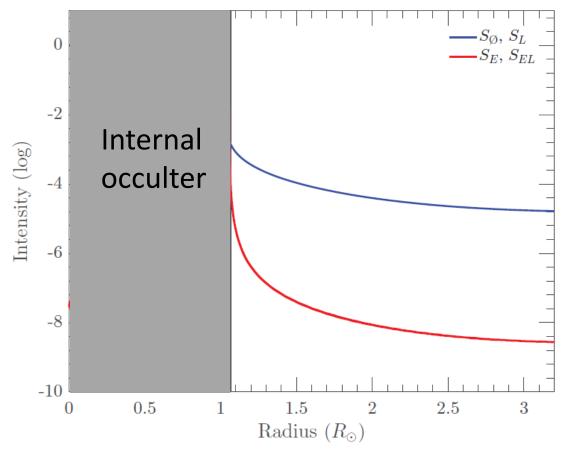
• Intensity in plane O', with the internal occulter



- With external occulter
- Without external occulter
 Solar disk image (out-of-focused)

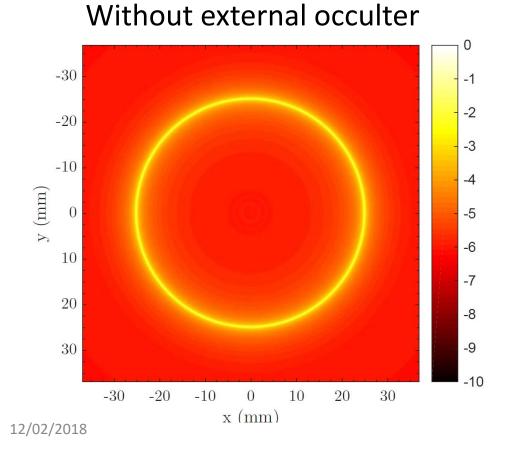
12/02/2018 R.Rougeot 38

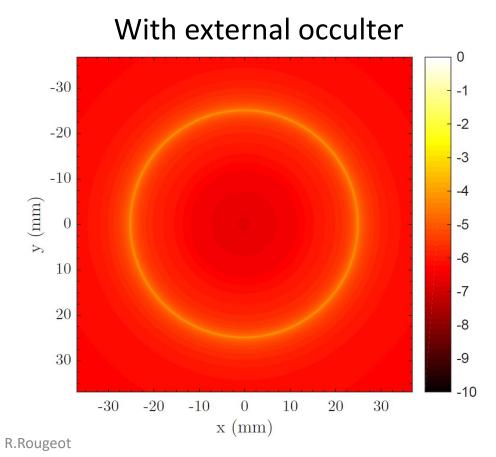
• Intensity in plane O', with the internal occulter



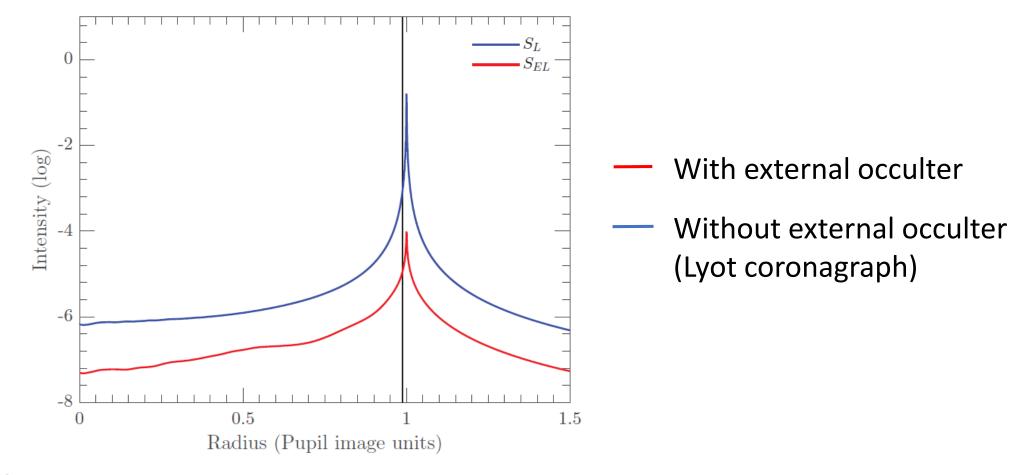
- With external occulter
- Without external occulterSolar disk image (out-of-focused)

Intensity in plane C, with the Lyot stop

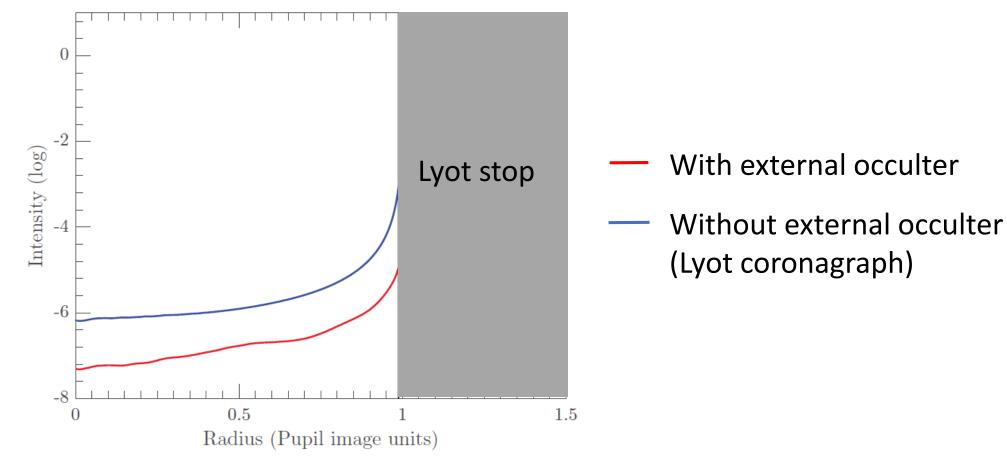




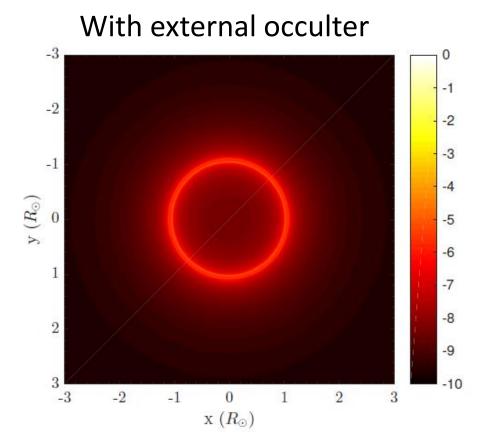
Intensity in plane C, with the Lyot stop



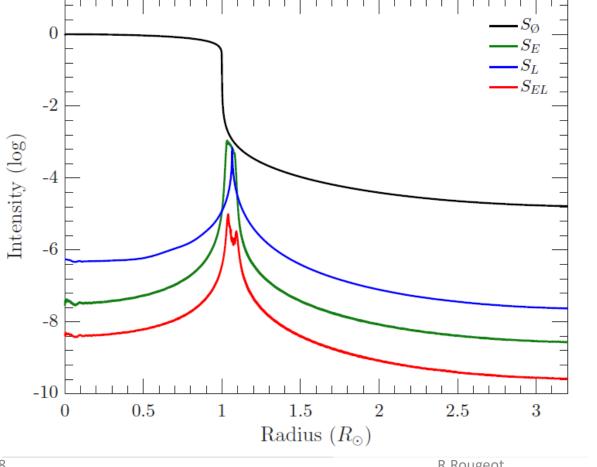
Intensity in plane C, with the Lyot stop



• Intensity in plane D, final focal plane with the detector



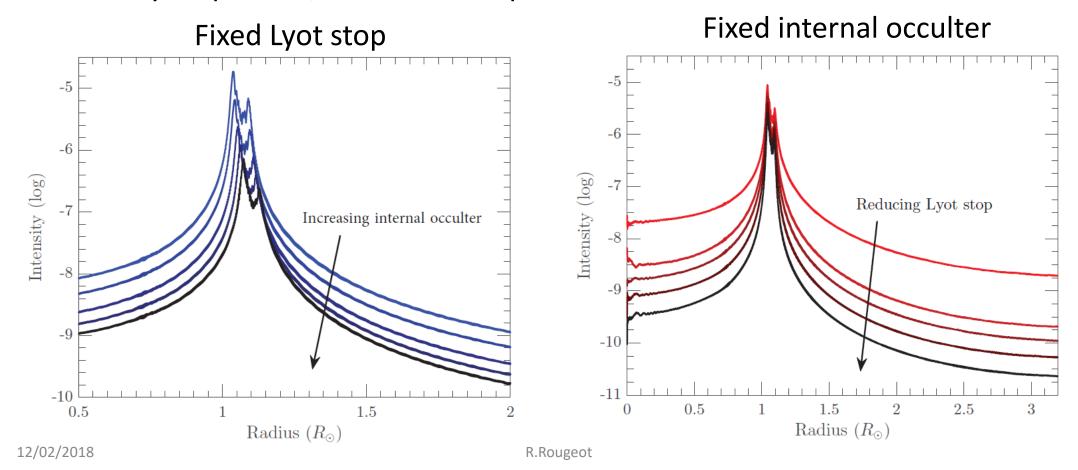
Intensity in plane D, final focal plane with the detector



- No occulter and stop Solar disk image
- Just the external occulter No internal occulter No Lyot stop
- Without external occulter (Lyot coronagraph)
- With external/internal occulters and Lyot stop

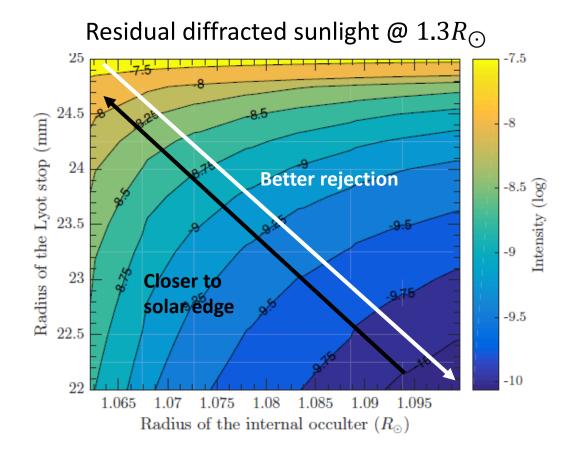
12/02/2018

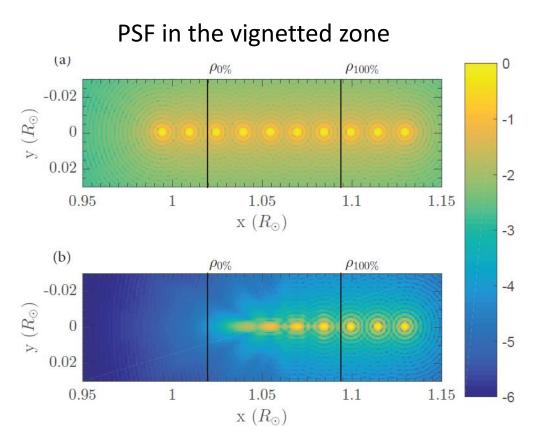
 Impact of sizing the internal occulter and the Lyot stop Intensity on plane D, the final focal plane



45

Impact of sizing the internal occulter and the Lyot stop





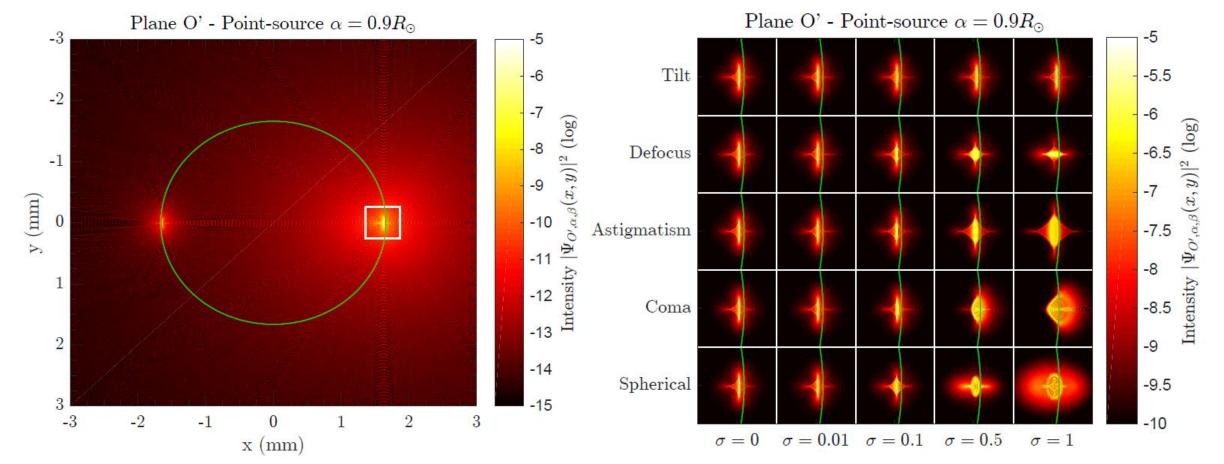
Conclusion

Conclusion

- Headlines of the presentation:
 - the different types of external occulter (in solar coronagraphy)
 - the penumbra profiles
 - propagation of diffracted light to understand rejection performance
- Reference:
 - Aime C., 2013, A&A
 - Rougeot R., Flamary R., Galano D., Aime C. 2017, A&A
 - Rougeot R., Aime C. 2018, A&A

Conclusion

- On-going/future works:
 - deviation from ideal optics: scattering, optical aberrations...
 - end-to-end performance for the serrated occulters



Questions?

Thank you for your attention!

Annex

Diffraction by an external occulter

How to model diffraction? We looked at (when applicable):

	Radial apodisation	No axis-symmetry
Analytical Hankel transformation	V	X
Lommel series*	X	X
Vanderbei et al. (2017) approach**	V	√ (periodic)
Brute force 2D FFT	V	√
Rubinowicz representation	X	√

^{*} Not introduced in this presentation

^{**} Not suitable for the solar case

$- \cdots \bigg| - \cdots \bigg| \\ 1 \quad \Psi_{0}(r) \qquad \Psi_{-}(r)$

The Hankel transformation

Fourier wave optics formalism

Fresnel free-space propagation

Axis-symmetric (apodized) occulter

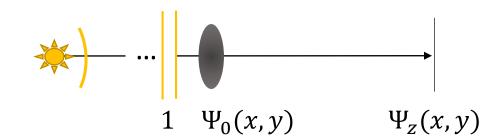
$$\Psi_Z(x,y) = (1 - f(r)) \circledast \frac{1}{i\lambda z} \exp\left(\frac{i\pi}{\lambda z}(x^2 + y^2)\right)$$

$$\Psi_{z}(r) = \frac{\varphi_{z}(r)}{i\lambda z} \int_{0}^{R} 2\pi\rho \times f(\rho) \times \exp\left(\frac{i\pi\rho^{2}}{\lambda z}\right) \times J_{0}\left(\frac{2\pi\rho r}{\lambda z}\right) d\rho$$
Radial apodization

Radial function

Diffraction at a

Lommel series – decomposition into series (Aime, 2013)



Fourier wave optics formalism

Fresnel free-space propagation

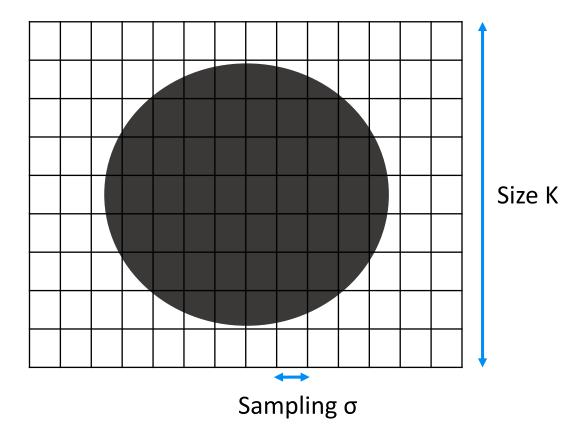
Occulter of any shape and any transmission (ideally)

$$\Psi_{z}(x,y) = \Psi_{0}(x,y) \circledast \frac{1}{i\lambda z} \exp\left(\frac{i\pi}{\lambda z}(x^{2} + y^{2})\right)$$

$$\Psi_{z}(x,y) = \mathcal{F}^{-1} \left[\mathcal{F} \left[\Psi_{0}(x,y)\right] \times \exp(-i\pi\lambda z(u^{2} + v^{2}))\right]$$
Diffraction at z
2D function

Occulter
2D shape + apodisation

The occulter $\Psi_0(x,y)$ is padded in an array $K \times K$ with sampling σ



Usually, for FFT routines:

- The bigger K, the better (padding)
- The smaller σ , more accurate computation (high-frequency)

An additional condition!

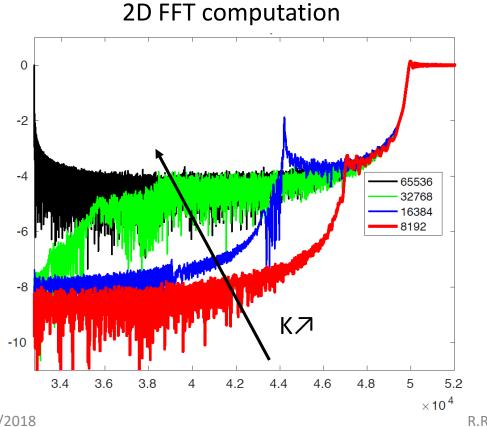
The Fresnel filter $\exp(i\pi\lambda zu^2)$ has its phase varying as u^2 At the edge of the array, $u_c=1/2\sigma$

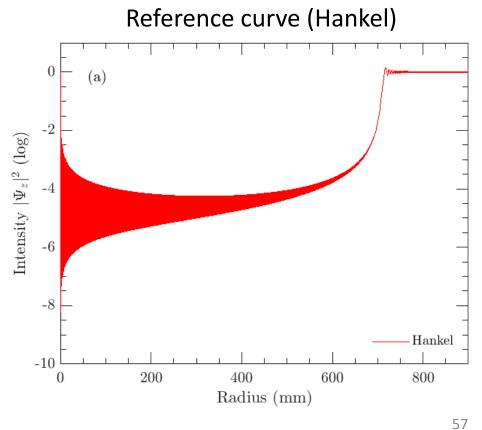
We impose that the (maximum) phase variation at the edge of the array is $<\pi$

$$\sigma > \sqrt{\frac{\lambda z}{K}}$$

Consequence: $\sigma \searrow \implies K \nearrow$

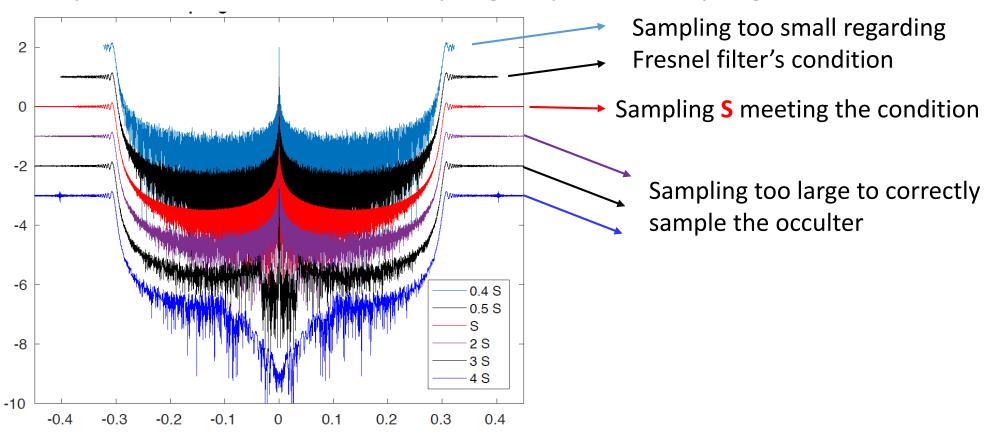
Very sensitive to numerical sampling: impact of the size of the array



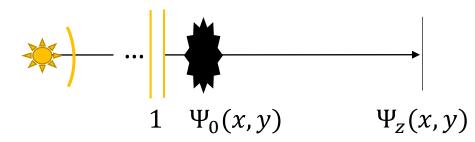


12/02/2018 R.Rougeot

Very sensitive to numerical sampling: impact of sampling



Vanderbei et al.



The use of serrated external occulters in stellar and solar coronagraphy comes from very different reasoning, but the diffraction principle is the same

Vanderbei et al. (2007) introduces another method to compute Fresnel diffraction For serrated or petal-shaped occulter, i.e. a periodic pattern by rotation

$$\Psi_{z}(r,\theta) = \Psi_{z}^{apod}(r) + \left(\sum_{j=1}^{\infty} f_{1}(j,N_{t}) \times \int_{0}^{R+\Delta} f_{2}(j,\rho) \times J_{jN_{t}}\left(\frac{2\pi r\rho}{\lambda z}\right) \rho d\rho$$

Diffraction from related apodized occulter

Sum up to infinity

High-orders Bessel functions (jN_t)

In stellar coronagraphy:

 $N_t \approx 20$, and very small working angles: j=1 dominates

In solar coronagraphy:

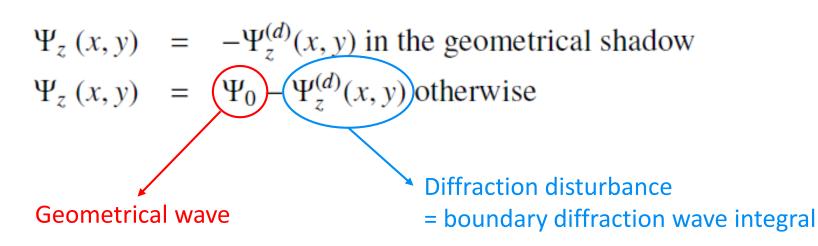
 $N_t \approx 100 - 1000$, and large region (671mm): the computation is very heavy

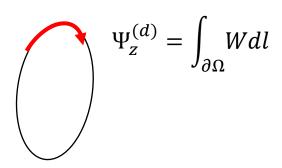
Rubinowicz representation

Based on Kirchhoff integral theorem (Born & Wolf; Cady, 2012)

Requires a "1 or 0" occulter: no apodization

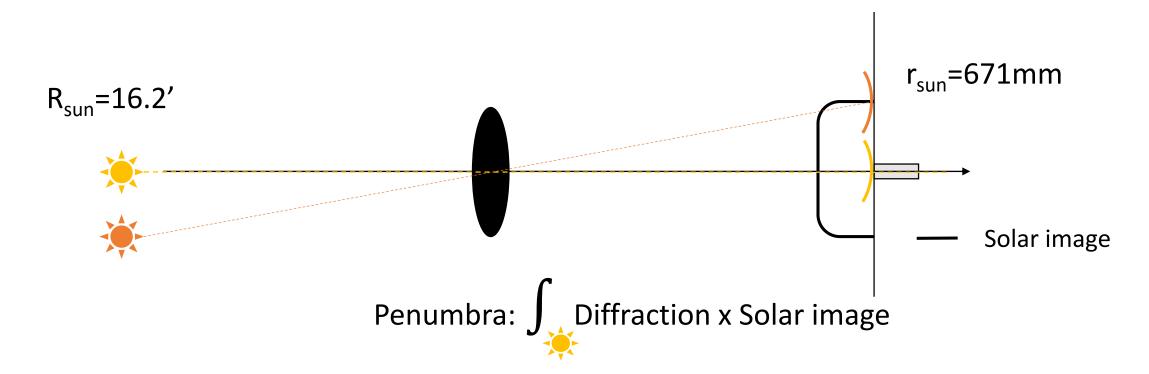
The diffraction is written as a boundary integral along the edge of the occulter

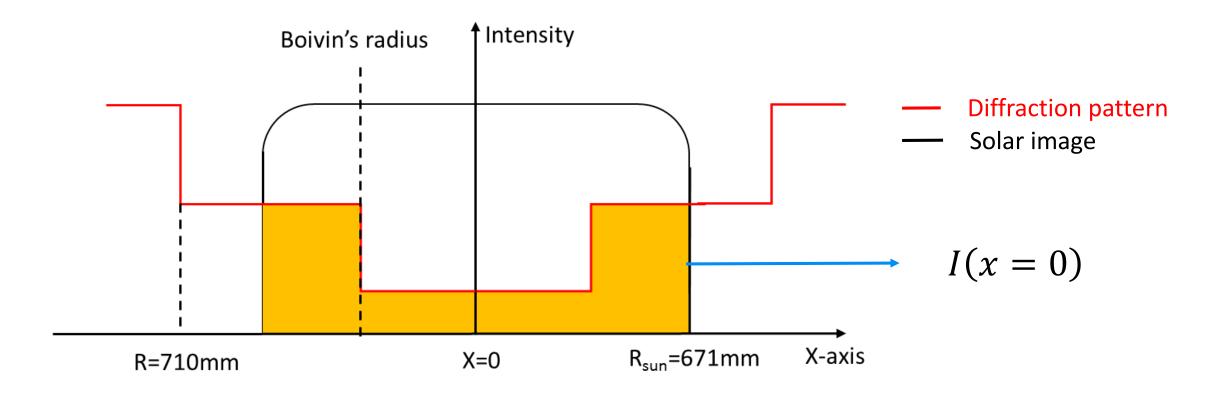


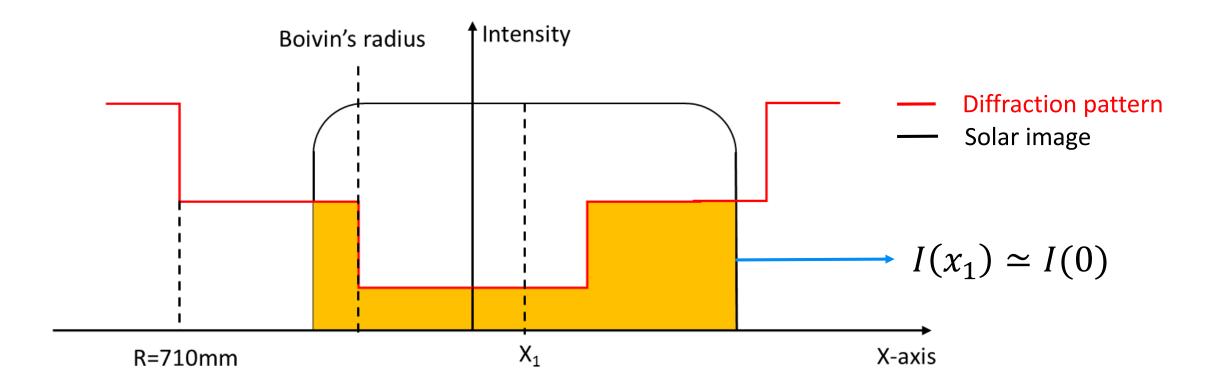


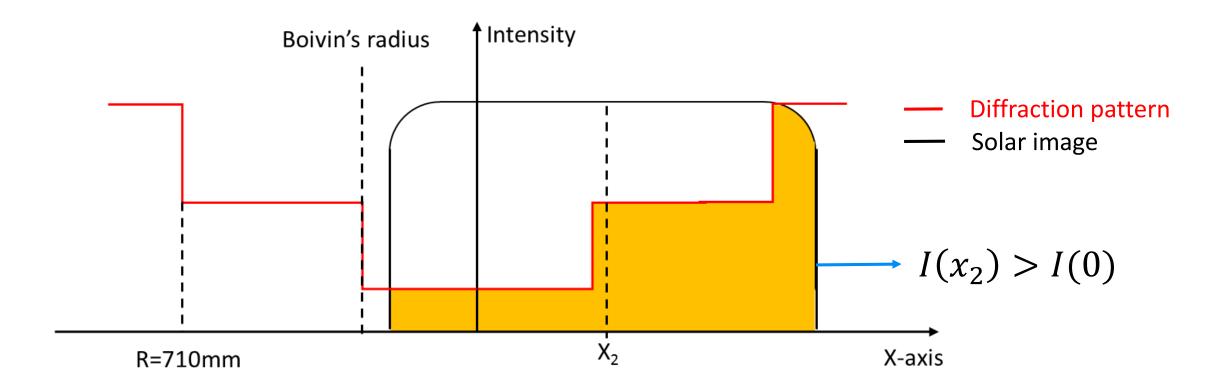
Edge of the occulter

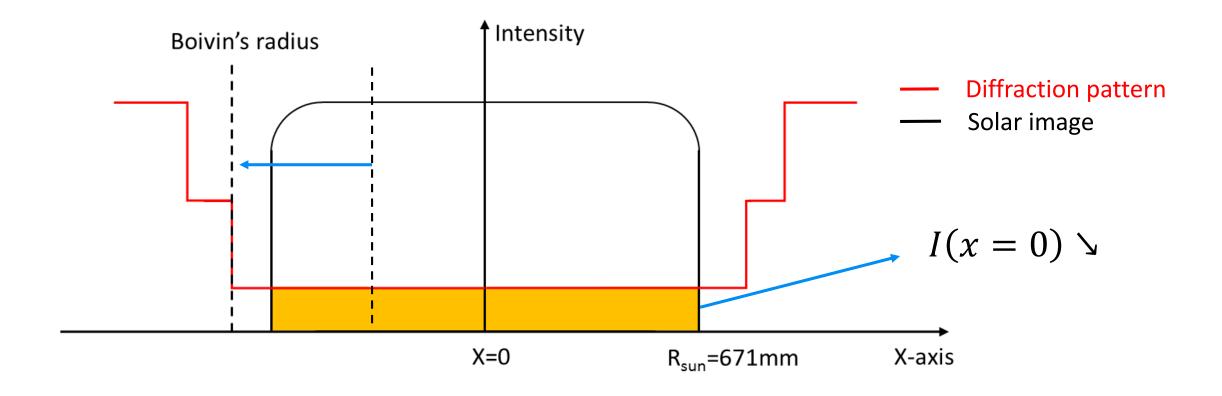
Convolution of the diffraction intensity $|\Psi_z(x,y)|^2$ with the solar stenope image Includes limb darkening function











We can predict the penumbra depth for serrated occulters:

The deepest umbra is achieved when:

Boivin radius(N_t , Δ) > r_{sun}

The second parameter is the intensity level of the diffraction pattern

→ Large number of teeth preferred!

