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•A successful story: how to describe the appearance of small-scales non-Gaussian

statistics using a simple phenomenology based on stochastic cascade models: large

deviations theory, multifractal  measures,  multiaffine functions and all that.... (still: a

few problems if looking at high quality numerical  and experimental data)

•A less successful story: how to include statistics of (inertial) particles advected by  the

flow: the problem of preferential concentration and of the inclusions of “topological”

properties in the stochastic modelization/



Leonardo da Vinci (~ 1500): “doue laturbolenza dellacqua sigenera; doue la turbolenza

dellaqa simantiene plugho; doue laturbolenza dellaqau siposa”

R.P. Feynman (1970): “Certainly. I’ve spent years trying to solve some difficult problems

without success. The theory of turbulence is one. In fact, it is still unsolved.”

J. Von Neumann (1949) “[…] The entire experience with the subject indicates that the

purely analytical approach is beset with difficulties, which at the moment are prohibitive.

[…] Under these conditions there may be some hope to “break the deadlock” by extensive,

but well-planned computational efforts.

Sir H. Lamb (1932): “I am an old man now, and when I die and go to Heaven there are

two matters on which I hope enlightenment. One is quantum electrodynamics (QED) and

the other is turbulence of fluids. About the former, I am really rather optimistic.”



•Turbulence or Turbulences?

•Why still unsolved/unsolvable: the problem of strongly non-Gaussian small-scales fluctuations.

•Large Deviations Theory & Stochastic models for 3d Homogeneous and Isotropic Turbulence (HIT).

•Toward real world (I): effects of viscosity.

•Toward real world (II): anisotropy.

•Toward real world (III): Turbulence + passive particles (tracers, heavy, light).

Occam's razor: "entia non sunt multiplicanda praeter necessitatem " 

(entities must not be multiplied beyond necessity).



small particles: drag, added  mass, lift force, etc...

COMPLEX PHYSICS WITH COMPLEX FLOWS

Flows with additives:

Advection-diffusion-reaction of passive scalar/vectors (temperature, magnetic field, chemical reactions, etc...).

Advection-diffusion  of active scalars/vectors (convection, magnetic dinamo).

Polymers (drag reduction)

Bubbles/Droplets (two phase flows, rain formation, etc...)

Swimmers (cooperative hydrodynamical interactions)

tracerbubble heavy

+ boundary conditions

temperature

magnetic field



COMPLEX PHYSICS WITH SIMPLE FLOWS

+ periodic boundary conditions

•homogeneous

•isotropic

•Gaussian

•white-noise in time

•large-scale

3D CASE: MAINLY UNSOLVED!



 Reynolds number ~ (Non-Linear)/(Linear terms)

•Fully Developed Turbulence:

1. Strongly non-linear & non-perturbative system

COMPLEX PHYSICS WITH SIMPLE FLOWS



2. Out of Equilibrium (non perturbative)

•Dissipative anomaly
3. Small-scales PDFs strongly non-Gaussian

•Anomalous scaling

COMPLEX PHYSICS WITH SIMPLE FLOWS



1. inertial range of scales: power law (anomalous)

2. extension increases with Reynolds!

4. Many-body problem:

THE ENERGY CASCADE:

COMPLEX PHYSICS WITH SIMPLE FLOWS



Numbers.

state-of-the-art DNS:

Isotropic, homogeneous Fully Periodic Flows

Pseudo-Spectral Methods.

Resolution 4096x4096x4096 (Earth Sim.)

Reynolds : 10^6,

Storage of 1 velocity configuration (float): 1 Tbyte

RAM requirements for time marching: 10 Tbyte

Moral: easy to saturate any computing power

(present and/or future)

astrophys. flowatmosph. flowlaboratory flow



HOW TO PROBE INTENSE

FLUCTUATIONS (TAILS)? 

LOOK AT HIGH ORDER MOMENTS

-STRUCTURE FUNCTIONS-

 

HOW TO PROBE WEAK

FLUCTUATIONS (PEAKS)? 

LOOK AT HIGH ORDER MOMENTS

OF LOGS

-CUMULANTS-

 
log



CONNECTION CUMULANTS -- STRUCTURE FUNCTIONS

CUMULANTS -SF

peak

tail

[Delour Muzy Arneodo EPJB 2001]



INTERMITTENCY

INTERMITTENCY

3



spatio-temporal Richardson cascade



energy transfer in 3d turbulence

what do we know from analytical results



Scaling invariance in the Inertial Range

Third order longitudinal structure functions:

Howart-von Karman: EXACT FROM NAVIER-STOKES EQS.
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in log-log all cows are black!



K41

A. Arneodo et al., Europhys. Lett. 34, 411 (1996).



K41=p/3



 Eulerian Multifractal Formalism

and 

Large Deviations Theory

1. small-scales are intermittent (neq k41)

2. power-law  behaviour in the inertial range



The “Standard Model” at  Re=

Parisi-Frisch 1983



What about PDFs? 

Experimental results tell us PDF at large scale is close to Gaussian 

Superposition of Gaussians with different width:



How to derive D(h) from the equation of motion?

Physical intuition of D(h): the result of a random energy cascade



locality of interactions among neighboring scales  

multipliers almost uncorrelated      small scales universality



Large deviation theory

! Scaling is recovered in a statistical sense, no local scaling properties !



[Cramer function]: non-negative definined, with a minimum for  

central limit theorem

 (small deviations from the mean are normally

distributed)

large number law

(sum- of n independent random variables tends to

its mean value with probability one, when n ->

infty)



central limit theorem

 (deviations from the mean are normally

distributed)

•ONLY SMALL DEVIATIONS AROUND THE MEAN ARE NORMALLY DISTRIBUTED:

NO REASON  FOR S(h) TO BE QUADRATIC FOR ALL h!!!! : NO REASON FOR THE

PROBABILITY DISTRIBUTION FUNCTION OF            TO BE  LOG-NORMAL



Cramer function  as the  characteristic functions of random multipliers 

if  i.i.d. 

example:

coin  tossing



•intermittency: beating between power-law observables and power law distribution functions



[supersonic events!]

shortcomings of log-normal

violation of Novikov inequality if applied to energy dissipation statistics

lognormal

K41

log-Poisson

real data



Synthesis & Analysis 

•How to build a multiaffine field with prescribed scaling laws

•How to distinguish synthetic and real fields

Modane wind tunnel (curtesy of Y. Gagne) Multaffine field (wavelets based)



Richardson cascade: random multiplicative process

hortonormal eigenbasis

 synthesis

 analysis



Multiplicative uncorrelated structure



+ Spatial Ergodicity 



•Benzi et al. Physica D (1993) vol. 65 (4) pp. 352-358



CONNECTION CUMULANTS -- STRUCTURE FUNCTIONS

CUMULANTS -SF

peak

tail



Toward real world (I): finite Reynolds effects.  



Energy dissipation is Reynolds  independent:

Dissipative anomaly

How to derive the statistics of gradients within the multifractal/ldt formalism? 

Dissipative scale fluctuates 

Kaneda et al PoF, 15 p L21 (2003)



• Statistics of gradients highly non trivial

J. Schumacher, EPL 80, 54001 (2007) L.B. PoF , 80, 031703 (2008)



very short scaling

range

real world: High Resolution DNS



REMOVING FOCUS ON PURE POWER LAW:

TYPICALLY NEVER OBSERVED IN DNS OR CONTROLLED

LABORATORY EXPERIMENTS (MODERATE

REYNOLDS NUMBERS)

AT HIGH REYNOLDS NUMBERS (ABL, SOLAR WIND ETC..)

CONTAMINATION FROM ANOSOTROPIES OR/AND NON-

HOMOGENEITIES (DIFFICULT TO CONTROL)

IN PRESENCE OF FINITE INERTIAL RANGE EXTENSION:

WHAT TO CONTROL? HOW TO TEST QUANTITATIVELY 

INFLUENCE/IMPORTANCE OF VISCOUS AND INTEGRAL

SCALES? 



HOW TO CHECK D(h) QUANTITATIVELY CONSIDERING

THE NATURAL LIMITATIONS IN THE INERTIAL RANGE

EXTENSIONS?

LOOK FOR THE EFFECTS OF VISCOUS SCALES.

THE SO-CALLED: INTERMEDIATE DISSIPATIVE RANGE

AND TRY TO TEST MULTIFRACTAL/LDT PREDICTION ALSO

ON THIS EXTENDED RANGE OF SCALES



BATCHELOR-MENEVEAU PARAMETRISATION

Free parameter 



EULERIAN

2nd 3rd

4th:



EULERIAN STATISTICS: LONGITUDINAL VS TRANSVERSE

LOCAL SLOPES: LONGITUDINAL AND TRANSVERSE:

DEF
DEF

Benzi et al , JFM,  653, p 221 (2010)

K41=10/3

P=10



LONGITUDINAL AND TRANSVERSE SCALE DIFFERENTLY !

Gotoh et al.  (PoF 2002)

Benzi et al , JFM,  653, p 221 (2010)



1. Growth of fluctuations by decreasing scale/increasing Reynolds

2. Multi-Step Energy Transfer (cascade)

3. Multiplicative  Stochastic Processes

4. Large Deviations Theory <-> Intermittency

5 Multiaffine Fields/Multifractal Measures

6. Fluctuating viscous effects

7. Non-trivial geometrical effects (longitudinal vs transverse)



•Toward real world (II): anisotropy.



+ boundary conditions

•Kinematics + Dissipation are  invariant under Rotation+Translation

•Non-universal statistical behaviour <-> Anisotropy

•Small scales vs large scales

Turbulent jet 3d Convective Cell Shear Flow



I. Arad, V. L’Vov I. Procaccia PRE 59, 6753 (1999).

Arad et al. PRL 82, 5040 (1999) 

Arad et al.  PRL  81, 5330 (1998).

3d rotation

Set of 3n*(2j+1) Eigenfunctions of group of rotations in 3d:

Decomposition in terms of (irreducible) invariant subset -labelled by q,j=0,1,2,…

n-rank tensor which depends

 on a 3d vector



The simplest set of 0-rank tensor (SCALAR) observable:

Longitudinal Structure Functions



rotational invariant operator

FOLIATION !!!

+ so(3) ->



J=0

J=2

J=4Large scale physics:

all sectors coupled by

forcing terms

scaling ?



Working Hypothesis

•projection on each sector has a universal scaling exponent,

depending on that sector only.

•Dependency on large scale physics shows up only in prefactors

•Pure power laws only in each separeted sector:



•Matching Infra-Red boundary conditions:

prefactor cannot be universal

•About universality of scaling exponents nothing can be said

rigorously, at least for the NS eqs. 

•Recovery of Isotropy

•Small-Scales Universality



Scaling in anisotropic sectors



We performed a DNS

of a Random-Kolmogorov Flow

•Periodic boundary conditions

•256x256x256

•Hyperviscosity

•Homogeneous but

Anisotropic

L.B. and F. Toschi, PRL 86, 4831 (2001)

L.B. I. Daumont, A. Lanotte and F. Toschi. PRE. 66,  056306 (2002) 



isotropic 

sector

before so(3)

decomposition

Local slopes

Comparison of scaling properties:

isotropic sector (j=0,m=0) vs undecomposed structure function

x

y

z

Arad et al. PRL 82, 5040 (1999) 



scaling is m-independent

dimensional

j=6

j=4

j=0

Recovery of isotropy

L.B. I. Daumont, A> Lanotte and F. Toschi

PRE. 66,  056306 (2002) 



Recovery of isotropy vs persistency of Anisotropies



Experimental Results on Persistency of Anisotropies

Garg and Warhaft, PoF 10, 662 (1998).

Kurien et al. PRE  61, 407 (2000).

Kurien and Sreenivasan, PRE  62, 2206 (2000).

Shen and Warhaft, PoF 14, 370 and 2432 (2002).



Two ways to measure small-scales anisotropies:

1)

2)

L.B. and M. Vergassola, PoF. 13, 2139 (2001)

aniso(n)/iso(n)

aniso(n)/iso(n=2)



Open questions

n=2

J=0

n=4

J=0

fully isotropic



1st MESSAGE: LONGITUDINAL AND TRANSVERSE SCALE DIFFERENTLY

K41=10/3

P=10

Gotoh et al.  (PoF 2002)

Benzi et al , JFM,  653, p 221 (2010)



For a recent review see:

L. Biferale & I. Procaccia
Anisotropy in turbulent flows and in turbulent transport

Physics Reports !Volume 414, Issues 2-3 , July 2005, Pages 43-164

•SO(3) decomposition is needed if you want  to disentangle in a systematic way isotropic

from anisotropic  contributions and different anisotropic contributions among themselves.

•Dynamical importance through the “foliation” mechanism  of the eqs. of motion.

•(i) Power law behaviour only in separated (j) sectors; (ii) intermittency also in anisotropic

sectors,  (iii) (slow) Recovery of small-scales isotropy.

•OPEN QUESTIONS: (i) Universality of anisotropic exponents? (ii)  longitudinal vs

transverse scaling in isotropic sector.



 Lagrangian

•Toward real world (III): Turbulence + passive particles (tracers, heavy, light).



Lagrangian turbulence?

Is the multifractal/ldt formalism able to describe also the phenomenology of

Lagrangian turbulence ?

“….Unfortunately, there are no significant lagrangian measurements of velocity,

acceleration, etc., to test the multifractal predictions. …”

M.S. Borgas, “The Multifractal Lagrangian Nature of Turbulence”, Phyl. Trans:

Phys. Sciences and Eng. Vol. 342 (1993) 379.

Recently things are changingRecently things are changing ! !
Eulerian MF Lagrangian MF

With some surprise…



Experimental Lagrangian measurements are intrinsically difficult: one has to follow (many) Lagrangian

trajectories for long time at high Reynolds (i.e. high sampling frequency)

Ott and Mann

experiment at Risø

conventional 3D PTV -

Re
!
=100-300

Bodenschatz et al at

Cornell-MPI

silicon strip detectors

(now also CCD) Re
! " 1000-

1500

Pinton et al  ENSL

Acoustic/Laser

Doppler tracking -

 Re
! ~800 (single

particle tracking)

Experiments

Warhaft et al

experiment at

Cornell

Fast moving camera

Re
! " 300

Luthi, Tsinober et al

3D PTV and 3D scanning PTV for

velocity gradients

non intrusive tracking down to



- low to moderate Reynolds numbers, Re

- computationally expensive (Cpu time ! Re
!

6)

- memory demanding (ram ! Re
! 

9/2)

+ high time resolution and

   long tracking

+ large Lagrangian statistics

+ multiparticle tracking

+ simultaneous

   Eulerian-Lagrangian statistics

DNS

+s and -s



Lagrangian velocity statistics

Does it exist and how to estimate          ?

In Eulerian turbulence we have

Let’s try to make a predictions



Bridge between Eulerian and Lagrangian description:

Lagrangian velocity statistics (2)

We assume that     and     are linked by the typical

eddy turn over time at the given spatial scale

[Borgas (1993); Boffetta et al (2002)]



Lagrangian structure functions

Multifractal prediction for the Lagrangian structure functions

where

Same D(h) of

the Eulerian field !!

WARNING: NO EXACT RESULTS SUPPORTING THE

EXISTENCE OF SCALING LAWS IN LAGRANGIAN

FRAMEWORK

EULERIAN



but: dissipative time  fluctuates (as the dissipative scale)

Batcherlo-meneveau lagrangian

Start from Eulerian

 free parameter 

BATCHELOR-MENEVEAU -> LAGRANGIAN
[CHEVILLARD ET AL PRL 2003]



Acceleration PDF

K41

prediction

Multifractal 

prediction

Multifractal 

prediction
mean-field (k41)

prediction

[L.B., G. Boffetta, A. Celani, B. Devenish, A.S. Lanotte & F. Toschi   PRL 2004



Same but compensated 

with prediction

Multifractal prediction

B.L. Sawford et al., 

Phys. Fluids 15, 

3478 (2003).

Joint Statistics of the Lagrangian Acceleration and

Velocity in Fully Developed Turbulence. Crawford,

Mordant, and Bodenschatz PRL 94, 024501 (2005)

Joint Statistics of the Lagrangian Acceleration and

Velocity in Fully Developed Turbulence. Crawford,

Mordant, and Bodenschatz PRL 94, 024501 (2005)



The local exponents "p(#) act as magnifying glass, probing locally 

the value of the scaling exponents. 

-) Power law scaling -> plateaux for local scaling exponents

-) Comparing results from different components: estimate of anisotropy

Magnifying glass



K41

WE LEARN ABOUT:

(i) INTERMITTENCY; (ii) UNIVERSALITY; (iii) ANISOTROPY

scaling range

[PRL 100, 254504 2008]

mean field (Kolmogorov theory)



R. Benzi, L.B. R. Fischer,  L.

Kadanoff, D. Lamb, F. Toschi

PRL 100, 234503 2008.

R. Benzi, L. B., R. Fisher D.

Lamb and F. Toschi, JFM 653,

p. 221 (2010).

in the scaling range:

INFINITELY-MANY ANOMALOUS SCALING EXPONENTS

(MULTIFRACTAL FIELD, Parisi & Frisch, 1983)

multifractal specrtum

of local scaling exponents

K41



WHAT HAPPENS AROUND DISSIPATIVE TIME?



MultiFractal WITH DISSIPATIVE FLUCTUATING 

MultiFractal WITHOUT DISSIPATIVE FLUCTUATING 



DNS

+s and -s
•EQUATION OF MOTION AND ASSUMPTIONS

$$<1 <1 heavy particlesheavy particles

$$>1 >1 light particleslight particles
Drag: Stokes Time

      light

      heavy



Preferential Concentration

Okubo–Weiss parameter Q  

Is the determinant of the strain matrix:

! Rotating regions % > 0

   ! Strain regions     % < 0   

Q: universalita’?



Acceleration: pdf(a) vs. St

St=0, 0.16, 0.37, 0.58, 1.01, 2.03, 3.33 at Re
!
=185

increase St

Increase Re

J. Bec, L.B., G. Boffetta, M. Cencini, A. Lanotte, S. Musacchio & F. Toschi JFM 550, p 349,  2006

Q: how to include inertia in Multifractal phenomenology?



Local slopes (order 6 vs. 2)

Increase inertia

Figure from: On the effects of vortex trapping on the velocity statistics of tracers and heavy particle in turbulent flows 

J. Bec, L. B., M. Cencini, A. S. Lanotte, and F. Toschi, PoF 18, 081702, 2006.

! Neutrally buoyant tracers at 5123

  " Neutrally buoyant tracers at 10243



Bottleneck for light particles
d
(l
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St=1.0St=0.6

St=0.2St=0.1

#/#&
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light
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heavy heavy

lightlight
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St=1.0

heavy

light



•Can we have a MF/LDT also for heavy and light particle? 

We don’t know. It looks difficult -> we need to include preferential concentration

in to the stochastic model. 

•Lagrangian Structure Functions are Intermittent.

•Intermittency increases considerably around dissipative scales.

•Lagrangian Structure Functions are UNIVERSAL.

• Lagrangian anisotropy decays (how fast? Need more careful checks with other

flow configurations).

•Translation from Eulerian to Lagrangian Multifractal works well:

 giving  a prediction with only 1 important free parameter connected to the

 transition between inertial and viscous ranges.

CLOSED

OPEN



vortex trapping

vortex filaments: dog or tail? 



- Kraichnan et al: superposition of random vortex filaments: k41 scaling

with  longitudinal=transverse scaling.

- Belin, Maurer, Tabeling & Willaime: filaments transition (statistical 

instability)  at Re ~ 700

- Chorin: collection of sel-avoiding vortex filaments -> fractal structure

- Passot Politano et al: influence of vortex filaments on the energy spectrum

- Migdal: loop turbulence, statistics driven by velocity circulation
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