

The structure of the Milky Way Galaxy at different scales

Post-Doctoral Fellow Astronomy & Astrophysics Division **Physical Research Laboratory**

Collaborators: Shashikiran Ganesh, Mathias Schultheis, Santosh Joshi

Namita Uppal

03-10-2023

From: What we see

Introduction

From: What we see

Introduction

Artistic impression

To: face-on view

From: What we see

Introduction

Artistic impression

To: face-on view

From: What we see

Artistic impression

To: face-on view

Motivation

Tracing Material Stars/dust/gases

Gaia - space based mission - measure parallax 1.7 billion stars <u>Revolutionize the field</u>

Different tracers distributed in the face-on view of the Galaxy

- High dense region corresponds to spiral arms
- Only patches of arms are observed.
- Low number statistics.

Region covered in Gaia

- Dominated by younger population
- Older population of stars ?
 - Old disk structure **D** Evolution

Motivation

- + Low mass stars (M < $2M_{\odot}$) numerously present in the Galaxy
- * *K*2-type Giants
- **+** Teff ~5000 K
- Metallicity ~ -0.6 dex to 0.4 dex.
- + Absolute magnitude $M_G = 0.495 \pm 0.009$
- + Intrinsic color $(G_{BP} G_{RP})_0 = 1.22 \pm 0.04$
- + Life span ~ 0.1 Gyr

 $J-K_s$

<u>Uppal, N. Ganesh, S., Schultheis, M., 2023, A&A, 673, A99</u>

 $J = M_{I} + 5log(d) - 5 + A_{I}$ $J - K_s = (J - K_s)_0 + (A_J - A_{K_s})_0$ $(J - K_s)_0 = 0.66 \pm 0.01$ $M_I = -0.945 \pm 0.01$ Extinction ratio, $\frac{A_J}{A_{K_s}} = 2.5$ $J-K_s$ $d = 10^{(m_J - M_J + 5 - A_J)/5}$ co ~ 10 Million stars in 40° $\leq \ell \leq 320^{\circ}$ and $-10^{\circ} \leq b \leq 10^{\circ}$ 1.5 2.0 0.0 1.0 0.5

 $\ell = 90^{\circ}, b = 0^{\circ}$

2.5

(d)

3.0

Red clump stars: Distribution

Overdensity map

$$\Delta_{\Sigma} = \frac{\Sigma(X, Y)}{<\Sigma(X, Y) >} - 1 \quad \frac{\text{Following Poggio+20}}{\text{Following Poggio+20}}$$

 $\Sigma(X, Y)$ local density at (X,Y), bandwidth = 0.5 kpc $\left[\underbrace{\Im}_{F} -10 \right]$

Red clump stars: Distribution

New detection : ~ 6 kpc long extension of Outer arm

Uppal, N. Ganesh, S., Schultheis, M., 2023, A&A, 673, A99

Red clump stars: Distribution

- \star RC overdensity in Z > 0 is tracing a part of outer arm present in $\ell < 180^\circ$ and in $\ell > 180^\circ$ for Z < 0.
- ★ Signature of spiral arm warping.

Uppal, N. Ganesh, S., Schultheis, M., 2023, A&A, 673, A99

Dust Distribution: Motivation

Dust is highly confined to the structure of the Galaxy and give fine features.

M57 Spiral galaxy MIR view

3D dust distribution is quite challenging due to difficulties in distance measurements.

Dust Properties

Derived quantity Extinction : Absorption & Scattering

Interstellar polarization : Differential Extinction

Observed quantity

***** Asymmetric grains ***** Dichroic extinction * Net alignment of anisotropy

Polarization in combination with distance

- Similar orientation increase in degree of polarization
- Different orientation decrease in degree of polarization

Galactic Open clusters

- ~7200 clusters known till now Hunt et al., (2023).
- Only ~40 clusters have polarization observations
- Upto moderate distance. (< 3 kpc)

<u>Select cluster in the same line of sight but at</u> different distance

Selection of clusters

- -Location
- -Distance
- -Brightness
- -Size
- -Number if members

Observations: Strategy

Galactic Open clusters

- ~7200 clusters known till now Hunt et al., (2023).
- Only ~40 clusters have polarization observations
- Upto moderate distance. (< 3 kpc)

<u>Select cluster in the same line of sight but at</u> different distance

Selection of clusters

- -Location
- -Distance
- -Brightness
- -Size
- -Number if members

Observations: Strategy

Obsestvations

EMCCD based Polarimeter (EMPOL)

1.2 m telescope Mount Abu, PRL

Regular observations : 3-4 nights per month

ARIES Imaging Polarimeter (AIMPOL)

1.04 m Sampurnanand telescope ARIES, Nainital

Proposal: Awarded ~ 13 nights in 3 observation cycle

Observations

Kronberger 69, EMPOL image

Kronberger 69, DSS2 R-band image

Developed Pipelines for automated data reduction from EMPOL as well as AIMPOL

Kronberger 69, AIMPOL image

ISM polarization : Czernik 3

Using PRL's EMPOL

Uppal. N. et al. 2022, AJ

Galactic longitude

• Jump in polarization and extinction

X-axis -> distance, from Gaia DR2 (Bailer Jones et al., 2018)

E(B-V)—>Extinction from Green et al., (2019)

~1 kpc and 3.4 kpc

At ~ 1 kpc => LDN 1306

Confirmed with the molecular data

- ◆ Clusters within 15° of Czernik 3
- ✦ Polarization uniformly increases till 1 kpc
- ✦ Polarization is approx same before and after 1-2 kpc gap.

Less dust content

- ◆ Clusters within 15° of Czernik 3
- ✦ Polarization uniformly increases till 1 kpc
- ✦ Polarization is approx same before and after 1-2 kpc gap.

этепат пензих агорреа ш 1-2 крс gap

ISM polarization

Uppal. N. et al. 2022, AJ

Kinematic distances show high uncertainties

Polarization is the best possible way to trace the dust along the line of sight

Literature - 5 clusters but distance < 3 kpc

<u>Our target</u> - clusters in similar line of sight but different distance

5 clusters

Results : More than 100 stars towards each cluster.

ISM polarization

cluster latitude

ISM polarization

Possibility 1: Low extinction window in Perseus arm

Possibility 1: Low extinction window in Perseus arm

Possibility 2: Outer Arm being more thicker than the inner.²

Line of sight radial to the spiral arm

Polarization observations in Literature - only 4 clusters

Our observations - 9 clusters

3 from AIMPOL

6 from EMPOL

ISM polarization

Large scatter in polarization angle.
Increase in degree of polarization with distance but large dispersion

A Patchy dust distribution

Stars at same distance may not have same foreground dust layers

★ <u>Magnetic field alignment along spiral arms</u>

- ✦ A complete understanding of the disk morphology require a systematic study of different populations.
- ✦ RC stars are good distance as well as structural tracers.
- ◆ Detected Outer arm of the Galaxy using RC stars with 6 kpc long extension.
- ✦ First observational evidence of warping of spiral arms.
- ✦ Dust distribution can be used to probe small scale structures.
- ✦ Polarization is an indirect and effective tool to trace large scale as well as small scale structures
- ✦ Indication of large scale magnetic field alignment.

