

Building blocks of the Milky Way revealed from the chemodynamics of halo stars

Tadafumi Matsuno

(Gliese fellow, ARI/ZAH, Universität Heidelberg) In collaboration with Dodd, E., Amarsi, A. Koppelman, H. H., Helmi, A., Aoki, W., Zhao, J.K., Yuan, Z., Hattori, K., Suda, T., Lövdal, S.S., Callingham, T., Ruiz-Lara, T., Balbinot, E. et al.

Direct observation of the high-z Universe

CMB

Credit: NASA/WMAP

Direct observation of the high-z Universe

CMB

Galactic Archaeology Galaxy evolution, star formation, nucleosynthesis etc.

Credit: NASA/WMAP

Low mass stars formed in the early Universe Local universe (Milky Way) Galaxies grow through mergers and accretions

Accretion remnants in the Milky Way (building blocks)

A way to study more than "a galaxy"

- Galaxy interactions
- Chemical evolutions
- Nucleosynthesis processes

Satellite accretions to the Milky Way

Present day

Image credits: NASA/JPL-Caltech/ESO/R. Hurt, Ibata et al. (2020), ESO/VMC Survey,

Accretion remnants in kinematics of stars

Spatial coherence quickly disappears

The main progenitor Satellite being accreted

Accretion remnants in kinematics of stars

Spatial coherence quickly disappears

Energy-Angular momentum

Helmi+00

Accreted galaxies are expected to appear as over-densities = kinematic substructures

Gaia observations (2013-)

ESA/ATG medialab; background: ESO/S. Brunier

Astrometry (~1.5 B stars) Position, proper motion, parallax (distance)

Radial Velocity (~33 M stars)

Stellar characterization SED, temperature, distance, metallicity, etc.

The numbers are for DR3 (2022. June)

Data-driven identification of substructures

Lövdal+22, Ruiz-Lara+22, Dodd+22

Clustering analysis

See also, e.g., Yuan+20

The formation history of the Milky Way

The formation history of the Milky Way

Ruiz-Lara+22

The formation history of the Milky Way

Chemical abundance

Properties of the substructures

- Does each substructure correspond to and contain a single accreted galaxy?
- What is the star formation history of the accreted galaxies?

Constraining astrophysical processes

- Is star formation in these accreted galaxies similar to that in MW?
- Is chemical enrichment different?

Chemical characterization of substructures

Khoperskov+23

Example: [α/Fe] ratio

Example: [α/Fe] ratio

Enrichments by Type Ia SNe

Example: [α/Fe] ratio

More massive galaxies have [α/Fe] at high [Fe/H]

Example: two distinct populations among halo stars

We can learn about formation of stellar populations using elements with known origins

Example: two distinct populations among halo stars

We can learn about formation of stellar populations using elements with known origins

A hint of chemical difference

Matsuno+19

Data: a database of past chemical abundance measurements (SAGA db)

High-precision to clarify "chemical distinctness"

High-precision

Moderate-precision

High-precision is necessary to clearly detect separations

Observing campaign with the Subaru telescope

Matsuno+22a, b

Goal

To study if chemical abundances are distinct among substructures To constrain the chemical property of substructures

Targets

Stars in the three prominent substructures <u>Sequoia, Helmi streams</u>, and Thamnos

Observations

HDS on the Subaru telescope (PI: T. Matsuno) ~ 6 nights in total

Matsuno+22a, b

-2

MG

To achieve high-precision

- ★ High-S/N, high-resolution spectra R ~ 80,000, S/N (per pix) > 100
- Narrow stellar parameter range
 Differential abundance analysis to minimize the effect of input data
 Reanalysis of the literature sample

Results: Mg abundance, one of the α -elements

Matsuno+22a, b

 L_{z} [10³ kpc km/s]

Comparison with the literature data

[Mg/Fe]

The differences are hard to see in the literature data ✓ Homogeneous abundance from the literature reanalysis ✓ High precision from differential analysis of high S/N data

Matsuno+22a, b

What precision do we need to see the differences?

 Δ [X/Fe] between GE and Seq: ~ 0.20 dex σ ([X/Fe]) among GE stars : ~ 0.07 dex

The measurement uncertainty needs to be σ([X/Fe]) < 0.07 dex

to separate Seq from GE by $>2\sigma$.

e.g., Horta+23 confirms our finding with APOGEE data We also confirmed this with GALAH stars with $\sigma < 0.07$ = 0.00

What does the different abundance indicate?

Sequoia = an accreted galaxy + ~20% Gaia-Enceladus

The astrophysical origin of low [Mg/Fe]

The natural interpretation is large type Ia supernovae contribution **The detailed abundance pattern** is the key

The astrophysical origin of low [Mg/Fe]

We fit abundance patterns of individual objects <u>Parameters</u>

- α (slope in IMF)
- Z_{CC}(Representative metallicity of CCSNe)
- N_{la}/N_{CC}

The astrophysical origin of low [Mg/Fe]

The abundance patterns of Seq. and HS are very well explained by large contributions from type Ia SNe

Suggestive of slower chemical evolution, lower stellar mass

Matsuno+22a, b

Summary of interpretation

The distinct abundance of Seq. and HS

Both substructures need their own progenitors

The lower [Mg/Fe] of Seq. and HS than MW and GE

Type Ia contributions are larger in Seq. and HS than in GE

Suggestive of lower progenitor mass (consistent with the number of stars)

In the context of large surveys...

Horta+23

These are complementary

• High-precision for a small sample

e.g., chemical membership, evaluating contamination

• Moderate precision for a large sample

e.g., chemical evolution trend, global picture

What are the current limitations?

Major assumptions in most of abundance analysis

★ Local thermodynamic equilibrium (LTE)

non-LTE

★ 1D model of stellar atmosphere

3D models

Amarsi+16

What do we gain by more sophisticated analysis?

The range of the corrections is larger than measurement uncertainty The current limitation is the use of 1D LTE analysis

A new population revealed in 3D non-LTE analysis

Matsuno, Amarsi (2024, in prep.)

A new population revealed in 3D non-LTE analysis

Matsuno, Amarsi (2024, in prep.)

High metallicity end of the accreted population split into two

Chemical abundance

Properties of the substructures

- Does each substructure correspond to and contain a single accreted galaxy?
- What is the star formation history of the accreted galaxies?

Constraining astrophysical processes

- Is star formation in these accreted galaxies similar to that in MW?
- Is chemical enrichment different?

Chemical abundance

Properties of the substructures

- Does each substructure correspond to and contain a single accreted galaxy?
- What is the star formation history of the accreted galaxies?

Constraining astrophysical processes

- Is star formation in these accreted galaxies similar to that in MW?
- Is chemical enrichment different?

Nucleosynthesis process

Constraining nucleosynthesis with substructures

Kinematic substructures

- They were once dwarf galaxies, having undergone their own chemical enrichments
- Their stars are now orbiting around the Milky Way. Some are in the solar neighbourhood.

A new opportunity to constrain the origin of elements

R-process elements

About half of elements heavier than Fe are produced by so-called rapid neutron-capture process

Their formation requires very high neutron density, and **the site is still debated**

A promising site for R-process nucleosynthesis

The most promising site is NSMs

- observations of the afterglow of GW170817 (e.g., Tanaka+17)
- numerical simulations of the nucleosynthesis (e.g., Wanajo+14)

But there should be a "delay time" in NSMs They require two NSs to merge

Is this consistent with observation?

Image credit: Goddard Space Flight Center/NASA

An opportunity to provide a new constraint

Similarly to [α /Fe], [Eu/ α] should depend on the star formation efficiency

We expect high [Eu/α] for stars from dwarf galaxies (including those in kinematic substructures)

The largest sample of Eu abundance from GALAH

An optical high-resolution spectroscopic survey with a multi-object spectrograph

Matsuno+21b

Eu abundance in the Milky Way and Gaia-Enceladus

[Eu/Mg] is clearly higher in stars formed in Gaia-Enceladus than those formed in-situ

Exactly what we would expect if Eu is produced by NSMs

Eu enrichments in MW and in dwarf galaxies

A clear sequence between [Eu/Mg] and [Mg/Fe] among old stellar populations in and around the Milky Way

Eu production with a delay by NSM Just like Fe production with a delay by SNe Ia

Comprehensive view of the merging history of the Milky Way

Summary

- Kinematic substructures are promising candidates for accreted galaxies in the Milky Way
- **Precise chemical abundance** allows us to detect abundance differences among substructures and characterize their progenitors
- **3D non-LTE analysis** enables even more precise abundance study
- Accreted galaxies offer opportunities to study **nucleosynthesis**

These knowledge complements what we get from upcoming surveys