Radiative transfer

$$(I_{\lambda}(0)) = \int_{0}^{\tau_{\lambda}} (S_{\lambda}(t_{\lambda})) e^{-t_{\lambda}} dt_{\lambda}$$

Outgoing monochromatic intensity

Stellar atmosphere, boundary condition is set deep (inside a star) $-> I_{\lambda}(\infty) = B_{\lambda}(\infty)$

Local Thermodynamic Equilibrium (LTE) -> all microprocesses (radiative, collisional, chemical) are in detailed balance $->S_{\lambda}=B_{\lambda}(T)$

Optical path $d\tau_{\lambda} = k_{\lambda}(T,\rho) \cdot \rho(x) \cdot dx$

- Geometrical, angular, frequency dependence of opacity k_V and source function S_V
- Dependence of the source function S_V on the radiation field
- Number of absorbers (how many absorbers there is on a given energy level) depend on local physical conditions and radiation field
- Velocity distribution of the absorbers affects the frequency dependence of κ_V and S_V

Collet et al., A&A 2007, 469

Collet et al., A&A 2007, 469

- Geometrical, angular, frequency dependence of opacity k_V and source function S_V
- Dependence of the source function S_V on the radiation field
- Number of absorbers (how many absorbers there is on a given energy level) depend on local physical conditions and radiation field
- Velocity distribution of the absorbers affects the frequency dependence of κ_V and S_V

Rutten, online book, 2003

- Geometrical, angular, frequency dependence of opacity k_V and source function S_V
- Dependence of the source function S_{V} on the radiation field
- Number of absorbers (how many absorbers there is on a given energy level) depend on local physical conditions and radiation field
- Velocity distribution of the absorbers affects the frequency dependence of κ_V and S_V

RT in 3D RHD simulations of stellar atmosphere

3D radiative hydrodynamical simulations of stellar convection. They solve the equations for the compressible hydrodynamics (conservation of mass, energy and momentum) coupled with non-local transport of radiation with detailed opacities

CO5BOLD (Freytag et al. 2012, JCP, 919)

RT in 3D RHD simulations of stellar atmosphere

- Sort monochromatic wavelengths into groups (opacity bins)
- Solve radiative transfer for average opacities and integrated source functions in bins

RT in 3D RHD simulations of stellar atmosphere

Typical values for a simulation with Co5BOLD (Hybrid OpenMP and MPI) - short characteristic RT, 5 bins

<u>Computation time:</u> 1 month depending on the complexity increasing linearly with the number of opacity bins

Virtual memory: 2Gb (255³ grid points) and 4Gb for (401³)

Hard disk space: 100 Gb (255³) and 400 Gb (401³)

Typical values for a simulation with Stagger-code (MPI) - long characteristic RT, 12 to 48 bins

<u>Computation time</u>: few days to few weeks depending on the simulated star <u>Virtual memory</u>: 1Gb, but increasing with numerical box size <u>Hard disk space</u>: 50 Gb

Post-processing LTE RT

Detailed (billions of atomic and spectral lines, from MARCS and VALD) and fast (computational time slightly larger than 1D computation) post processing of 3D simulations. No micro- or macro- turbulence Gauss-Laguerre quadrature integration of order n = 10, linear and double linear interpolations in pre-computed opacity tables

 $3D \rightarrow 400 \times 400 \times 10$ about 10^6 times more than the 1D calculation

> Extraction of interferometric, spectroscopic, photometric, astrometric observables

Chiavassa, Plez, Josselin, Freytag 2009, A&A, 506, 1351

Abundances, radial velocities: cinematic of the Galactic stellar populations

Stellar dynamics, mass loss

Photocenter displacement in Gaia era

-0.0

×[AU]

0.1

0.2

0.3

-0.2

-0.3 -0.2 -0.1

Closure phases: stellar granulation

SED: stellar fundamental parameters, etc.

Stellar and planetary atmospheres: detection & characterisation of planetary atmospheres

3D simulations +

Optim3D

Wavelength [Å]

Full 3D grid spectra between 2000 and 200000 Å at constant resolution ($\lambda/\Delta\lambda$) of 20 000 and 8400 and 8900 Å (Gaia RVS) at constant resolution of 300 000

Chiavassa, Casagrande, Collet, Magic, Bigot, Thèvenin, Asplund, A&A 2018, 611, A11

Gaia G band filter (time lapse during Gaia mission)

Predicted photocenter variability

st27gm06n001 - 97.666 years 3 0.4 2 0.2 0.0 0 -0 4 -0.6 -2-22 3 -.3 - 1 0 $RSG \rightarrow Chiavassa et al. 2011, A&A, 928, A120$ AGB → Chiavassa, Freytag & Schultheis 2018, A&A, 617, L1

Short versus long characteristics

Gauss-Laguerre quadrature

$$I_{\lambda}(0) = \int_{0}^{\tau_{\lambda}} S_{\lambda}(t_{\lambda}) e^{-t_{\lambda}} dt_{\lambda}$$

Gauss-Laguerre quadrature of order n for $\tau \to \infty$

Fast and reliable for well behaving source function, because it uses only the value of the source function at *n* depth points weighted with *n* predetermined weights.

Abscissa	Weight
0.137793470540	3.08441115765E-01
0.729454549503	4.01119929155E-01
1.808342901740	2.18068287612E-01
3.401433697855	6.20874560987E-02
5.552496140064	9.50151697518E-03
8.330152746764	7.53008388588E-04
11.843785837900	2.82592334960E-05
16.279257831378	4.24931398496E-07
21.996585811981	1.83956482398E-09
29.920697012274	9.91182721961E-13