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ABSTRACT

We report on results of rotation inversions using as in-
put fitted splitting estimates from the first solar Fitting
at Low-Angular degree Group (solar FLAG) hare-and-
hounds exercise. The ‘hounds in the group fitted an arti-
ficial 9.5-yr dataset made by the ‘hare to mimic full-disc
Doppler velocity observations of the Sun.

Key words: Sun: helioseismology – Methods: data anal-
ysis.

1. INTRODUCTION

In Chaplin et al. (2006), we reported on results of the
first solarFLAG hare and hounds exercise. Artificial Sun-
as-a-star data, spanning 3456 simulated days – a length
roughly commensurate to one 11-year cycle of solar ac-
tivity – were generated by WJC (the ‘hare’), with a S/N
per unit time characteristic of that in the GOLF and Bi-
SON Doppler velocity data. In one timeseries the mode
parameters were unchanged in simulated time (the ‘sta-
tionary’ set); in the other, they were varied to mimic the
effects of the solar cycle (‘cycle’ set). These solarFLAG
timeseries were made available, with 100-per-cent duty
cycles, for the nine hounds to analyze (TA, FB, STF,

RAG, SJJ-R, ML, DS, TT and RW). Estimates of the fit-
ted splittings were returned to the hare for subsequent
analysis. In the Sun-as-a-star data, it is the prominent
outer components of the multiplets that dominate the fit-
ting, and so the fitted splittings are close to the sectoral
mode splittings:

δνs(l, n) =
[νl,n,m=l − νl,n,m=−l]

2l
. (1)

For each hound, splitting results from the two sets were
found to agree to well within the fitting uncertainties. In
spite of this good agreement, when the splittings of the
hounds were compared with one another (for each of the
‘cycle’ and ‘stationary’ data) significant differences were
uncovered at l = 2 and 3. These splitting differences
are apparent in Fig. 1, which shows the fitted splittings
of all the hounds given by analysis of the stationary set
(one curve for each hound). Evidence was presented in
Chaplin et al. that suggests this unwanted bias had its
origins in several effects. The most important came from
the different way in which the hounds modeled the visi-
bility ratio of the different rotationally split components.
In summary, the results suggested that accurate modeling
of the ratios is vital to avoid the introduction of significant
bias in the estimated splittings.

In this paper, we discuss results of inverting the splittings
that each hounds obtained from analyzing the stationary
solarFLAG dataset. With only these ‘sectoral-like’ mode



2

Figure 1. Fitted splitting results of the hounds.
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splittings available, one cannot investigate the latitudinal
variation of the rotation. Therefore, one has to simplify
the inverse problem to one that is radial only. Since the
amplitudes of the sectoral modes are concentrated near
the equator of the Sun, one might consider regarding the
task as an investigation of the radial variation of rotation
in the equatorial plane. However, the degree of concen-
tration near the equator depends on l. This means that
the sectoral splittings are contaminated by the latitudi-
nally varying component of rotation by an amount that
depends on l, rendering it difficult to obtain results that
are easy to interpret. Clearly, this is an important issue
for real data; we touch on this in Appendix A. However,
here we have obviated this issue by using artificial data
computed from a model of the Sun that rotates with a lat-
itudinally invariant angular velocity (and one for which
all synodic splittings are 0.4 µHz).

Here, we have also included for the inversions the fit-
ting results of the hare, WJC, giving ten low-l splitting
sets in all. We augmented the low-l splitting sets of each
of the hounds with higher-degree data, borrowing their
properties from a 144-d MDI dataset (Schou et al. 1998).
The additional data comprise the 1630 mode splittings
between l = 4 and l = 250 that exist in the MDI set.
All splittings were fixed at 0.4 µHz, and the associated
uncertainties were taken to be the error estimates of the
MDI a1 coefficients. We added no random errors to the
‘MDI’ splittings.

2. ‘ROTATION’ INVERSIONS

As was stated above, we consider a one-dimensional
problem. According to linear perturbation theory, the ob-
served splitting, ∆νnl, of a multiplet of degree l and ra-
dial order n, whose observational error is enl, is related
to the rotation rate Ω, considered to be a function of only
the radial coordinate r, via the following integral:

∆νnl =
∫ R

0

Knl(r)Ω(r)dr + enl , (2)

where R is the solar radius. (Throughout this paper Ω is,
unconventionally, the rotation rate – measured in nHz –
and not the angular velocity of the model Sun.) The func-
tion Knl(r) is called the splitting kernel, and is calculated
from a solar model and the displacement eigenfunctions
associated with the mode.

In computing the splitting kernel, we neglect the Coriolis
force, rendering that kernel unimodular: i.e.,

∫ R

0

Knl(r)dr = 1 . (3)

We do this in order to make it easier to relate Ω(r) with
the fitted splitting frequencies (this has little detrimen-
tal effect on what we are investigating). In particular, a
uniform rotation rate of 0.4 µHz leads to a uniform true
splitting of 0.4 µHz.

In the inverse rotation problem one aims to use a set of
integral constraints – in the form of equation (2) – to in-
fer Ω(r). Of the several techniques that are available,
we have chosen to use the optimally localized averaging
(OLA) introduced by Backus and Gilbert (1968, 1970), in
a form which we now explain (and as described in Chap-
lin et al. 2004a).

We construct a linear combination of the ∆νnl to obtain
an estimate of Ω(r). An estimate Ω̂(rj) aimed at be-
ing centred about some target radius rj is then simply
a weighted average of ∆νnl:

Ω̂(rj) =
∑

nl

cnl(rj)∆νnl ; (4)

the weighting factors cnl(rj) are called inversion coeffi-
cients, which in this simplified exercise satisfy

∑
cnl =

1. From relation (2) it follows that

Ω̂(rj) =
∫ R

0

K(r; rj)Ω(r)dr +
∑

nl

cnl(rj)enl , (5)

where
K(r; rj) ≡

∑

nl

cnl(rj)Knl(r) , (6)

which we constrain to be unimodular:
∫ R

0

K(r; rj)dr = 1 , (7)

rendering the estimate Ω̂(rj) essentially an average of
Ω(r) weighted by the ‘averaging kernel’ K. Indeed, were
the data errors to be unbiased, the statistical expectation
of the error in Ω̂(rj) would vanish, and the statistical ex-
pectation of Ω̂ would be precisely that average. Ideally,
the averaging kernel should have a sharp peak at r = rj

without any negative sidelobes, for then one could con-
sider Ω̂ to be a pointwise estimate of Ω(r̄), where r̄ ' rj

is the centre of K. In attempting to achieve this property
one introduces a measure S of the spread of the averaging
kernel, which one might try to minimize. The measure we
use here is

S =
∫ R

0

K(r; rj)2(τ − τj)2dr , (8)

where

τ(r) ≡
∫ r

0

dr

c
(9)

is the acoustic radius and τj = τ(rj). However, too sharp
a localization of K leads to a large magnification of the
data errors, and therefore it has to be penalized in the
procedure.

Accordingly, for a given target point we determine the
inversion coefficients by minimizing S + αV for some
positive parameter α, subject to the unimodular condition∑

cnl = 1, where

V =
∑

nl

cnl(rj)2σ2
nl (10)
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is the formal variance of Ω̂(rj), under the assumption that
the data errors are independent, yielding an error covari-
ance matrix of the form

cov[∆νnl, ∆νn′l′ ] = 〈enlen′l′〉 = σ2
nlδnn′δll′ . (11)

The trade-off parameter α determines the balance be-
tween localization and error magnification, and is chosen
at will. From the inversion coefficients an estimate of the
rotation rate and its formal error

√
V are evaluated ac-

cording to formulae (5) and (10). The centre of the aver-
aging kernel, r̄, and its width, w, are estimated according
to the original Backus-Gilbert prescription, save that the
width is scaled by a factor β chosen such that w would
correspond to the FWHM were the averaging kernel to be
a Gaussian function. Thus

r̄ = A1/A0 , (12)
w = 12(A2 −A1r̄)β, (13)

where β = 2
√

2π ln 2/3 ' 1.4, and

Ak =
∫ R

0

rkK(r; r1)2dr . (14)

The width w is essentially proportional to the spread S,
and would be precisely so if the acoustic radii were re-
placed by geometrical radii in equation (8). One can re-
define the quantities for consistency, but generally the dif-
ferences are small because the averaging kernels are quite
well localized.

3. RESULTS

Fig. 2 shows estimates of the rotation rate of the arti-
ficial Sun given by inversion of each of the ten (MDI-
augmented) sets of low-l splittings (one curve per hound).
We recall from above that in Chaplin et al. (2006)
some disagreement was found between the fitted split-
tings of the hounds when the hounds ‘chose’ their own
m-component height ratios for the fitting. The results in
Fig. 2 come from these initial sets of splittings. A typi-
cal result for one of the hounds is shown in Fig. 3, which
plots the estimated rotation given by inversion of the aug-
mented splitting set of WJC.

The general trend of the inversion results is toward over-
estimation of the actual rotation rate in the core. This is
a consequence of the tendency of the peak-bagging pro-
cedures to overestimate the input splittings of the higher-
frequency modes (e.g., Appourchaux et al. 2000; Chaplin
et al. 2001). The mode peaks are wide in comparison to
the splittings in that part of the spectrum, making deter-
mination of the frequency splittings difficult.

To give an idea of the significance of the differences be-
tween hounds shown in Fig. 2, we have subtracted from
each estimated rotation rate the correct value of 0.4 µHz,
and then normalized the difference by the mean formal
uncertainty of all the hounds’ inversions at that target ra-
dius. The resulting residuals are plotted, in units of the

formal inversion uncertainty, in Fig. 4. The upper panel
shows results for which the full inversion uncertainties
were used. By full, we mean that uncertainties on the
splittings of both the low-l solarFLAG and the higher-
l ‘MDI’ data were propagated to give the formal inver-
sion uncertainties. In the lower panel, we show results
where the inversion uncertainties were instead given by
propagation of just the splitting uncertainties on the low-
l data. Because all MDI splittings were fixed at 0.4 µHz,
the only real scatter comes from the solarFLAG data: this
second set of residuals allows therefore for a direct as-
sessment of the low-l-only contributions, and the extent
of any internal disagreement between hounds, through-
out the interior. On the other hand the analysis made with
the full uncertainties tells us (amongst other things) how
the scatter will be diluted when the solarFLAG data are
augmented by the higher-degree modes.

Fig. 5 shows the RMS of the residuals plotted in Fig. 4:
the solid curve was calculated from the residuals in the
upper panel of Fig. 4 (full inversion uncertainties); while
the dashed curve was made from the data in the lower
panel of Fig. 4 (low-l-only inversion uncertainties)

The results in the lower and upper panels of Fig. 4 are
similar in the core: there, the inversion uncertainties
are dominated by the splitting uncertainties of the low-l
modes. However, beyond the core the higher-l data carry
much greater weight, and the full inversion uncertainties
are several times larger than those determined by the low-
l data only. This is why the significance of differences
between the residuals (curves) is higher in the residuals
made using only the low-l uncertainties.

The results show that in the core there is disagreement be-
tween the estimated rates of rotation, disagreement that,
at its most extreme, is several times larger than the inver-
sion uncertainty. The RMS curves in Fig. 5 give a measure
of the size of this additional uncertainty. We remind the
reader that it is present on top of the general trend of the
results toward overestimation of the rotation rate in the
core. The rate is overestimated in the core by about 1σ
on average (Fig. 4).

The solid RMS curve in Fig. 5 – calculated with the full
inversion uncertainties – shows the presence of scatter
at a level over and above the notional, formal, 1σ level.
At radii beyond ∼ 0.3 r/R¯, little scatter is seen, and
the curves agree to within a fraction of 1σ. In contrast,
residuals determined using the low-l-only inversion un-
certainties (lower panel of Fig. 4, dashed curve in Fig. 5)
show notable disagreement at several locations through-
out the interior. Of particular note is the extra disper-
sion present just below r/R¯ ∼ 0.6, and also much
closer to the surface. It is possible that this is where the
solarFLAG modes were used to eliminate contributions
from the higher-l MDI modes in the deep interior.
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Figure 2. Estimates of the rotation rate of the artificial Sun given by inversion of each of the ten (augmented) sets of
splittings (one curve per hound). The input data come from fits in which the hounds made their own choice over what
sizes of m-component height ratio to use in the fitting.

Figure 3. Estimates of the rotation rate of the artificial Sun given by inversion of the (augmented) splitting set of WJC.
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Figure 4. Difference between estimated rotation rate and the correct value of 0.4µHz, normalized by the formal uncer-
tainty of the inversion at that target radius. Upper panel: inversion uncertainties calculated from the full splitting set, i.e.,
both the low-l solarFLAG and higher-l ‘MDI’ splitting uncertainties. Lower panel: inversion uncertainties calculated
from the low-l splitting uncertainties only.

Figure 5. RMS of the residuals plotted in Fig. 4. Solid line: RMS difference for residuals calculated with full inversion
uncertainties. Dashed line: RMS difference for residuals calculated with low-l-only inversion uncertainties.
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A. EFFECT OF HEIGHT RATIO SENSITIVITY
ON A-COEFFICIENT CONTENT OF SUN-AS-
A-STAR SPLITTINGS

Frequencies from the resolved-Sun observations are usu-
ally described using a polynomial expansion of the form:

νn,l,m = νRES
n,l +

jmax∑

j=1

aj(n, l) lPj
l (m). (15)

where νRES
n,l is the centroid frequency of the multi-

plet, jmax ≤ 2l, and the basis functions are polynomi-
als related to Clebsch-Gordan coefficients (Ritzwoller &
Lavely 1991). A clean 1D inversion in radius can be
made by inversion of the a1 coefficients. However, some
of the Sun-as-a-star splittings have contributions from a3

and a5, making use of the Sun-as-a-star splittings prob-
lematical. One approach is to attempt to correct the Sun-
as-a-star values for the contributions of the a3 and a5, in
an attempt to give some proxy for the ‘clean’ a1 (e.g., see
Corbard et al. 1998; Garcı́a et al., 2004). Here, we show
that the correction is uncertain at l = 3, because of the
presence of the m = 1 components.

We begin by expressing the Sun-as-a-star splittings in
terms of the odd-a coefficients. At l = 1 only the sec-
toral components are observed in the Sun-as-a-star data,
and so we have (using the format of Equation 1):

δνs(1, n) =
[ν1,n,1 − ν1,n,−1]

2
= a1(n, 1). (16)

At l = 2 the relationship is in principle a straightforward
one. This is because, even though the m = 0 component
is also observed, its position in frequency with respect
to the sectoral components, and the centroid, does not
depend on the odd-a coefficients. We therefore have:

δνs(2, n) =
[ν2,n,2 − ν2,n,−2]

4
= a1(n, 2) + a3(n, 2).

(17)
However, we know in practice that incorrect modelling of
the relative visibility of the m = 0 and |m| = 2 compo-
nents does have some influence on the fitted value of the
splitting: the central component does have a rôle to play.

Matters are much less straightforward at l = 3. Here, the
|m| = 1 components are also observed, albeit at a less
prominent level than their sectoral counterparts. There
are therefore two sets of splittings in play: one between
the |m| = 1 peaks; and one between the |m| = 3. The
appropriate splitting to consider for each combination is:

[ν3,n,m − ν3,n,−m]
2m

.

We then have

[ν3,n,3 − ν3,n,−3]
6

= a1(n, 3) + a3(n, 3) + a5(n, 3),
(18)

and

[ν3,n,1 − ν3,n,−1]
2

= a1(n, 3)− 3a3(n, 3) + 15a5(n, 3).
(19)

Application of the usual Sun-as-a-star fitting strategy im-
poses an equal frequency splitting between all compo-
nents. We might therefore expect the fitted l = 3 splitting
to be some linear combination of the splittings in Equa-
tions 18 and 19, with the former, sectoral value receiv-
ing much greater weight (because it components appear
more prominently in the power spectrum). Let ρ be a sim-
ple coefficient that fixes the proportion of each splitting
in the final, fitted splitting. We may then write the fitted
splitting as:

δνs(3, n) = (1− ρ)
[ν3,n,3 − ν3,n,−3]

6

+ ρ
[ν3,n,1 − ν3,n,−1]

2
. (20)

Expressed in terms of the odd-a coefficients, the fitted
splitting is then:

δνs(3, n) = a1(n, 3)+(2ρ+1)a3(n, 3)+(14ρ+1)a5(n, 3).
(21)
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In the absence of the |m| = 1 components, i.e., for ρ = 0,
the fitted splitting would be just a1+a3+a5. Equation 21
shows that in practice, the influence of the inner compo-
nents means the contribution of a3 and a5 is different in
the final splitting. If we assume the coefficient ρ has sim-
ilar size to that determined for the frequency parameter
(Chaplin et al. 2004b) – giving ρ ≈ 0.06 – we would
have a final splitting of a1 + 0.76a3 + 1.84a5.

Not only will the effect be determined by the underly-
ing visibility of the various components but the results of
Chaplin et al. (2006), on the solarFLAG hare-and-hounds
splittings (Fig. 1), suggest that assumptions made in the
fitting about the visibility may also have a rôle the play.


