Images & turbulence - 13

d, (V) =0.0228 ry

Which, numerically written, and by considering wavefronts

made of ‘dim’ pixels corresponding to ‘I meters, becomes:
(re-writing - “*de-dimensionalizing” - the equation with .L0=1.0 L/LL and v=v L/L....)

freg
dsp

findgen(dim)
L0228*(L/rOA(S/3.)*LA2*(fregr2+(L/LO)A2IA(-11./6)

And which (with the right frequency scale) can be plot with:
plot_oo, 1./L*findgen(dim), dsp, XR=[1/L/1.2,dim*1/L*1.2], /XS

=> make a routine that computes PSD(1.0,r0,dim,L.) and

plot 1t for different [ro, Ly]... wwith, for example: dim=1000, L=100., r0=0.1, L0=100.,10.,1.
-> Also read Aime (Sec. 1 & Sec. 2) and Maire (Chap.1)...

marcel@MBA-de-Marcel -»> ssh -Y srv-etudiant.oca.eu

marcel@srv-etudiant.oca.eu's password:

Warning: No xauth data;

A0 a0 O =

using fake authentication data for X11 forwarding.

Last login:

[[marcel@srv-etudiant ~]§
-~ IDL Version 8.5.1 {(linux
~ons, Inc., a subsidiary
Installation number: 35¢&

Licensed for use by: Obs

[IDL> plot,

[1.,2]., [0,4]

Wed Feb 21 &=

freq
dsp

;to be

L 0 N e AW N e

;oplot

|
N =2 ®

return, dsp
end

-
w

findgen(dim)
.0228%(L/r0)~(5/3.)*L*2x(freq”2+(L/LO)~2)~(~-11./6)

[
o T T T T T LI |
. -
L0 =100 m, 10 m, 1 m
e
\~‘~\
- ALY -
~~~~~
# B DR \\ N
- ‘~
= . - -
E Y { '.~,:‘ —
.....
— ~.s\ L
\-‘
- e i B _—— Ly -
- ~
. u\s_
N - .‘s.:\e .
we
- \ -
..
1™ 1 1 a1 ' | 1 1
[0 | L] ) ol 1C.C0
wabial tmz.z-cx [1Sm]

-1

wt

1z

=
o=

function dsp_ theo, dim, L, ro, LO

plotted afterwards with:
,plot oo, 1l./Lxfindgen(dim), dsp, XR=[1/L/1.2,dim*1/L%1.2], /XS, $
; TIT='PSD(LO)', XTIT='spatial frequency [1/m]', YTIT='PSD'
, 1./Lxfindgen(dim), dsp, LINE=1
;playing, e.g., with L0=100.,10.,1., or r0=.05, .1, .2

“S0xrIi

rO=5cm, 10 cm, 20 cm |

~
\~.
~,
-~
~
e .
. ..
-
-~
\‘
-
S
.

[

9.

o}

opailal Iz, e

sz 14m,




Images & turbulence - 15

-> Perturbed wavefront generation:

The well-known FFT method allows us to generate
phase screens ¢(7), where 7 is the two-dimensional
position within the phase screen, assuming usually
either a Kolmogorov or a von Karman spectrum
®,(7), where v is the two-dimensional spatial fre-
quency, from which is computed the modulus of
@(V), the Fourier transform of ¢(¥). Assuming the
near-field approximation and small phase perturba-
tion [3], the von Karman/Kolmogorov spectrum is
given by

é

3 1\ %
D, (v) = 0.0229r° (02 + E) , (1)
0

where ry is the Fried parameter and £, is the wave-
front outer scale (infinite for the Kolmogorov model).
Within the framework of the classical FFT-based
technique, a turbulent phase screen ¢; () of physical
length L is obtained by taking the inverse FFT of
@), the modulus of which is obtained from Eq.
(1) by applying the definition of the power spectrum,
which is

@, (%) = lim (<I¢L(v)|2>)

L—scc 12

= Ié’L (L’)| - Lra‘ v 0.0228 (D‘2 - .C_g) g (2)

and which phase is random and wuniformly
distributed.

(the same manipulation as before is
applied here in order to obtain the
numerical formulation here below.)

-> (from Carbillet & Riccardi (sec. 2))...

The obtained phase screen is thus numerically
writien

oL, f) = \/Qm(ﬁ)g{FFT-‘ :(k2+£2

)

N (%0) 2) & exp{xé'(k,l)}: } (3)

where i and j are the indices in the direct space, & and
{ are the indices in the FFT space, {} stands for either
real part of or imaginary part of, 1 is the imaginary
unit, and 7 is the random uniformly distributed
phase (between —z and z). The factor +/2 comes from
the lact that here we use both the real and imaginary
parts of the original complex generated FFT phase
screens, which are independent one from the other
[4l. This kind of phase screen suffers, however, from
the lack of spatial frequencies lower than the inverse
of the necessarily finite length L of the simu-
lated array.




!

dim
length
Lo
seed
ro
lambda

Marcel

phase =

ag fde o2 .
L -’_’_"_.J--."

[function wfgenerat

2 &
- e
LA

ion

wave-front (wf) generation following von Karman model
(infinite L® -Kolmogorov model- not allowed here). =

wf linear dimension [px],

wf physical length [m],

wf outer-scale [m],

random generation seed (OPTIONAL),

wavelength at which r@® is defined.

Carbillet [marcel.carbillet@unice.fr],
lab. Lagrange (UCA, OCA, CNRS), Feb. 2013.

Last modification: Feb. 2018.

(randomu(seed,dim,dim)=.5) * 2%!PI

rr = dist(dim)
modul = (rr*2+(length/L@)"2)*(~-11/12.)

screen = fft(modulxexp(complex(@,1)*phase), /INVERSE)

screen *x= sqrt(2)xsqrt(.8228)*(length/rd)~(5/6. )xlambda/(2%!PI)

screen —= mean(screen)

return, screen

end

, dim, length, L®, r@, lambda, SEED=seed

Fried parameter at wavelength 'lambda' [m],

4 4E+03
J.5E+03

2.7E+03
1.8E+03
9.3E+02
6.6E+01
~7.9E+02
—1.7E+03 ]
—2.5E+03f

—-34E+03
—4,ZE+03

=20 =10

0
(]

; md uniformly distributed phase
; (between -PI and +PI)

; von Karman model

ey
ndependent wi
| | (typically 100)...
; deliver 2 independent wf:
float(screen) & imaginary(screen) L compute mean
e " rms for different

|70, Lo]

; compute wf
; proper narmalization of wf CpP
; force mean to zero

-



- ¢ -

|}

-

[IDL> .r wfgeneration
% Compiled module: WFGENERATION.

[IDL> wf=wfgeneration(l28,2.,27.,.1,500E-9,SEED=seed)
% Compiled module: DIST.

wfl=Ffloat (wf)

wf2=1maginary (wf)

tvscl, [wfl,wf2]
wf=wfgeneration(l28,2.,27.,.1,500E-9, SEED=s¢eed)
wfl=float{wf)
wf2=1maginary (wf)
tvscl, [wfl,wf2]

(IDL> .rn wfcube

% Compiled module: WFCUBE.
(IDL> print, wfcube(128L,2.,27.,.1,500E-9,100L)*1E9
% Compiled module: COMPUTE_RMS.

367.668
ﬁram caused arithmetic error: Floating underflow

% FPro
IDL>

function computel_rms, cube
; cube: cube of wavefronts (square wf, no pupill)

’
;
’
i
i
i
;
’
;
i
i
i
'
;
’
;
i
;
;
'
c

(size(cube))[3]
fltarrin_wf)

n_wt
s =
for i=0,n_wf-1 do begin
totoc = moment(cube(%,%,1], SDEV=dummy)
rms[i] = dummy
endfar

rms_moy = mean(rms)

return, rms_moy

end c

~

_> Also read Carbillet & Riccardi

return,

T Bes

function wfcube, dim, length, L®, r®, lambda, n_wf

use:

dim = 128L ; [px] wf dimension

Length = 2. : [m] wf physical dimension
L9 = 27. ; [m] outerscale

re = .1 ; [m] Fried parameter
Lambda = 5Q0E-8 ; Im] r® wavelength

n_wf = 1Q0L ; nb of generated wf

print, wfcube(dim, length,L®, r@, lambda,n_wf, filename,SEED=seed)
-» prints the rms value

sub-routines needed:
wfgeneration.pro, calcul_mms.pro

Marcel Carbillet [marcel.carbillet@unice.fr],
lab. Lagrange (UCA, OCA, CNRS), Feb. 2018.

Last modification: Feb. 2018

ube = fltarr(dim, dim, n_wf)

 for 1=@, n_wf/2-1 do begin

wf = wfgeneration(dim, length, L®, r®, lambda, SEED=seed)
cube [, %, 2%i] = float(wf)
cube [*, ¥, 2%1+1] = imaginary(wf)

endfor

| rms = compute_rms(cube)

ms
nd

(introduction of Sec. 2)...



