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A B S T R A C T

In order to fully understand the shapes of asteroids families in the 3-dimensional space of the proper elements
(ap, ep, sin Ip) it is necessary to compare observed asteroids with N-body simulations. To this point, we describe a
rigorous yet simple method which allows for a selection of the observed asteroids, assures the same size-fre-
quency distribution of synthetic asteroids, accounts for a background population, and computes a χ2 metric. We
study the Eos family as an example, and we are able to fully explain its non-isotropic features, including the
distribution of pole latitudes β. We confirm its age = ±t (1.3 0.3) Gyr; while this value still scales with the bulk
density, it is verified by a Monte-Carlo collisional model. The method can be applied to other populous families
(Flora, Eunomia, Hygiea, Koronis, Themis, Vesta, etc.).

1. Introduction

A rigorous comparison of observations versus simulations of asteroid
families is a rather difficult task, especially when the observations look
like Fig. 1. Observed proper elements ap, ep, sin Ip, supplied by physical
data (colour indices a⋆, −i z in this case), show a complicated structure
of the Eos family, halo, together with many neighbouring families,
overlapping halos, and background asteroids, of course. The hier-
archical clustering method alone (HCM, Zappalà et al. 1995) is then
practically useless.

Family identification itself affects dynamical studies and vice versa.
We would need the family to determine initial conditions. On the other
hand, we would need a dynamical study to understand wherever family
members could be. There are several well-known weaknesses of HCM,
which were demonstrated e.g. in a ‘crime-scene’ Fig. 8 of Nesvorný
et al. (2015). The HCM needs a free parameter, either the cutoff velocity
vcut, or the quasi-random level QRL. It is also unable to associate halos.
Last but not least, the background is never precisely uniform what can
be clearly seen at the edges of currently stable zones, close or inside
gravitational resonances, or even in stable zones where the population
was deteriorated by dynamical processes in the distant past (cf. Cybele
region; Carruba et al. 2015).

On the other hand, synthetic families evolve in the course of si-
mulation and loose their members, consequently we should use a vari-
able vcut, but its optimal value is again generally unknown. No direct

comparison is thus possible.
That is a motivation for our work. We describe a method suitable to

study 3-dimensional shapes of asteroid families, taking into account all
proper orbital elements, including possibly non-uniform background,
and matching the size-frequency distribution at the same time. Our
method still relies on a preliminary selection of observed asteroids ac-
cording to their colours (or albedos) to suppress – but not fully exclude –
interlopers. A comparison of the observed asteroids with an output of
N-body simulation is performed by means of counting the bodies in
proper-element ’boxes’, and a suitable χ2 metric. Because we are forced
to select synthetic asteroids randomly (a Monte-Carlo approach), we
can expect some stochasticity of the results.

We present an application to the Eos family (family identification
number, FIN = 606), one of the most studied families to date, men-
tioned already by Hirayama (1918). Together with our previous works
(Vokrouhlický et al., 2006; Brož and Morbidelli, 2013), this paper forms
a long-term series focused on its long-term evolution. We use up-to-date
catalogues of proper elements (Knežević and Milani, 2003), and brand
new spin data (Hanuš et al., 2018).

Let us recall that the Eos family is of K taxonomic type, while the
background is mostly C type. Mothé-Diniz et al. (2008) suggested either
a partially differentiated parent body, with meteorite analogues CV, CO
or R; or a undifferentiated one, with CK analogues. There was a dis-
covery of a recent breakup of (6733) 1992 EF (Novaković and
Tsirvoulis, 2014), belonging to the family core, what makes Eos even

https://doi.org/10.1016/j.icarus.2018.08.022
Received 22 May 2018; Received in revised form 14 August 2018; Accepted 27 August 2018

⁎ Corresponding author.
E-mail addresses: mira@sirrah.troja.mff.cuni.cz (M. Brož), morby@oca.eu (A. Morbidelli).

Icarus 317 (2019) 434–441

Available online 28 August 2018
0019-1035/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00191035
https://www.elsevier.com/locate/icarus
https://doi.org/10.1016/j.icarus.2018.08.022
https://doi.org/10.1016/j.icarus.2018.08.022
mailto:mira@sirrah.troja.mff.cuni.cz
mailto:morby@oca.eu
https://doi.org/10.1016/j.icarus.2018.08.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2018.08.022&domain=pdf


more interesting for space weathering studies, because we may see both
old (1.3 Gyr) and young (4 Myr) surfaces.

2. Methods

Before we proceed with the description of the method, let us explain
three problems we have to solve and describe the underlying dynamical
model.

2.1. Problem 1: selection of asteroids

In principle, we can select any subset of asteroids (e.g. by using
SDSS colour data, or WISE albedo data) to decrease a contamination by
interlopers, or an overlap with other families in the neighbourhood
(Parker et al., 2008; Masiero et al., 2011); an approach also used in a
multidomain HCM (Carruba et al., 2013). We can also simulate any
subset at will, but we should definitely check surroundings where the
bodies can be scattered to, because this may be a key constraint.

For Eos family, it is easy because of its distinct K taxonomic type
which is defined for our purposes in terms of the SDSS colour indices
a*∈ (0.0, 0.1), − ∈ −i z ( 0.03, 0.08), and the geometric albedo
pV>0.07 (if known in WISE or IRAS catalogues). If only colours are
known, we select the asteroids according to them, and assume their

=p 0.158V which corresponds to the median value of Eos members. As
a result, only 1/10th of asteroids remain, but this is still sufficient
(Fig. 2). Practically all other families have disappeared, the background
is much more uniform. The only exception may be some contamination
from the Tirela family (seen as a concentration in the upper right corner
of Fig. 2), arising from a photometric noise on S-type asteroids, and a
gap at large sin Ip> 0.25.

Regarding the homogeneity of albedos, the WISE data exhibit a
wide distribution, and we should check whether it can be related to a
heterogeneous parent body. The uncertainties σp arise mainly from
photon noise, and NEATM model systematics. In a statistical sense, even
the single albedo value =p 0.158V would result in a relatively wide
distribution because σp values are relatively large, which is demon-
strated in Fig. 3, where we used the σ’s of individual measurements
together with the (constant) pV to randomly generate the new dis-
tribution of pV’s. The Eos family thus seems homogeneous rather than
heterogeneous.

2.2. Problem 2: size-frequency distribution

The size-frequency distributions (SFDs) should match for both the
observed and synthetic populations, but the latter changes in the course
of time (Fig. 4). In order to compare apples with apples, we have to
scale the SFD. In other words, we randomly select the same number of
synthetic bodies (together with their orbits, of course) as the number of
observed bodies, in each of prescribed size bins +D D D( , d ). Let us
emphasize we do not rely on the assumption of a constant SFD.1 To this
point, it is definitively useful to start with a larger number of synthetic
bodies, so that we still have more than observed at the end of simula-
tion.

This random selection of synthetic asteroids to match the SFD of
observed asteroids is needed at every single output time step of the
simulation. Even multiple selections at one time step might be useful.
This way, we would naturally account for an additional (and often
neglected) uncertainty which arises from the fact we always choose the
initial conditions from some underlying distributions (e.g. from a pre-
scribed velocity field), but we cannot be absolutely sure that our single
selection is not a lucky fluke.

2.3. Problem 3: non-uniform background

A background has to be accounted for otherwise it is essentially
impossible to explain a lot of bodies far from the family. First, we need
to find some observed background, not very far from the family; in our
case, a suitable population seems to be at sin Ip∈ (0.06; 0.12) and (0.24;
0.30). It has its own size-frequency distribution, and we should use the
same SFD for the synthetic background. As a first approximation, we
model the background as a random uniform distribution in the space of
proper elements.

However, Murphy’s law for backgrounds states: The background is
never uniform. Especially below and above the 7/3 mean-motion

Fig. 1. Top panel: the proper semimajor axis ap vs proper inclination sin Ip for
all asteroids in the broad surroundings of Eos family. The range of proper ec-
centricities is ep∈ (0.0; 0.3). If they have colour data in the SDSS MOC4 cata-
logue (Parker et al., 2008), the colours correspond to indices a⋆, −i z which are
closely related to taxonomy, namely blue is close to C-complex taxonomy, red
to S-complex, and magenta to K-type. The whole sample contains 18 471 as-
teroids. There are other prominent families visible: Hygeia (C-type, bottom-
right), Veritas (C, next to Eos), Tirela (S, upper right), Telramund (S, below
Eos); a close inspection would show 32 families in total! Bottom panel: the same
plot for a typical outcome of N-body simulations, assuming a disruption of a
parent body, ejection of fragments with some velocity field, and their long-term
dynamical evolution due to gravitational perturbations, resonances, chaotic
diffusion, the Yarkovsky effect, the YORP effect, etc. The two panels are not
directly comparable. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

1 In principle, we can estimate the original SFD of the family but it is not our
goal here. The overall change of slope due to dynamical decay (for selectedt)
can be estimated already from Fig. 4.
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resonance with Jupiter we can expect a difference (see the example in
Fig. 5).

Again, there is a non-negligible stochasticity. We shall at least try
a different random seed. The number density of background objects can
be also treated as a free parameter. There is also a priori unknown
systematic contamination by neighbouring families, but this is not ne-
cessarily present right ‘under’ the Eos family.

2.4. Dynamical model

Our dynamical model was described in detail in Brož et al. (2011).
We briefly recall it contains a modified SWIFT integrator (Levison and
Duncan, 1994; Laskar and Robutel, 2001), both the diurnal and sea-
sonal Yarkovsky thermal effects (Vokrouhlický, 1998; Vokrouhlický

and Farinella, 1999), which induce a semimajor axis drift da/dt; all
mean-motion and secular resonances, captures and corresponding drifts
de/dt, dI/dt, the YORP effect, changing the spin rate ω and the ob-
liquity γ (Čapek and Vokrouhlický, 2004), with the efficiency para-
meter =c 0.33YORP (Hanuš et al., 2011), simplified collisional reor-
ientations by means of a prescribed time scale dependent on size D
(Farinella et al., 1998), random period changes due to mass shedding
after reaching the critical spin rate ωcrit (Pravec and Harris, 2000), and
suitable digital filters for computations of mean and proper elements
(Quinn et al., 1991; Šidlichovský and Nesvorný, 1996).

Initial conditions are kept as simple as possible. We assume an
isotropic disruption, with the ejection velocity components Gaussian,
with the dispersion proportional to 1/D, and = −V 93 m s5

1 for
=D 5 km,5 an estimate based on our previous work (Vokrouhlický

et al., 2006). Consequently, the distribution of the velocity magnitude
→vej is Maxwellian (see Fig. 6). We start with 6 545 synthetic bodies,
with the SFD covering D∈ (1.5; 100) km. Spins are also isotropic and
periods uniform, P∈ (2; 10) h.

The thermal parameters remain the same as in our previous works:
the bulk density = −ρ 2 500 kg m ,3 the surface density = −ρ 1 500 kg m ,3

the conductivity = − −K 0.001 W m K ,1 1 the specific capacity
= −C 680 J kg ,1 the Bond albedo =A 0.1, the infrared emissivity =ϵ 0.9.

For simplicity, we assumed these parameters to be constants, although
some of them may be size-dependent (as K in Delbo et al. 2015), or
temperature-dependent (Anderson et al., 1991).

The free parameters of our model are the maximum of velocity
distribution vmax (Fig. 6), the true anomaly fimp, and the argument of
pericentre ωimp at the time of impact, which are interrelated by means
of the Gauss equations. We may be forced to tune also other osculating
orbital elements of the parent body, but for the moment we take those
of (221) Eos as the nominal case.

Among the fixed parameters is the bulk density ρ. Usually, the age
scales linearly with ρ due to the non-gravitational accelerations.
Theoretically, if there are both gravitational and non-gravitational ac-
celerations acting at the same time (e.g. Yarkovsky drift in a and chaotic
diffusion in e) we may be able to break this degeneracy. However, based
on our previous experience, we do not expect this for Eos. Neighbouring
Veritas may be more suitable for this approach, by the way.
Alternatively, one can use collisional models which exhibit a different
scaling with ρ (cf. Section 4.1).

We integrate the equations of motion with the time step =tΔ 91 d,
and the time span 4 Gyr. The output time step after computations of
mean elements, proper elements, and final running-window filter is

=tΔ 10 Myrout .

2.5. Black-box method

We can eventually proceed with a so-called ‘black-box’ method (see
Fig. 7)2: (i) we choose 180 boxes with =aΔ 0.0243 au, =eΔ 0.025,

=IΔ sin 0.240 in our case aligned with the J7/3 and J9/4 resonances3;
(ii) count the numbers of observed asteroids located in these boxes;
(iii) compute the observed incremental SFD globally, in the full domain;
(iv) compute the background incremental SFD globally; (v) at every
single output time step we compute the synthetic incremental SFD
globally again (saving also lists of bodies in the respective size bins);
(vi) for every single size bin +D D D( , d ) we draw a synthetic back-
ground population of Nbg bodies from a random uniform distribution
(in the whole range of ap, ep, sin Ip); if the volume where the back-
ground was selected differs from our volume of interest, we have to use
a suitable factor, i.e. fNbg; (vii) we scale the synthetic SFD to the ob-
served one by randomly choosing −N fNobs bg bodies from the lists

Fig. 2. K-type asteroids selected from Fig. 1, with known colour indices
a*∈ (0.0; 0.1), − ∈ −i z ( 0.03; 0.08). The visual geometric albedo had to be
pV>0.07 (or unknown). This subset is much more homogeneous and contains
1 991 asteroids. No other prominent families except Eos can be seen; the only
exception may be some contamination by Tirela (upper right) due to inherent
photometric noise. This subset seems already suitable for a comparison with N-
body simulations.

Fig. 3. The observed differential distribution of visual geometric albedos pV for
the Eos family from the WISE catalogue (Masiero et al., 2011) (black solid), and
for the same set of bodies with pV values assigned randomly, assuming a
Gaussian distribution with a constant mean =p 0.158,V and 1-σ uncertainty
declared in the catalogue (dashed gray). The widths of the two distributions are
similar, so using the constant pV (if unknown) is not a poor approximation.

2 see http://sirrah.troja.mff.cuni.cz/~mira/eos/eos.html for in implementa-
tion in Python
3 possibly also in D
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above; (viii) we count the numbers of all synthetic asteroids located in
the boxes; (ix) finally, we compute the metric
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where the uncertainties are assumed Poisson-like, =σ N . Using both
σobs and σsyn in the denominator prevents ‘extreme’ χ2 contributions in
boxes where Nobs→ 0. We shall keep in mind though the corresponding
probability distribution of χ2 may be somewhat skewed. There is some
freedom related to the box sizes (binning), but within the limits of
meaningfulness (neither a single box nor zillions of boxes), the method
should give statistically comparable results as we always analyse the
same information.

Unlike traditional simplified methods fitting an envelope to (ap, H)
or (ap, 1/D), we shall obtain not only an upper limit for the age, but also
a lower limit.

3. Results

Hereinafter, we discuss not only the best-fit model, but also several
bad fits which are actually more important, because the ‘badness-of-fit’

assures a solid conclusion about the Eos family.

3.1. The nominal model

The nominal model is presented in Fig. 7. We focus on the proper
semimajor axis ap vs proper eccentricity ep distribution, having only one
box in inclination sin Ip. The initial conditions (top left) are so different
from the observations (bottom middle) it is almost hopeless to expect a
good fit anytime in the future. However, at around =t 1.3 Gyr the si-
tuation suddenly changes (top middle); it is almost unbelievable that
the synthetic family is so similar to the observations! The final state (top
right) is again totally different. The χ2 reaches values as low as Nbox, so
we may consider the best fit to be indeed reasonable. The age interval is

= ±t (1.3 0.3) Gyr. Let us emphasize that the fit so good only because
we carefully accounted for all three problems outlined in Section 2.

3.2. Bad fit 1: ejection velocity tail

Because our sample is 3 times larger than the observed sample, we
can easily resample our synthetic bodies without actually computing
the N-body simulation anew, e.g. selecting only those with low ejection
velocity < −v 200 m sej

1. Consequently, all bodies are initially located

Fig. 4. Top panel: the cumulative size-frequency dis-
tribution (SFD) of the observed K-type asteroids (or-
ange), the synthetic SFD at the beginning of N-body
simulation (green), the scaled synthetic SFD con-
structed by a random selection of bodies so that it
matches the observed one (dotted black; hard to dis-
tinguish from orange), and the background SFD
(black). Bottom panel: an evolution of the synthetic
SFD in the course of an N-body simulation, from time

=t 0 up to 4 Gyr, which is indicated by changing
colours (black → yellow). These changes (due to a
dynamical decay) require scaling at every time step.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web version
of this article.)

Fig. 5. A synthetic background generated as a random uniform distribution in
proper orbital elements ap, ep, sin Ip, with the same size-distribution as the
observed background. In this example, the number densities below and above
the 7/3 mean-motion resonance with Jupiter at 2.956 au are different (by a
factor of 2), because this resonance separates two distinct zones of the main
belt.

Fig. 6. Top panel: the dependence of the ejection velocity vej on the diameter D
for our synthetic bodies. The value = −V 93 m s5

1 denotes the dispersion of ve-
locity components for =D 5 km5 bodies. In specific cases (Section 3.2), we se-
lect only bodies with velocities smaller than some maximum value, <v vej max .
Bottom panel: the corresponding histogram of vej.
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above the J7/3 resonance, and below the J11/5.
Using the same post-processing as above we arrived at Fig. 8. It is

clear that the ‘best fit’ is actually a bad fit compared to the nominal
model. The notable differences are below the J7/3 resonance, and
above the J11/5 where the numbers of bodies are never sufficient to
match the observations (cf. Fig. 7, bottom middle).

It is worth to note there is a small family just below the J7/3 re-
sonance, namely (36256) 1999 XT17 (FIN 629). Tsirvoulis et al. (2018)
discovered a link to Eos by analysing the overall V-shape in the semi-
major axis ap vs the absolute magnitude H diagram. It seems aligned
with the original velocity field of the Eos family — it has the same sin Ip
as the family core, but slightly larger ep≃ 0.1, because of the ‘ellipse’ in
(ap, ep) visible in Fig. 7 (top left). We thus conclude, (36256) family is
actually a remnant of the original velocity field.

If this is true, it may further contribute to the contamination of the
‘pristine zone’ between the J7/3 and J5/2 resonances, apart from low-
probability crossings of the former resonance. This region was analysed
by Tsirvoulis et al. (2018), where authors carefully subtracted the
contribution of all families (including Eos), extracted the SFD of re-
maining background asteroids and computed the slope of the pri-
mordial (post-accretion) SFD.

3.3. Bad fit 2: parent body inclination

If we look on contrary on the proper semimajor axis ap vs proper
inclination sin Ip distribution (Fig. 9) there is a problem with the
nominal model. Inclinations are all the time too low (and the χ2 too
high compared to Nbox). This would affect a 3-dimensional fit too, of
course.

Nevertheless, it seems sufficient to adjust the inclination by ap-
proximately 0.005 rad to get a significantly better fit, χ2 decreased from
238 down to 181. This seems still too high wrt. 130, but this approach is
possibly too simplified, because we only shifted the output data. In
reality, the resonances (in particular the z1) do not shift at all, they are
determined by the positions of giant planets, and we should perform the
N-body integration anew to obtain a correct (ap, sin Ip) distribution.

Fig. 7. The proper semimajor axis ap vs proper eccentricity ep for the nominal simulation scaled to the observed SFD (as described in the main text) (top row). Bodies
are plotted as green dots. Colours correspond to the number of bodies in 180 boxes, outlined by =aΔ 0.0234 au, =eΔ 0.025. The range of inclinations is always
sin Ip∈ (0.06; 0.30). Positions of major mean-motion and 3-body resonances are also indicated (J7/3, J9/4, J11/5, and − −3J 2S 1). The z1 secular resonance goes
approximately from the lower-left corner to the upper-right. There are the initial conditions (left column), the best-fit at =t 1340 Myr (middle), the end of simulation
(right); as well as the observations (bottom middle), and the respective χ2 metric compared to the actual number of boxes Nbox (bottom right). The correspondence
between the best-fit and the observations is surprisingly good, with =χ 141,2 =N 134box (not all boxes are populated), and χ2≃Nbox. The 1-σ, 2-σ and 3-σ levels
(dotted lines) and the inferred 3-σ uncertainty of the age (yellow strip) are indicated too. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Bad fit 1: the proper semimajor axis ap vs proper eccentricity ep (top
panel), and the temporal evolution of χ2 (bottom panel) for a subset of bodies
with the ejection velocities < −v 200 m s ,ej

1 i.e. without the tail of the distribu-
tion. Initially, all bodies were located above the J7/3 resonance. Observations
were shown in Fig. 7 (bottom middle). The ‘best-fit’ at =t 1430 Myr, with

=χ 197,2 =N 134,box is much worse than the nominal case. The number of
bodies below the J7/3 resonance is too low. Consequently, the velocity tail is
needed to get a better fit.
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3.4. Bad fit 3: true anomaly fimp< 120°

To demonstrate the sensitivity of our ‘black-box’ method with re-
spect to the impact parameters, we present an alternative N-body si-
mulation which started with the true anomaly = ∘f 0imp . The orienta-
tion of the ellipse is then the opposite and there is practically no chance
for a good fit (see Fig. 10).

All the time, there is a serious mismatch within the family core, it is
impossible explain the observed bodies in the boxes with ap≃ 2.97 au,
and ep≃ 0.08. Generally, it is surprising that even 1.3 Gyr after the
impact, there are clear traces of the original velocity field! As already
reported in Brož and Morbidelli (2013), the ‘true’ true anomaly should
be f>120°. Another example of such traces (in inclination) is the
Koronis family (Carruba et al., 2016).

4. Conclusions

Let us conclude, it is important to use a suitable selection of aster-
oids, match the size-frequency distributions, and account for the
background population, when comparing N-body simulations with ob-
servations. To this point, we presented and tested a simple method how
to compare a 3-dimensional distribution of proper elements.

For the Eos family, it is possible to explain its shape in the (ap, ep,
sin Ip) space and estimate the age at the same time, but this estimate
still scales with the bulk density ρ, because most of the perturbations
are non-gravitational (including all systematic drifts da/dt, de/dt, dI/
dt).

While we believe our model includes the key contributions, no dy-
namical model is complete. For example, we miss inner planets, grav-
itational perturbations by large asteroids, or short-term spin axis evo-
lution due to gravitational (solar) torques. Initial condition might be
also too simple. In particular, the velocity field might have been non-
isotropic even though in catastrophic disruptions (like Eos) we rather
expect a high degree of isotropy (Ševeček et al., 2017). Generally, it is

better to keep both as simple as possible to have the lowest possible
number of free parameters.

Let us finally compare our nominal best-fit model to another two
distributions (size and spin) and the respective models (collisional and
rotational).

4.1. Collisional evolution

In a Monte-Carlo collisional model, size-frequency distributions are
evolved due to fragmentation and reaccumulation. We assume two
populations: the main belt, and the Eos family. Their physical proper-
ties are summarized by the scaling law ★Q r( ),D for which we assume
parameters of basalt at −5 km s 1 from Benz and Asphaug (1999). To
compute the actual evolution, we use the Boulder code by
Morbidelli et al. (2009). Parametric relations in the Boulder code,
which are needed to compute the fragment distributions, are derived
from SPH simulations of Durda et al. (2007).

We assume the initial SFD of the main belt relatively similar to the
currently observed SFD, because we focus on the already stable solar
system, with the fixed intrinsic impact probability

= × − − −P 3.1 10 km yrimp
18 2 1 and the mean velocity = −v 5.28 km simp

1.
The initial SFD of the Eos family has the same slope as the observed SFD
in the range D∈ (15; 50) km, and it is prolonged down to

=D 0.005 kmmin . We also account for the size-dependent dynamical
decay due to the Yarkovsky effect, with + = −N t t N t t τ( Δ ) ( )exp( Δ / ),
where the time scale τ(D) is taken from Bottke et al. (2005).

The resulting collisional evolution is shown in Fig. 11. The observed
knee at D≃ 15 km is very important, because it usually arises from a
collisional grinding. If we start with the constant slope from above, we
can match the observed SFD at about 1.3 Gyr which is in accord with
the dynamics.

It is worth to note the scaling of the age with the bulk density ρ is
different from dynamics, which in principle allows to resolve the

Fig. 9. Bad fit 2: the proper semimajor axis ap vs proper inclination sin Ip for the
synthetic population (top panel), and the temporal evolution of χ2 (bottom
panel). The boxes are consequently different, =aΔ 0.0243 au, =IΔ sin 0.02,
ep∈ (0.0; 0.3), so is the resulting ‘best-fit’ value =χ 238,2 =N 130box . The
parent body would have to be shifted in inclination by approximately 0.005 rad
to get a better fit.

Fig. 10. Bad fit 3: a detail of the proper semimajor axis ap vs proper eccen-
tricity ep (top panel), and the temporal evolution of χ2 (bottom panel) for the
simulation with the true anomaly at the time of impact = ∘f 0 ,imp and the ar-
gument of perihelion = ∘ω 30imp . The ‘best-fit’ =χ 7112 is so high compared to

=N 124box that the simulation was not computed up to 4000Myr. The value has
to be f≳ 120° to get a better fit.
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problem. However, the collisional model is sensitive to the initial
conditions and using a steeper SFD would result in longer age. In other
words, everything is based on the simple assumption of the constant
slope. It would be useful to base the initial conditions on a specific SPH
model for the Eos family, with the parent body size reaching up to
380 km (according to an extrapolation of Durda et al. 2007 results).

4.2. Spin distribution

At the same time, it is worth to check the observed distribution of
pole latitudes β, reported in Hanuš et al. (2018). Our dynamical model
evolves the spin (ω, γ), which affects the Yarkovsky drift rate da/dt, but
we do not account for spin-orbital resonances (so we would not explain
a clustering in the Koronis family; Slivan 2002). Nevertheless, if we use
the current model for Eos, with the same post-processing, but focus on
(ap, sin β) boxes instead, we obtain the results summarized in Fig. 12.

We start from an isotropic distribution of spins, which means iso-
tropic also in sin β. After about 1.3 Gyr, it is possible to fit both the
asymmetry of the distribution with respect to =a 3.014 au,c and the
substantially lower number of bodies at mid-latitudes |sin β |< 0.5.
There are two systematics still present in our analysis, as we account
neither for the observational selection bias, nor for the bias of the in-
version method, but they should not overturn our conclusions.

Unfortunately, the uncertainty is larger than in the nominal model,
because the number of bodies with known latitudes is limited, namely
46 within the family core. As a solution, we may use the distribution of
|β| of Cibulková et al. (2016) which is available for many more aster-
oids, but we would need to determine the ’point-spread function’, de-
scribing a relation between input |β| and output |β| for this (approx-
imate) method, which smears the distribution substantially. Their
sample also contains a lot of bodies smaller than we had in the previous
simulations, so we would have to compute everything again. This is
postponed as a future work.
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