
Dynamical Evolution Induced by Planet Nine

Konstantin Batygin1 and Alessandro Morbidelli2
1 Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA

2 Laboratoire Lagrange, Universit Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, CS 34229, F-06304 Nice, France
Received 2017 August 10; revised 2017 October 2; accepted 2017 October 3; published 2017 November 16

Abstract

The observational census of trans-Neptunian objects with semimajor axes greater than 250 au~ exhibits
unexpected orbital structure that is most readily attributed to gravitational perturbations induced by a yet-
undetected, massive planet. Although the capacity of this planet to (i) reproduce the observed clustering of distant
orbits in physical space, (ii) facilitate the dynamical detachment of their perihelia from Neptune, and (iii) excite a
population of long-period centaurs to extreme inclinations is well-established through numerical experiments, a
coherent theoretical description of the dynamical mechanisms responsible for these effects remains elusive. In this
work, we characterize the dynamical processes at play from semi-analytic grounds. We begin by considering a
purely secular model of orbital evolution induced by Planet Nine and show that it is at odds with the ensuing
stability of distant objects. Instead, the long-term survival of the clustered population of long-period Kuiper Belt
objects (KBOs) is enabled by a web of mean-motion resonances driven by Planet Nine. Then, by taking a compact-
form approach to perturbation theory, we show that it is the secular dynamics embedded within these resonances
that regulate the orbital confinement and perihelion detachment of distant KBOs. Finally, we demonstrate that the
onset of large-amplitude oscillations of the orbital inclinations is accomplished through the capture of low-
inclination objects into a high-order secular resonance, and we identify the specific harmonic that drives the
evolution. In light of the developed qualitative understanding of the governing dynamics, we offer an updated
interpretation of the current observational data set within the broader theoretical framework of the Planet Nine
hypothesis.
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1. Introduction

Over the course of the 170 years that followed the successful
prediction of Neptune (Adams 1846; Le Verrier 1846), the
presence of additional planets within the solar system has been
contemplated by an extensive list of astronomers and celestial
mechanicians (Hoyt 1980). Historically, the lines of evidence
for the existence of distant, massive bodies that orbit the Sun
have ranged from the (apparently) anomalous motion of Uranus
(Pickering & Pickering 1909; Lowell 1915) and the unexpected
orbital characteristics of long-period comets (Forbes 1880;
Matese & Whitmire 1986), to the peculiar structure of the solar
system’s small body populations (Brunini & Melita 2002;
Gladman & Chan 2006; Gomes et al. 2006; Lykawka & Mukai
2008; Trujillo & Sheppard 2014; Volk & Malhotra 2017). The
predicted physical and orbital properties of the putative planets
have been equally as varied, with inferred masses and
semimajor axes spanning the Mars–Jupiter range and tens to
thousands of astronomical units, respectively.

A recent addition to the aggregate of planetary predictions
within the solar system is the Planet Nine hypothesis3 (Batygin
& Brown 2016a). Within the framework of this model, the
observed orbital clustering of a 250 au Kuiper Belt objects
(KBOs; Figure 1) is sculpted by an m m10~ Å planet residing
on an appreciably eccentric (e 0.3 0.7~ – ), large semimajor
axis (a 300 700 au~ – ) orbit, whose plane roughly coincides

with the plane of the distant bodies, and is characterized by a
perihelion direction that is anti-aligned with respect to the
average apsidal orientation of the KBOs. In addition to (i)
facilitating the orbital confinement of the aforementioned
population of long-period KBOs and (ii) providing a physical
mechanism for the perihelion detachment of Sedna-type orbits
from Neptune, the presence of Planet Nine entails a series of
additional consequences for the observed structure of the solar
system (Brown & Batygin 2016). In particular, it has been
shown that the dynamical effects of Planet Nine naturally
explain (iii) the existence of highly inclined, large semimajor
axis Centaurs (Gomes et al. 2015; Batygin & Brown 2016a),
(iv) the six-degree obliquity of the Sun (Bailey et al. 2016; Lai
2016; Gomes et al. 2017), as well as (v) the origins of
proximate (a 100 au< ) retrograde KBOs (Batygin & Brown
2016b).
A key characteristic that differentiates the various planetary

proposals is the dynamical mechanism through which the
envisaged planet generates its observational signatures. In this
regard, the Planet Nine (P9) hypothesis remains incomplete.
Although numerical simulations reveal that synthetic models of
the solar system that include Planet Nine can provide a good
match to the observational data (see, however, Nesvorny et al.
2017), the dynamical process through which the physical
confinement of the distant orbits occurs remains poorly
understood.
The original study of Batygin & Brown (2016a) suggested

that mean-motion resonances (MMRs; including those of high
order) are responsible for orbital clustering. Expanding on this
idea, Malhotra et al. (2016) suggested that each of the distant
KBOs are currently trapped in N:1 and N:2 MMRs with Planet
Nine. More recently, Millholland & Laughlin (2017) and
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3 The Planet Nine hypothesis was inspired by the work of Trujillo &
Sheppard (2014), who noted that the arguments of perihelion (the angle
between the apsidal and nodal lines on an orbit) of distant KBOs are grouped
together. In contrast with this finding, the primary aim of Planet Nine’s inferred
influence is to explain the simultaneous clustering of the longitudes of
perihelion (a proxy for the direction of the pericenter in physical space) and the
longitudes of ascending node (orientation of the orbital plane).
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Becker et al. (2017) carried out a large-scale numerical
exploration of the resonant hypothesis in relation to the
existing data, further demonstrating its viability. Meanwhile,
Beust (2016) showed that a purely secular treatment of the
dynamics provides a good match to the simulation results of
Batygin & Brown (2016a), suggesting that resonant dynamics
may be irrelevant to the problem at hand. In light of these
conflicting results, the dominant P9–KBO interaction mech-
anism remains elusive, and its identification is the primary
purpose of this paper.

An analytical characterization of P9–KBO coupling is
important for three reasons, the first being falsifiability. The
specific perturbation mechanism (along with the data it aims to
explain) draws the distinctions among the various planetary
hypotheses and can be used to refute a specific model upon
confrontation with the data. As an example, suppose that an
observational survey discovers a planet at a radial separation of
a few hundred astronomical units, but the gravitational effects
of this planet do not facilitate a physical confinement among
the distant KBO orbits through the envisioned dynamical
process.4 Such a discovery would imply that the Planet Nine
hypothesis, as formulated, is incorrect.

A second, more practical motivation for studying P9–KBO
interactions is the link between existing observations and the
predicted orbit of Planet Nine. That is, if all distant KBOs are
presently trapped in MMRs with P9, their mean longitudes may
contain information about the location of Planet Nine in its
orbit (Malhotra et al. 2016; Millholland & Laughlin 2017). If,
on the other hand, the interactions are purely secular, such a

connection cannot be established.5 Therefore, understanding
the physics of P9–KBO coupling can offer a more complete
interpretation of the extant observational data set and may yield
an avenue toward further constraining the astronomical search
forPlanet Nine.
The third, and final, reason for this study is purely academic.

While the exploration of the circular restricted three-body
problem (as a paradigm for interactions between planets and
small bodies in the solar system) dates back multiple centuries
(Marquis de Laplace 1799; Poincaré 1902), its highly elliptical
counterpart remains much more scarcely understood (see, e.g.,
Beaugé et al. 2006; Michtchenko et al. 2006; Pichierri et al.
2017). Indeed, a well-formulated theory for gravitational
coupling between a planet and a test particle in the severe
orbit-crossing regime does not currently exist. As a result, a
perturbative study of P9 dynamics can yield interesting insights
into the general mathematical structure of interactions among
highly excited orbits. Such a framework would have consider-
able applications beyond the problem at hand, including the
characterization of the remarkable dynamical states of highly
eccentric, resonant exoplanets (Lee 2004; Tan et al. 2013).
Before delving into calculations, we delineate a list of

specific questions we wish to answer in this work.

1. What role (if any) do resonant interactions play within the
dynamical evolution induced by Planet Nine? If reso-
nances are prevalent, what order/multiplet harmonics
dominate the dynamics, and what are their characteristic
widths?

2. What role (if any) do secular interactions play within the
dynamical evolution induced by Planet Nine? If domi-
nant, how are close encounters avoided on nearly
coplanar, anti-aligned orbits? Moreover, if resonant
interactions are relevant to the Planet Nine hypothesis,
why does the purely secular phase-space portrait provide
a good match to the results of numerical simulations?

3. What parameters determine the critical semimajor axis
corresponding to the transition between randomized and
clustered longitudes of perihelion? What physical effect
controls this transition?

4. What is the qualitative behavior of inclination dynamics
within the framework of P9-driven evolution? What
dynamical process allows some of the objects to acquire
exceptionally high inclinations in the distant Kuiper Belt?

We take these questions as an approximate guide to the logic of
this paper, which is structured as follows. In Section 2, we
revisit a purely secular description of P9-induced orbital
evolution, carrying out the averaging procedure in closed
form. In Section 3, we consider a pair of idealized N-body
simulations and outline the key differences between numerical
experiments and pure secular theory. In Section 4, we present a
semi-analytical theory of resonant P9–KBO interactions and
elucidate secular dynamics embedded within MMRs as the
primary driver of apsidal confinement of distant KBOs.
Subsequently, we discuss the onset of large-scale inclination
oscillations of long-period bodies in Section 5. We then
re-examine the existing observational data in light of the
aforementioned theoretical developments in Section 6. We
summarize and discuss the implications of our results in

Figure 1. Current observational census of the distant Kuiper Belt. Thirteen
known objects with semimajor axes greater than 250 au and perihelion distance
greater than 30 au are shown in physical space and are color-coded in
accordance with their dynamical class, as dictated by the Planet Nine
hypothesis. Orbits belonging to the primary longitude of perihelion cluster
(inferred to be apsidally anti-aligned with the orbit of Planet Nine) are shown in
purple. Orbits that are diametrically opposed to the primary cluster (presumed
to be apsidally aligned with the orbit of Planet Nine) are shown in green. The
outlying object that does not correspond to either population is shown in gray.
Each orbit is further labeled by its scaled Runge–Lenz vector, which is color-
coded in the same way.

4 We note that the existence of a trans-Neptunian planet at an orbital
separation of a few hundred astronomical units was first proposed by
Forbes (1880).

5 The process of orbital averaging inherent to secular perturbation theory
removes all information related to the mean anomalies of the interacting bodies
(Morbidelli 2002).
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Section 7. A brief analysis of long-term stable, but apsidally
unconfined, orbits is presented in Appendix B.

2. Purely Secular Dynamics

We begin our study of P9-induced dynamics within the
framework of purely secular perturbation theory. In Batygin &
Brown (2016a), our preliminary exploration of secular
dynamics relied on an octupole-order expansion of the
gravitational potential (Kaula 1962; Mardling 2013), which
implicitly assumed that the orbits under consideration do not
cross. Following Beust (2016), here we abandon the series-
expansion approach to modeling P9–KBO coupling and carry
out the phase-averaging procedure in closed form.

As in Batygin & Brown (2016a) and Beust (2016), we
assume coplanarity and model the mean-field effects of the
known giant planets, ignoring their eccentricities. Further, we
choose to work in a slowly rotating coordinate frame that co-
precesses with Planet Nine’s perihelion (the corresponding
contact transformation is spelled out in Batygin & Brown
2016a). The governing (doubly averaged) Hamiltonian of a test
particle under planetary perturbations then has the form
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where  is the gravitational constant, M is the mass of the
Sun, r is the position vector, λ is the mean longitude, a is
semimajor axis, e is eccentricity, and ϖ is the longitude of
perihelion. All quantities pertaining to the four canonical giant
planets are labeled with indexes 5–8, while the values
corresponding to Planet Nine are denoted with the subscript 9.
The unlabeled variables correspond to the KBO. Finally,
Planet Nine’s orbit-averaged precession rate is given by the
expression6
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The three terms present in Equation (1) have simple physical
interpretations. The first term governs the secular advance of
the KBO’s perihelion due to the phase-averaged gravitational
potential of Jupiter, Saturn, Uranus, and Neptune (in direct
parallel with Equation (2)). The second term accounts for the
fact that the reference frame is slowly rotating. The third term
governs secular P9–KBO interactions. Note that the indirect
part of the disturbing potential is by default entirely averaged
out within the framework of secular theory and need not be
accounted for (Morbidelli 2002).

The only pair of dynamical variables present in Hamiltonian
(1) is (e, vD ), meaning that the system is integrable. In other
words, contours of the numerically averaged function (1) fully
encapsulate the accompanying orbital evolution. Figure 2
shows the secular phase-space portraits of the system, projected
onto e vD– space, for a 50, 150, , 550 au= ¼ , adopting P9
parameters from Batygin & Brown (2016a; specifically,

a 700 au9 = , e9=0.6, and m m109 = Å). This figure can be
readily compared with Figure 4 of Batygin & Brown (2016a)
and confirms that the purely secular portrait provides a good
match to the numerically computed portraits in the same
dynamical regime (Beust 2016).
In all panels denoted by a 250 au , the e vD– space is

characterized by two stable equilibrium points: one at 0vD =
and another at 180 degvD = . In each diagram, the two
libration regions surrounding these fixed points are separated
by a solid curve, which corresponds to a tangential configura-
tion of the KBO and P9 orbits. Note further that on these
tangential contact curves, the derivatives of the Hamiltonian are
discontinuous (i.e., s is locally class 0 ), signaling a
breakdown of the secular framework (Gronchi 2002).
A simple examination of the contours of s depicted in

Figure 2, reveals that KBOs initialized on nearly Neptune-
crossing orbits (immediately below the horizontal lines labeled
q a8= ) will suffer drastically different secular evolutions
depending on their starting value of vD . Bodies initially close
to 0vD ~ will be driven onto the tangential orbit-crossing
curves through apsidal precession and will eventually be
removed from the system by recurrent close encounters with
Planet Nine. On the other hand, objects initialized at v pD ~
settle onto secular trajectories that encircle that anti-aligned
equilibrium and never encounter the tangential collision curves.
Thus, the dynamical lifetimes of apsidally anti-aligned objects
can be naïvely envisioned to be longer than their aligned
counterparts, and in time, a cluster of exclusively anti-aligned
orbits should be carved out by Planet Nine.
We note further that there is an island of stable apsidal

libration around 0vD = that avoids crossing the tangential
configuration curve and is thus protected from close encoun-
ters. However, the eccentricities along these protected orbits are
moderate, and the corresponding perihelion distances are large.
This means that even if KBOs somehow came to occupy these
islands of stability, they would be difficult to detect
observationally.
With this picture in mind, it is tempting to affirm that the

agreement between theory and simulation is satisfactory, and
proceed forward within the purely secular framework. This is,
however, a misconception, facilitated by the apparent smooth-
ness of the secular phase-space portraits shown in Figure 2. In
particular, the fact that the contours of s do not show any
kinks within the apsidally anti-aligned domain is simply a
consequence of the integrability of the non-tangential singu-
larity (Thomas & Morbidelli 1996; Gronchi & Milani 1998)
and does not mean that the system can elude collisions. Instead,
recalling that the physical setup of the orbits is planar, it is
trivial to demonstrate that under the assumption of uncorrelated
Keplerian motion, all objects entrained in the apsidally anti-
aligned configuration with Planet Nine would suffer close
encounters on timescales much shorter than the age of the solar
system. Therefore, despite giving the illusion of agreement
with N-body simulations, pure secular theory predicts that the
entire distant Kuiper Belt is dynamically unstable and should
have been cleared out on a timescale comparable to the orbital
precession time.
Contrary to this view, published numerical experiments

reveal that particles residing deep within the cores of the anti-
aligned libration regions of Figure 2 remain stable over the
multi-Gyr lifetime of the solar system (Batygin & Brown
2016a; Brown & Batygin 2016). This disparity suggests that

6 Note that there is a typographical error in the corresponding expression in
Batygin & Brown (2016a).
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secular theory alone is unlikely to represent a full dynamical
description of P9-driven evolution and that an additional
stabilizing mechanism is at play in the simulations. Let us now
examine this point further.

3. Numerical Simulations

To quantify the discrepancy between published simulations
and pure secular theory, we carry out a pair of simplified
numerical experiments that mirror those reported in Batygin &
Brown (2016a) and Brown & Batygin (2016). In particular, we
evolve an initially axisymmetric disk of 6000 eccentric test
particles with a 150, 750Î ( ) au and q 30, 36Î ( ) au under the
influence of the phase-averaged potential of the four inner
giants as well as Planet Nine with a e, 700 au, 0.69 9 =( ) ( ) and
a e, 600 au, 0.59 9 =( ) ( ). The test particles are initialized with a
null vertical velocity dispersion and thus remain confined to
Planet Nine’s orbital plane throughout the simulation.

Unlike the simulation suite of Batygin & Brown (2016a),
Brown & Batygin (2016), Millholland & Laughlin (2017), and
Becker et al. (2017), where Neptune was modeled directly, or
that of Batygin & Brown (2016b), where the Keplerian motion
of all four inner giants was resolved, here we emulate the
effects of Jupiter, Saturn, Uranus, and Neptune with an
effective quadrupolar gravitational moment of the Sun,
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setting the inner absorbing radius to 20 au = . This
idealization is employed specifically to avoid contaminating

P9-induced KBO evolution with chaotic dynamics that arise
from scattering off Neptune, and to yield the closest point of
comparison between numerical and semi-analytical results.
Moreover, here we will assume that the inclination of Planet
Nine relative to the Laplace plane of the canonical giant planets
is sufficiently small to approximate icos 19 »( ) , while keeping
in mind that ẑ axis of our coordinate system coincides with the
orbital plane of Planet Nine.
To carry out the simulations, we utilized the mercury6

gravitational dynamics software package (Chambers 1999).
The integrations were performed using the hybrid Wisdom–

Holman/Bulirsch–Stoer algorithm (Wisdom & Holman 1992;
Press et al. 1992) with a time step of tD =3100days (i.e.,
1/10th of Uranus’ orbital period), and spanned 4 Gyr. Any
particle that attained a radial distance of r < or r>
10,000 au was removed from the simulations.
Within the context of these idealized numerical experiments,

all long-term stable particles retain nearly constant semimajor
axes throughout the integration, and Figure 3 depicts an orbital
histogram of the surviving bodies. Bins shown in black
correspond to apsidally confined objects (defined by

180 deg 90 degvD -∣ ∣ throughout the simulation), while
those shown in gray denote particles that are long-term stable
but experience apsidal circulation. We note that here, the gray
bins are stacked on top of the black bins, such that the relative
size of the gray and black components of each column is a
measure of the contamination of the apsidally confined
population of objects (at a given semimajor axis) by those
undergoing perihelion circulation.

Figure 2. Purely secular dynamics induced upon KBOs by Planet Nine. Each panel is labeled by the corresponding value of the particle’s semimajor axis and depicts
the contours of the doubly averaged Hamiltonian (1) in eccentricity—longitude of perihelion (measured relative to the apsidal line of Planet Nine) space. In panels
characterized by a 250 au , secular equilibria corresponding to both apsidally aligned ( 0vD = ) as well as anti-aligned ( 180 degvD = ) configurations emerge and
are segregated by tangential collision curves, shown as thick curves. Note that in spite of the apparent smoothness of the level curves of the averaged Hamiltonian
surrounding the anti-aligned equilibrium points, this region of phase space describes orbital configurations that are not protected from close encounters, and thus
entails a long-term unstable orbital evolution. Moreover, notice that only apsidally aligned configurations that are close to the 0vD = equilibrium points are
protected from close encounters by the geometrical collinearity of the orbits.
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A strong propensity toward apsidal clustering for
P P 1 39  is clearly evident in both simulations. However,
it is also important to note that the same orbital periods (e.g.,
those corresponding to the 3:1, 2:1, and 1:1 commensurabilities
in Figure 3) can be simultaneously occupied by apsidally
circulating and librating orbits. This means that even within the
framework of highly idealized treatment of P9-induced
dynamics, the clustering of the longitude of perihelion beyond
a critical semimajor axis is not perfectly strict, and the
existence of objects that do not conform to the general anti-
aligned orbital pattern is an expected consequence of the model
(Shankman et al. 2017).

In addition to the already established tendency toward orbital
clustering with increasing orbital period, it can be clearly seen
in Figure 3 that all long-lived objects that exhibit perihelion
confinement have semimajor axes that correspond to mean-
motion commensurabilities with Planet Nine. Particularly, the
1:1, 3:2, 2:1, and 5:2 resonances contain the largest populations
of apsidally clustered KBOs in both simulations.7 This point
undercuts a key difference between the results of N-body
simulations and pure secular theory, and demonstrates that (at
least within the framework of a planar physical setup) distant
KBOs derive their long-term orbital stability from the phase-
protection mechanism inherent to MMRs.

The typical dynamical evolutions of bodies trapped in the
four aforementioned resonances are shown in Figure 4.
Specifically, the left and middle panels depict the evolutions
of orbital eccentricities and apsidal lines. On timescales of
order ∼0.1–1 Gyr, orbital eccentricities experience consider-
able oscillations in concert with librations of vD . This
facilitates a periodic regression of the KBO perihelion distance,
generating dynamically detached (Sedna-type) orbits (Gladman
et al. 2002; Brown et al. 2004).

Of particular importance is the behavior of the resonant
angles,

k ℓ k ℓ
k ℓ k ℓ

,
, 4
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res 9 9

y l l v
f l l v

= - - -
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where k and ℓ are integers (note that for k ℓ 1- >∣ ∣ , additional
resonant harmonics related to these angles through vD exist).
In the right panels of Figure 4, resy is plotted in green and resf is
plotted in black. The actual librations of resf and resy are short
periodic (as portrayed by the inset within the top-right panel of
Figure 4), and their amplitudes correspond to the thickness of
the green and black “bands.” Meanwhile, the long-periodic
oscillations of these angles are mere reflections of the librations
of vD , which modulate the locations of the resonant equilibria
associated with resf and resy .
The fact that the amplitude of long-periodic oscillations of

resf is much smaller than that of resy for orbits that exhibit
libration in vD demonstrates that the resonant multiplets
containing resf represent a better approximation of the real
dynamics than those containing resy . In particular, if the
Hamiltonian depended only on resf , this angle would have no
long-periodic oscillations while resy (being equal to

ℓ kresf v+ - D( ) ) would oscillate with the amplitude and
period of ℓ k v- D∣( )∣ . The opposite would be true if the
Hamiltonian depended only on resy . Thus, the relative
amplitudes of the long-periodic oscillations of these angles
are inversely correlated to the relative strengths of the
corresponding terms. Accordingly, in our analytic approach
in the next section, we will consider resf as a reference angle, in
contrast to Malhotra et al. (2016) and Beust (2016), who
considered resy instead.
Containing only the longitude of perihelion of Planet Nine

and not that of the KBOs themselves, the (short-periodic)
libration of resf drives the oscillation of the particle’s
semimajor axis but does not affect the evolution of its
eccentricity. Thus, the libration in resf , sometimes referred to

Figure 3. Histogram summarizing the orbital distribution of simulated particles with dynamical lifetimes that exceed 4 Gyr. Beyond a critical orbital period ratio
(P P 0.19  for a 700 au9 = , e9=0.6, and P P 0.159  for a 600 au9 = , e9=0.5), all surviving members of the distant scattered disk reside in MMRs with Planet
Nine, and derive their long-term stability from the associated phase-protection mechanism. The final orbital configurations of distant bodies sculpted by Planet Nine
are similar in both numerical experiments and show the onset of clustering in the longitude of perihelion beyond the 3:1 MMR. Correspondingly, bins containing
particles locked in a stable pattern of anti-aligned apsidal libration are shown in black, while bins containing objects with circulating longitudes of perihelion are
shown in gray. The commensurabilities possessing the largest number of apsidally confined particles are indicated with blue triangles.

7 We note that these simulations are not intended to represent a full
exploration of the resonant capture probabilities within the context of the Planet
Nine hypothesis. A more complete estimation of these probabilities is presented
in a companion paper (E. Bailey et al. 2017, in preparation).
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as “corotation” resonance, already implies a certain disconnect
among the degrees of freedom related to the particle’s
semimajor axis and its eccentricity. Moreover, the striking
separation of timescales associated with the resonant ( resf − a)
dynamics and secular (e vD– ) dynamics motivates the
construction of the semi-analytical model that will follow,
based on the adiabatic approach.

The dominant dependence of the resonant dynamics on resf ,
as opposed to another harmonic that contains ϖ in its critical
argument, is central to maintaining the apsidally anti-aligned
libration of the orbits. In fact, long-term stable particles whose
resonant dynamics are driven by any angle other than resf
exhibit circulation of their longitude of perihelion, and
correspond to objects denoted by the gray bins in Figure 3.
Although characterizing the dynamics in this transitionary

semimajor axis range is not the primary purpose of this study,
we present a brief analysis of this mode of orbital evolution in
Appendix B.

4. Semi-analytical Theory

As shown in the previous section, all surviving members of
the synthetic scattered disk that exhibit persistent apsidal anti-
alignment with Planet Nine’s orbit are locked into MMRs with
P9. The purpose of the following analysis is thus to explain this
behavior on semi-analytic grounds. To achieve this goal, we
consider the isolated resonant behavior first. As in Section 2,
we will abandon traditional methods of celestial mechanics
based on series expansions and cast our analysis of the
governing Hamiltonian in closed form.

Figure 4. Orbital time series of four resonant objects drawn from the N-body simulation with m m109 = Å, a 700 au9 = , and e9=0.6. The left and middle panels
show oscillations of the eccentricities and the relative longitudes of perihelion, respectively, while the right panels depict the behavior of the resonant angles resf
(black) and resy (green). Generally, particles that exhibit stable anti-aligned apsidal libration (such as those shown in this figure) are characterized by low-amplitude
oscillation of resf with a period equal to that of libration of vD (not to be confused with the actual libration amplitude of resf , which is short periodic and corresponds
to the thickness of the black “band,” as shown in the inset of the top-right panel). On the contrary, orbital evolution driven primarily by low-amplitude libration of a
resonant harmonic that contains ϖ (rather than only 9v as in resf ) corresponds to the circulation of the longitude of perihelion (examples are shown in Appendix B).
Note that resf librates around 0 deg for the 1:1 and 2:1 MMRs and around 180 deg for the 3:2 and 5:2 MMRs.
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4.1. Mean Motion Resonances

In order to carry out the averaging process numerically and
elucidate the resf –a resonant dynamics, we set up a rigorous
Hamiltonian approach to the problem. As is typical for the
planar restricted three-body problem, the canonical Poincaré
action-angle variables for the test particle are (Murray &
Dermott 1999)

M a

M a e1 1 , 52
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where is the mean anomaly. In terms of these variables, the
Hamiltonian of the problem is (Morbidelli 2002)
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The vector r can be written as a function of the canonical
variables (5). Similarly, r9 can be expressed as a function of the
parameters a e,9 9, which are assumed to be fixed in time, as
well as the angles 9l and 9v , which are assumed to advance
with fixed frequencies, n9 and 9v̇ , respectively. Thus, the
Hamiltonian (6) depends on time through these two planetary
angles.

In order to remove the explicit time dependence from
Equation (6), we extend the phase space by two degrees of
freedom. That is, we consider 9l and 9 9g v= - to be
independent variables, with conjugated actions 9L and 9G .
Correspondingly, we add the term n9 9 9 9vL - G( ˙ ) to expres-
sion (6), making the Hamiltonian autonomous. Of course, in
doing so, we do not alter the dynamics in any way, since
d dt n9 r 9 9l = ¶ ¶L =
and d dt d dt9 9 r 9 9v g v= - = -¶ ¶G = ˙ .

We now denote the mean motion of the particle by
n M2 2 3= L and assume that there is a resonance of the
kind k n ℓ n 09 - = for some integers k and ℓ. It is then
appropriate to make the following canonical transformation:8
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The unperturbed part of the Hamiltonian (the term

independent of m9) becomes
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Because ℓ n k n 0r kep 9¶ ¶L¢ = - =( ) , there is only one
fast angle in the Hamiltonian, and it is 9l¢ . Thus, the
perturbation can be averaged over this angle, leading to
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It is easy to see from d’Alembert’s rules that the averaged
Hamiltonian can depend only on two angles, resf¢ and gD .
Thus, 9L¢ and 9G¢ are constants of motion and can be dropped.

The Hamiltonian now comprises a two degree of freedom
system and is not integrable. However, we note that the degree
of freedom in ( , gG¢ D ) is characterized by a frequency of order

m M9µ  and is slow relative to the other degree of freedom in
( , resfL¢ ¢ ), whose frequency is of the order of m M9µ 
(Henrard & Caranicolas 1990).
Taking advantage of the aforementioned separation of

timescales between the resonant and secular dynamics, we
may evaluate the phase-space portrait associated with the
resonant Hamiltonian in the adiabatic approximation by
freezing the evolution of the KBO’s eccentricity and apsidal
line relative to the major axis of Planet Nine (Wisdom 1985). In
particular, we compute the function
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on a aresf -( ) grid, setting the quantities Γ and gD to specific
values. We note that unlike the doubly averaged Hamiltonian
(1), here the averaging process is carried out only over 9l ,
under the restriction of the resonant relationship dictated by
Equation (4). Moreover, the indirect part of the disturbing
function must be retained in this case.
Of particular interest to the problem at hand are the resonant

phase-space portraits of KBOs in apsidally anti-aligned
configurations with respect to Planet Nine, with perihelion
distances characteristic of typical scattered disk objects (i.e.,
q∼a8). Suitably, adopting g pD = and a value for Γ that
corresponds to q 35 au= at a ℓ k a2 3

9= ( ) for the frozen
degree of freedom, we computed the averaged Hamiltonian
(10) by adopting parameters relevant to the 1:1, 3:2, 2:1, and
5:2 MMRs. The corresponding resf –a diagrams are presented in
Figure 5, on which we also plot the N-body trajectories of
particles shown in Figure 4 in red. It is clear that irrespective of
the specific resonance argument, the topology of res is keenly
reminiscent of a pendulum-like structure that has been cut into
two separate domains by vertical lines. These lines depict
collision curves—i.e., values of resf for which the averaging
process fails due to the inherent singularity. Importantly, this
means that a trajectory residing within one domain cannot
migrate to the other domain without compromising the phase-
protection mechanism of MMRs.
Within each of the phase-space portraits shown in Figure 5,

one of the two domains contains an ¥-shaped separatrix
characterized by a hyperbolic equilibrium at its center, while
the other domain possesses an elliptic fixed point at its core.
Numerical integrations reported in the previous section showed
that resonant trapping typically occurs in the domain that does
not host the separatrix. That is, even though objects that exhibit
a stable libration of resf = 180 degrees away from those shown
in Figure 4 do exist, they are very rare and we will not consider
their evolution in detail. We further note that strictly speaking,
the phase-space evolution depicted in Figure 5 implies that the
libration of resf does not represent a formal resonance because
it is not enclosed by a separatrix (Delisle et al. 2012). This
point, however, is of little practical consequence, since the
phase protection facilitated by this pseudo-resonance patently
represents a stabilizing mechanism for the simulated KBOs.

8 This contact transformation arises from a type 2 generating function of the
form k ℓ k ℓ2 9 9 9 9 9 9 9 l l g l g g g= -L¢ - + - + L¢ + G¢ - + G¢( ( ) ) ( ) ( ) ( ).
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4.2. Secular Dynamics Inside MMRs

Having characterized the evolution of the fast degree of
freedom in the preceding subsection, we now consider secular
dynamics facilitated by resonant interactions. Generally speak-
ing, in order to compute an e vD– phase-space diagram, we
must specify the state of a– resf dynamics everywhere on the
domain. To do so, we once again rely on the principle of
adiabatic invariance.

Because the period of oscillation of vD greatly exceeds that
of resf , we can define the adiabatic invariant (Neishtadt 1984)

d
ℓ

d
1

11res res f f= L¢ ¢ = - L∮ ∮ ( )

associated with motion in the a– resf plane. Physically, this
quasi-integral corresponds to the phase-space area occupied by
the trajectory and is conserved to an excellent approximation,
as long as the system does not encounter any criticality (i.e.,
hyperbolic fixed points, collision curves, etc.; Henrard 1993).
As can be seen from Figure 4, bodies entrained in MMRs with
P9 can have substantial libration amplitudes that are in essence
determined by the state of the system at t=0. For
definitiveness, here we ignore this complication and instead
assume that the libration amplitude is null, meaning 0 = .
From a computational point of view, the 0 = assumption is
simplifying, since rather than finding the correct phase-space
trajectory in the a– resf plane (specified by a given non-zero
value of  ) at every combination of e and vD , we instead
suppose that the system is adiabatically confined to the
resonant fixed point and carry out the averaging process
under the resonant equilibrium condition (Morbidelli &
Moons 1993).
Because the resonant angle of interest resf only contains the

longitude of perihelion of Planet Nine and not that of the KBO
(Equation (4)), the resonant equilibrium in the a– resf plane
always resides on the a ℓ k aeq

2 3
9= ( ) line. On the contrary,

the equilibrium value of resf itself shifts away from
0 degresf = or 180 degresf = , in concert with oscillations of

vD . Correspondingly, in order to compute the equilibrium
value of resf as a function of e and vD , we evaluated the
function res (Equation (10)) along the a aeq= axis at every
grid point on the (e, vD ) plane and found its local maximum.
Within certain regions of the e vD– diagram, the collision

curves, shown as black vertical lines on Figure 5, can approach
one another, shrinking the domain within which the resonant
trajectory resides. This process is demonstrated in Figure 6,
which shows a series of resonant a– resf diagrams corresp-
onding to the 3:2 MMR at various values of vD . Moreover,
for specific values of e and vD , the two collision curves can
cross, engulfing the pseudo-resonant equilibrium point, which
we assume the system occupies. In other words, the phase-
space portrait in a– resf dictates a locus on the e vD– plane that
cannot be crossed without compromising the phase-protection
mechanism inherent to mean-motion commensurabilities.9

Consequently, even prior to computing the secular dynamics
explicitly, we can identify a restricted domain on the e vD–
plane, bounded by the collision locus, that can be stably
explored by an orbit trapped at the center of an MMR.
Generally speaking, the admissible domain shrinks as the

integer (k− ℓ) increases. Accordingly, the full e vD– plane is
stable for the 1:1 MMR, but the stability region is tightly
confined about the e 0.85~ , v pD ~ point for the 5:2
resonance. For clarity, here we only compute the secular
diagram within this stability domain.

Figure 5. Resonant phase-space portraits of the four most populated mean-
motion commensurabilities, projected onto a– resf space. The color scale and
the black contours correspond to the level curves of the singly averaged
Hamiltonian (10), while the vertical black lines denote collision curves.
Resonant contours of the Hamiltonian that come into contact with the collision
curves are shown as thick purple lines and thereby inform the widths of the
corresponding resonances. These phase-space diagrams adopt our fiducial P9
parameters and assume that the KBOs are characterized by a fixed value of Γ
that corresponds to q 35 au= at nominal resonance and g pD = . The red
curves that encircle the elliptic equilibria in each panel represent the a– resf
evolution of the particles shown in Figure 3 near v pD = , and signal excellent
agreement with theory.

9 We note that the resonant-secular diagrams depicted in Figure 7 strictly
correspond to resonant orbits that encircle the elliptic equilibrium points in
Figure 5. The comparatively less common orbits that reside in the domain
occupied by the ¥-shaped separatrix are thus subject to a quantitatively
different secular evolution.
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Expressing λ as a function of 9l through the pre-computed
stationary value of resf , we calculate the averaged Hamiltonian,
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on the admissible domain. Figure 7 shows the contours of the
numerically averaged function (12) for the 1:1, 3:2, 2:1, and 5:2
MMRs (recall that the corresponding resonant phase-space
portraits are shown in Figure 5). In addition to the semi-analytic
level curves of rs , depicted with black lines, and the background
color scale of the figure, we also overplotted the e vD–
evolutions of the four particles emphasized in Figure 4 as orange
curves. Clearly, the agreement between the semi-analytic results
and N-body simulations is satisfactory, and any mild quantitative
discrepancies can likely be attributed to our assumption of null
resonant libration amplitude in the perturbative calculation.

Taken together, these results yield the following insight into
the dynamical evolution of distant KBOs induced by Planet
Nine. First and foremost, long-term dynamical stability is
facilitated by capture into MMRs. Objects that are not
(fortuitously) scattered into mean-motion commensurabilities
with Planet Nine initially are removed from the system by way
of close encounters. Meanwhile, due to the specific (“corota-
tion”) nature of the resonant multiplets that guide the resonant
motion, the evolution of distant KBO eccentricities and
longitudes of perihelion are dominated by secular dynamics
that ensure inside resonances. In turn, this separation between
the degrees of freedom qualitatively explains why the purely
secular phase-space portraits shown in Figure 2 approximately
match the results of large-scale numerical simulations.

4.3. Critical Semimajor Axis

In light of the analysis presented above, it is evident that
even though the purely secular treatment of dynamics outlined
in Section 2 does not formally account for the full dynamical
evolution observed within N-body calculations, it does provide
a satisfactory approximation for e vD– evolution (Beust 2016).
Accordingly, we now take advantage of this simplified

framework to explore the dependence of the critical semimajor
axis, acrit (beyond which apsidal confinement ensues), on the
parameters of Planet Nine.
As a proxy for acrit, we adopt the minimum value of a

at which the anti-aligned secular equilibrium exists on the
secular e vD– diagram.10 Practically, we calculate this quantity
by computing s as a function of e along the v pD = line,
gradually increasing a from 50 au, and noting the first instance
where a local maximum appears between e=0 and e=1.
Correspondingly, this calculation is carried out on an (a e,9 9)
grid for a given value of m9.
We computed acrit as a function of a9 and e9 for m m59 = Å,

m m109 = Å, and m m209 = Å. Figure 8 depicts curves
corresponding to a 150 aucrit = , a 200 aucrit = , and acrit =
250 au for these choices of m9. As can be clearly seen in this
figure, acrit exhibits a rather mild dependence of m9, and
follows a shallow relationship between e9 and a9.
It is important to note that observationally, the specific value

of acrit is not unequivocally determined. It is indeed possible to
demonstrate that the clustering of orbits with a 250 au in
their respective longitudes of perihelion (ϖ) is statistically
significant (Brown 2017). However, given that the confinement
in the argument of perihelion (ω) may persist down to
a 150 au~ (Trujillo & Sheppard 2014), it is possible that
anti-aligned dynamics in fact ensues beyond a 150 au> , and
the observed ϖ distribution in the a150 250 au< < range is
contaminated by metastable objects residing within the
apsidally aligned regions of the e vD– diagram. Although
perfectly plausible, this scenario is not as strongly supported in
a raw statistical sense by the current data set (Brown 2017;
Shankman et al. 2017), leaving some ambiguity as to where in
the a150 250 au< < interval the true value of acrit resides.
Whatever the exact value of acrit may be, it is worth noting

that P9 parameters within N-body simulations that were found
to match the observational data with a comparatively high
probability by Brown & Batygin (2016) all lie between the
a 150 aucrit = and a 250 aucrit = contours in Figure 8. In other
words, these contours delineate a region of orbital element
space that yields simulation results that compare well with the
real solar system. At the same time, the semi-analytic
calculations presented herein do not suffer from limitations in
resolution (i.e., particle count) inherent to numerical

Figure 6. Resonant phase-space portraits associated with the 3:2 mean-motion commensurability at different values of the relative longitude of perihelion, vD . As the
orbital configuration progressively shifts away from the exact anti-alignment of perihelia, the resonant domain occupied by stable orbits shown in Figure 5 shrinks
until it is fully engulfed by the collision curves. Correspondingly, this process imposes a limit on the maximum deviation from strict apsidal anti-alignment that a
resonant trajectory can endure before experiencing close encounters with Planet Nine. The depicted portraits were computed assuming a value of Γ that corresponds to
the equilibrium eccentricity of the resonant-secular phase-space portrait, and their (e, vD ) coordinates are shown with unfilled circles on Figure 7.

10 For our nominal parameters (i.e., a 700 au9 = , e9=0.6, m m109 = Å), this
proxy yields a 200 aucrit » , in good agreement with simulations.
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experiments, and therefore likely inform a broader range of
acceptable P9 parameters than was reported in Brown &
Batygin (2016). Exploring this parameter range with an
expanded suite of high-resolution N 5000( ) N-body simula-
tions constitutes an appealing avenue for future development of
the Planet Nine hypothesis.

5. Spatial Dynamics

Up until this point, we have considered the orbital evolution
induced upon the Kuiper Belt by Planet Nine under the strict

assumption of coplanarity. As already discussed above, this
assumption leads to somewhat idealized behavior and fails to
capture three important aspects of the dynamics that emerge
within the framework of full-fledged N-body simulations. First,
rather than exhibiting stable resonance capture and remaining
locked to a particular commensurability for the duration of the
solar system’s lifetime, real KBOs experience chaotic semi-
major axis evolution and therefore explore a wide range of
orbital period ratios with Planet Nine (this is evident, for
example, in Figure 11 of Millholland & Laughlin 2017).

Figure 7. Eccentricity–perihelion diagrams showing long-term stable secular evolution facilitated by phase protection arising from resf -type resonances. For
resonances other than 1:1, the e vD– domain is restricted by a collision locus, which arises from the engulfment of the stable resonant equilibrium shown in Figure 5
by collision curves. Contours of the singly averaged resonant-secular Hamiltonian (12) are shown by the black lines that follow the background color scale and the N-
body trajectories of the particles shown in Figure 4 are overplotted as orange curves. The clear agreement between semi-analytic perturbation theory and numerical
experiments demonstrates that although the long-term survival of distant KBOs is enabled by resonant interactions, the clustering of the longitudes of perihelion and
dynamical detachment of orbits from Neptune arise from secular perturbations embedded within the resonances. The (e, vD ) coordinates of the resonant phase-space
portraits depicted in Figure 6 are shown by the unfilled circles in the panel corresponding to the 3:2 MMR.
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Second, in addition to confinement in the longitude of
perihelion, real long-period KBOs exhibit a clustering in the
longitude of ascending node as well, which jointly leads a
clustering in the argument of perihelion, w v= - W. Third,
the N-body simulations of Batygin & Brown (2016a) show that
KBOs initially residing close to P9ʼs orbital plane can
occasionally undergo high-amplitude oscillations of the
inclination, leading to the generation of retrograde KBOs
(Batygin & Brown 2016b). Accordingly, the goal of this
section is to characterize these features qualitatively.

5.1. The Anti-aligned Population

To carry out the exploration of non-planar dynamics within
the framework of our simplified model, we repeated the
numerical experiment with a 700 au9 = described in Section 3,
allowing for a small inclination dispersion among the particles.
In particular, initial particle inclinations were drawn from
a half-normal distribution with a standard deviation of is =
5 deg, while longitudes of ascending node Ω were assumed to
be uniformly distributed between 0 and 360 deg. As before, the
simulations are performed in a frame coplanar with the orbit of
Planet Nine (meaning that i 09 = ), and the Keplerian motion of
the four inner giants is averaged out. Meanwhile, the ecliptic
plane is envisioned to be inclined with respect to the orbit
of P9 by a small amount (e.g., 10 20 deg– ), although the
corresponding reduction in the effective magnitude of the J2
moment (Equation (3)) is ignored. Remarkably, this simple
modification to the physical setup of the problem is sufficient
to approximately recover the full breadth of the dynamical
behavior observed within more detailed numerical experiments.

Figure 9 shows the orbital evolution of six (uniquely
colored) representative objects, whose orbits remain roughly
confined to the orbital plane of Planet Nine. The top panel
depicts the longitude of perihelion (relative to the apsidal line
of Planet Nine) as a function of semimajor axis. Clearly,
allowing the KBOs to possess even a small inclination breaks
the immutability of MMRs seen in the strictly coplanar model
and renders the evolution of the semimajor axes chaotic. At the
same time, the clustering of the orbits in the longitude of

perihelion persists in spite of irregular semimajor axis
evolution, and indeed, the secular portrait of orbital eccentricity
depicted in the middle panel of the figure agrees well with the
resonant-secular e vD– diagrams shown in Figure 7.

Figure 8. Critical semimajor axis corresponding to a transition from
randomized to apsidally clustered regime of KBO dynamics. In light of the
observational ambiguity related to the specific value of acrit, here we show
contours corresponding to a 100crit = , 150, and 250 au as functions of a9 and
e9 for m 59 = (green), 10 (blue), and m20 Å (red). The calculation is carried out
in the secular approximation and assumes that Planet Nine’s inclination is not
sufficiently large to alter the e vD– dynamics appreciably.

Figure 9. Dynamical evolution exhibited by apsidally confined objects that do
not experience large-amplitude inclination oscillations. The top panel shows
the chaotic footprint outlined by six uniquely colored particles in avD -
space and elucidates the fact that a small inclination dispersion renders the
semimajor axis evolution of distant Kuiper Belt objects stochastic. Each
vertical segment, however, traces out the long-term trapping of particles in
MMRs. The middle panel displays e vD– dynamics, demonstrating that the
secular evolution experienced by the particles retains its apsidally clustered
character, despite chaotic variations of the semimajor axes, except when a
approaches acrit. The bottom panel depicts the chaotic evolution of the orbital
inclinations. In a reference frame that coincides with Planet Nine’s orbit, the
angular momentum vectors of distant KBOs chaotically rotate around the orbit
normal. Viewed from the ecliptic plane, however, the circulation of a distant
object around Planet Nine’s mildly inclined plane will yield an apparent
clustering of the longitudes of ascending node.
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We note that although the introduction of a finite inclination
dispersion is sufficient to drive chaotic mixing in the semimajor
axis, its efficiency is underestimated in our simplified model,
since stochastic evolution is driven solely by P9 resonances. In
reality, scattering facilitated by Neptune significantly enhances
the rate of semimajor axis diffusion (particularly during the low
perihelion phases of the secular cycle) and modifies the
observed behavior on a quantitative level. As a consequence,
the results obtained in our semi-averaged simulations depict a
somewhat idealized realization of distant Kuiper Belt
evolution.

The apsidally clustered resonance-hopping behavior observed
in Figure 9 can be qualitatively understood within the framework
of the semi-analytical theory described above. The introduction
of a new (i - W) degree of freedom into the dynamics implies
that rather than being forced by a single secular harmonic, the
modulation of the a– resf phase-space portrait is now driven by
two separate angles. This modulation transforms the collision
loci depicted in Figure 7 into fuzzy chaotic bands because any
given point (e, vD ) near the original collision locus may or may
not lead to a collision, depending on the values of i and Ω. To
this end, notice that in Figure 7, the curves showing the secular
evolution are essentially tangent to the collision loci, which
means that in a strictly planar physical setup, secular evolution
almost never leads to close encounters between the particles and
Planet Nine (i.e., most of the plotted trajectories do not intersect
the collision loci). On the other hand, if the collision locus
becomes a chaotic band, many more secular trajectories
can infiltrate this irregular region, and with appropriate values
of i and Ω, close encounters can ensue. When this happens,
the particle enters a stochastic dynamical regime and hops in
the semimajor axis until it locks into a new resonance, and the
secular dynamics drives it away from the collision locus of the
new resonance. Importantly, this type of behavior is observed in
numerical integrations of real objects under the influence of
Planet Nine (Becker et al. 2017; Millholland & Laughlin 2017).

When an object gets fortuitously trapped in some resonance
(by entering it through the chaotic layer that surrounds the
collision curves), its orbital evolution can be temporarily
stabilized by the secular evolution in e and vD . In other words,
test particles have the tendency to exhibit prolonged periods of
resonance locking (on timescales similar to the secular libration
period) before breaking out and jumping to another commen-
surability. In fact, looking again at Figure 7 and imagining a
chaotic band near each depicted collision locus, it is evident
that the (e, vD ) evolution can drive a body away from the
band at the peaks of the eccentricity cycle of the 3:2, 5:3, and
2:1 resonances (and also at the bottom of the eccentricity cycle
in the 2:1 resonance). During this secular phase, close
encounters between the particles and Planet Nine are no
longer possible. However, as the eccentricity–perihelion
cycle unfolds, the particle must eventually plunge back into
the chaotic band. The object can thus experience new close
encounters with Planet Nine and hop to another resonance
where this process repeats. In reality, this sequence of events is
further complicated by the fact that at the peak of the
eccentricity cycle, objects are brought to an orbital state where
q∼a8 and suffer enhanced semimajor axis diffusion due
to scattering off Neptune (or, equivalently, overlap with
Neptune’s exterior MMRs; Gomes et al. 2008). As a result, it
is reasonable to assert that only dynamically “detached” objects

that are not actively scattering off Neptune are presently
entrained in MMRs with Planet Nine.
The dynamical evolution of the orbital inclination observed

in the bottom panel of Figure 9 is a consequence of the chaotic
rotation of the angular momentum vectors around Planet Nine’s
orbit normal. That is, their longitudes of ascending node
relative to the orbital plane of Planet Nine are in circulation.
However, if the inclination of P9 is sufficiently large relative to
the ecliptic, then particles that are less inclined, with respect to
Planet Nine’s plane, than the inclination of P9 itself, will
appear to have a librating node relative to the ecliptic. In other
words, viewed from a coordinate system that coincides with the
ecliptic plane, the orbits of these particles execute a libration
around the forced i - DW equilibrium forced by P9ʼs
inclination.
Taken together, our calculations suggest that the clustering

of the longitudes of ascending node first noted in Batygin &
Brown (2016a) is nothing but a trivial consequence of the
bending of the Laplace plane away from the solar system’s
mean plane by Planet Nine. Moreover, the apparent libration
of the ascending node Ω, together with the true libration of
longitude of perihelion ϖ, produces the apparent libration of
the argument of perihelion ω, as observed in the real data
(Trujillo & Sheppard 2014). This implies that the orbital
inclination of Planet Nine must simultaneously be sufficiently
large for apparent nodal clustering to ensue (e.g.,
i 10 20 deg9  – ), but not be so large as to disrupt the stable
confinement of the longitudes of perihelion (i 40 deg;9 
Brown & Batygin 2016; Saillenfest et al. 2017).

5.2. The Highly Inclined Population

Perhaps the most remarkable consequence of P9-driven
dynamics is exemplified by the induction of large-amplitude
oscillations in the orbital inclinations of distant KBOs. Not
only is this mode of orbital evolution a unique prediction of the
Planet Nine hypothesis (Batygin & Brown 2016a), real objects
presently entrained in this pattern of perturbation now comprise
a firmly established part of the observational data set (Gomes
et al. 2015). Accordingly, this regime of P9-induced dynamics
constitutes one of the strongest lines of evidence for the
existence of Planet Nine as no other dynamical model can
reasonably account for the origin of the observed highly
inclined trans-Neptunian object population. Let us now
examine these extreme orbital excursions within the framework
of our simplified numerical model.
The top panel of Figure 10 shows the inclination time series

of six simulated particles with initial semimajor axes between
500 au and 600 au that do not remain bound to Planet Nine’s
orbital plane for the entire duration of the integration. As can be
readily seen in this figure, during the latter half of the solar
system’s lifetime, each object abruptly enters a phase of
extreme orbital variation, and upon experiencing a single large-
scale oscillation of the inclination, rejoins the low-i population
of apsidally anti-aligned bodies. Although representative, we
note that orbital excursions of this sort are not always limited to
a single cycle—some objects within the simulation suite
experience a multitude of sequential oscillations. Moreover, the
onset of high-i excursions is not limited to a small subset of
particles—in our simulation, 38% of all stable objects
experience at least one such excursion.
An intriguing feature of the depicted evolution is that the

pattern of e vD– dynamics changes drastically when a particle
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enters the highly inclined regime. As shown in the middle panel
of Figure 10, rather than encircling an elliptic equilibrium
located at 180 degvD = as in Figure 9, the e vD– projection
of the phase-space portrait acquires a three-lobed shape with
eccentricity maxima located 70 deg~ away from perfect
apsidal anti-alignment with Planet Nine. The corresponding
instants where the eccentricities are maximized (and perihelion

distance is minimized) are shown with points on the top panel
of Figure 10 and lie almost exactly at i 90 deg» .
Taken together, the top and middle panels of Figure 10 show

that the model predicts the highly inclined population to be
most readily observable in a state that is approximately
perpendicular to the ecliptic and is slightly sub-orthogonal in
apsidal orientation with respect to the anti-aligned cluster of
distant orbits. Note, however, that during phases of lower
eccentricities (and higher perihelion distance), this population
remains relatively well localized in the longitude of perihe-
lion11 around 180 degvD = . This means that KBOs that lie
beyond the current observational frontier exhibit an even more
complex dynamical structure than those comprising the known
long-period data set.
Although it is tempting to attribute the mode of orbital

evolution shown in Figure 10 to the oft-cited Kozai–Lidov
(KL) resonance (Kozai 1962; Lidov 1962), it is crucial to
understand that the flavor of secular dynamics executed by the
simulated particles is keenly distinct. Specifically, in contrast
with conventional KL evolution (where orbital inclination is
traded for eccentricity such that the particle’s eccentricity is
minimized when orbits become orthogonal), the simulated
particles reach their peak eccentricities near i 90 deg» .
Moreover, instead of being constrained by the conservation
of the ẑ component of the specific angular momentum vector
h e i1 cos2= - ( ) (Kinoshita & Nakai 1999), the orbital
excursions observed in our simulation are accompanied by
large-amplitude variations of this quantity (ranging from ∼1 to
−1). This further implies that the KL resonance does not
represent the primary driver of the depicted evolution.
Because the orbit of Planet Nine is assumed to have i 09 = in

our calculations, the only angles that appear in the secular
Hamiltonian are vD , ω, and their various linear combinations.
We already argued above that the KL mechanism is not
responsible for the observed evolution, so the libration of ω
alone cannot facilitate the observed dynamics.12 Simulta-
neously, vD cannot force oscillations in inclination, meaning
that the secular resonance at play must contain both vD and ω.
Correspondingly, we propose that the large-scale orbital
variations depicted in Figure 10 are driven by the libration of
the secular angle,

2 2 . 139q v w v v= D - = W - - ( )

Incidentally, this angle arises at the octupole order of expansion
when the Hamiltonian is expressed as a series in semimajor
axis ratios (Mardling 2010).
Adopting g vD = -D and θ as the secular angles of the test

particles, we identify the quantity

e
i

1

2
1 cos 14

2
Q =

-
-( ) ( )

as the action conjugate to θ. In the bottom panel of Figure 10,
we show the evolution of canonical Cartesian coordinates
related to the ,q Q( ) action-angle variables. From this figure, it
is evident that during the high-inclination phase of orbital
evolution, θ executes a bounded oscillation and the secular

Figure 10. Dynamical evolution exhibited by simulated particles that
experience orbital flips. The top panel shows the inclination time series of
six uniquely colored test particles that exhibit large-amplitude orbital
excursions and temporarily achieve retrograde orbits. As large-scale variations
of the inclination ensue, the e vD– projection of the dynamics acquires a
distinct three-lobed shape, which is characterized by eccentricity maxima that
are approximately 70 deg away from 180 degvD = , and are achieved when
i 90 deg» . In contrast with Kozai–Lidov dynamics, the depicted evolution is
characterized by the simultaneous libration of the critical angles θ and vD (as
shown in the bottom panel), and constitutes an exceedingly strong form of
secular coupling.

11 Recall that the longitude of perihelion is a dog-leg angle, and for highly
inclined orbits, does not generally represent a good proxy for the azimuthal
angle of the Runge–Lenz vector.
12 Recall that the critical angle associated with the KL resonance is 2w
(Kinoshita & Nakai 1999).
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trajectory traces out the shape of a typical resonant separatrix
(Henrard & Lamaitre 1983). Thus, the dynamics shown in
Figure 10 is characterized by the simultaneous libration of the
relative longitude of perihelion vD , as well as the angle θ

(which jointly leads to the libration of the longitude of
ascending node) representing an exceptionally strong form of
secular coupling.

Due to the lack of separation of timescales on which the two
secular degrees of freedom operate, we cannot study the
depicted large-amplitude variations of the inclination using the
same flavor of semi-analytic perturbation theory as that
outlined in Section 4. Nevertheless, we note that the onset of
these large-scale oscillations almost always corresponds to the
eccentricity minimum in the e vD– cycle that precedes the
oscillation. Qualitatively, this implies that resonant-secular
e vD– dynamics modulates the proximity parameter of the
secular q - Q resonance, such that when e approaches a
critical value, a dynamical gateway toward the capture of low-
inclination objects into the secular resonance characterized by
the libration of θ temporarily opens. Accordingly, the coercion
of low-i objects onto trajectories that experience large-
amplitude oscillations of inclination is a fundamentally
stochastic process. In turn, this means that some of the
currently observed members of the apsidally clustered popula-
tion can in principle join the highly inclined population in the
future, and vice versa.

6. Comparison with Observations

Given that our spatial model reproduces the key features of
more detailed numerical simulations, it warrants a rudimentary
comparison with the observational data in light of the semi-
analytical insight into the governing dynamics developed
above. Because we are resolving neither the Keplerian motion
of the canonical giant planets nor their inclination with respect
to Planet Nine, here we will not consider the clustering of the
longitudes of ascending node at low i. Instead, we will focus
exclusively on the confinement of the longitude of perihelion as
well as the behavior of the highly inclined long-period objects.

As shown in Figure 1, there are currently 10 known objects
with a 250 au> (shown in purple) that comprise the primary
ϖ cluster. The observational data set also shows the existence
of two objects that are diametrically opposed to the mean
orientation of this cluster (shown in green), as well as a single
outlier, 2015 GT50 (shown in gray), that does not fall within
either the apsidally aligned or anti-aligned subpopulations of
objects. In order to meaningfully compare the expectations of
the model with the data, we extended our integrations such that
the initial semimajor axis distribution of the particle disk
stretches out to 850 au.

The orbital footprint of all simulated long-term stable and
metastable particles is shown in Figure 11, where the top panel
depicts the longitude of perihelion as a function of the
semimajor axis (as in the top panel of Figure 9). Meanwhile,
the middle panel shows the orbital inclination as a function of
the argument of perihelion and the bottom panel elucidates the
action Θ as a function of its conjugate angle, θ. As a crude
proxy for observability, we adopt simple cuts of the numerical
output at q 100 au and i 40 deg . Points corresponding to
bodies with dynamical lifetimes in excess of 4 Gyr that do not
simultaneously satisfy these criteria are shown in gray, while
those that do are shown in blue or red, depending on

their inclination evolution. In particular, objects that remain
confined to the plane of Planet Nine throughout the integration
are shown in blue. On the other hand, bodies that experience

Figure 11. Comparison between the results of our N-body simulation with
a 700 au9 = , e9=0.6, and m m109 = Å and the observational data. The top
panel shows the chaotic avD - footprint outlined by dynamically long-lived
and metastable particles within the simulation. The evolution of long-term
stable low-i objects is displayed with blue dots when they satisfy our crude
observability criteria and with gray dots when they attain q 100 au> or
i 40 deg> . Similarly, objects that experience large-scale inclination cycles are
shown with red dots when visible and with gray dots otherwise. Meanwhile, the
orbital footprints of metastable objects with dynamical lifetimes between 100
and 500 Myr are shown with orange dots. The current observational census of
distant KBOs is overplotted on the panel and is color-coded in the same way as
in Figure 1. Note that 2014 FE72 has a semimajor axis of 1923 au and is shown
in the figure for completeness. The middle panel depicts the orbital inclination
of the simulated particles as a function of their argument of perihelion, while
the bottom panel projects the same trajectories onto a plane defined by the
action-angle coordinates Θ and θ. Six currently known long-period centaurs are
overplotted on the figure as yellow points, and their perihelion distances and
semimajor axes are labeled.

14

The Astronomical Journal, 154:229 (21pp), 2017 December Batygin & Morbidelli



large-amplitude inclination oscillations at any point in their
evolution are depicted in red.

In agreement with the results of Batygin & Brown (2016a),
the top panel of Figure 11 shows the emergence of a well-
defined cluster of apsidally anti-aligned orbits that are
contaminated by trajectories that circulate in the longitude of
perihelion. One striking example of such a circulating
trajectory is shown as a vertical blue line with a semimajor
axis of a 335 au» . As discussed in Sections 3 and 4, the
dynamics of apsidally confined trajectories are driven by the
resonant harmonic resf (see Equation (4)), while the compara-
tively less frequent apsidally circulating trajectories tend to
reside within resonant multiplets characterized by the low-
amplitude libration of other resonant angles that contain the
particle’s longitude of perihelion, ϖ. The aforementioned
observational data are overplotted on this panel and are color-
coded in the same way as in Figure 1.

As expected, all observed KBOs that comprise the primary
cluster (shown in purple) are seamlessly explained by the
simulation results. More remarkably, however, the outlier
within the data (shown in gray) is also naturally reproduced
by the model as an object that belongs to the class of
observable stable particles that exhibit apsidal circulation,
i.e., those entrained in resonances characterized by angles
that contain ϖ (see Appendix B for an analysis). In the
present example, this agreement stems from the fact the
observed object is very close to 3:1 resonance with Planet
Nine. While this correspondence may be purely accidental, it
emphasizes that the mere existence of a small number of
apsidally unconfined objects that do follow the overall
pattern exhibited by the data does not constitute strong
evidence against the Planet Nine hypothesis.

Although a similar narrative could in principle be invoked
for the two objects that are the apsidally aligned with Planet
Nine (shown in green), it can be more reasonably speculated
that these bodies are in fact subject to purely secular
interactions with P9. Recall from Section 2 (Figure 2) that
apsidally aligned objects residing in the secular domain are
protected from close encounters by the geometric collinearity
of the orbits. Correspondingly, objects that never attain low
perihelion distances at the top of their eccentricity cycle and are
therefore close to the secular equilibrium point exhibit long-
term stable apsidal libration about 0vD = . Conversely
apsidally aligned objects with low perihelion distances are
metastable, as they only begin to scatter off Planet Nine once
they precess onto their respective tangential collision curves,
yielding dynamical lifetimes that are on the order of (a fraction
of) the precession timescale—i.e., ∼few× 100Myr.

Because in our numerical experiments we restricted the
initial perihelion range of all particles to q 30, 36Î ( ) au, our
simulations do not produce any long-term stable apsidally
aligned orbits. Instead, secular dynamics observed within our
N-body simulations are dominated by the metastable particles
that originate at high eccentricity and eventually precess toward
the tangential configuration, where they are scattered out. To
demonstrate the apsidal behavior of this subpopulation of
orbits, objects with dynamical lifetimes between 100 and
500Myr are shown as orange dots in Figure 11. These particles
clearly cluster around 0vD = and provide an excellent match
to the aligned (green) data points shown in the figure.

Naturally, this explanation would not be sensible if the entire
distant Kuiper Belt had been generated ∼4 Gyr ago and never
replenished since then. This, however. is not the case in the real
solar system: just as the highly inclined long-period KBOs are
routinely scattered inwards to create the population of retro-
grade bodies with a 100 au< (Batygin & Brown 2016b),
scattered disk objects with a 250 au< are continuously
scattered outward by Neptune, resupplying the distant trans-
Neptunian region with metastable KBOs (Gomes et al. 2008).
Thus, our model points to the possibility that 2013 FT28 and
2015 KG163 are relative newcomers to the distant Kuiper Belt
and will eventually be destabilized by short-periodic interac-
tions with Planet Nine.
There exists yet another interpretation of the apsidally

aligned data points as well, which is not well represented by
Figure 11 due to our choice of low-q initial conditions.
Particularly, rather than belonging to the aforementioned
metastable subpopulation of bodies that experience pure
secular evolution, 2013 FT28 and 2015 KG163 could be
entrained in the stable secular libration island around

0vD = and are presently observed near the peak of their
respective eccentricity cycles. In order to unequivocally
distinguish between these two interpretations, we would need
to know the exact orbital parameters of Planet Nine. However,
we simultaneously note that within the context of the long-term
stable interpretation, some additional mechanism other than
scattering off Neptune (such as, say, interactions with the birth
cluster; Morbidelli & Levison 2004; Adams 2010) would likely
be required to initially raise the perihelion distances of these
objects and lock them into the apsidally aligned secular
libration island. This is because bodies scattered to distant
elliptic orbits by the traditional giant planets would necessarily
have low perihelia (like the initial conditions of our simulation)
and therefore could not reside within the stable libration island.
The yellow data points shown in the middle and bottom

panels of Figure 11 represent the population of distant
(a 250 au> ), highly inclined (i 40 deg> ) objects with
q 30 au< discussed in Section 5.2. Although these objects
conform to the dynamical streamlines traced out by the
simulated particles relatively well, it is important to keep in
mind that (by virtue of having q 30 au< ) these bodies have
eccentricities that are much closer to unity than any of the
particles in our simulations. This means that the observed
objects are drawn from the extreme end of the broader high-i
population and have likely had their orbits somewhat
perturbed by the canonical giant planets. As a result, we
expect that the agreement between theory and observations
will be even better for (yet undiscovered) highly inclined
long-period KBOs with q 30 au> . Certainly, continued
observational monitoring of the distant Kuiper Belt outside
of the ecliptic plane constitutes a viable avenue toward
further characterization of the long-term dynamical evolution
induced by Planet Nine.
As a final point, it is instructive to remark on the extent to

which the calculations described above are in agreement with
more detailed simulations that fully resolve the orbital motion
of the inner giants. In particular, the top panel of Figure 11 can
be readily compared with Figures 5 and 8 of Batygin & Brown
(2016a), which depict simulations with initial conditions very
similar to those considered herein. As expected, upon
comparison of these numerical experiments, we find that the
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general survival rate of particles is somewhat lower in
simulations that model Neptune directly. Specifically, in our
semi-averaged calculations, 19% of particles initialized
between 250 au and 550 au remain stable over 4 Gyr, while
only 7% of objects in this initial semimajor axis and perihelion
range survive the full integration span in a simulation where
Neptune is modeled directly. This number increases slightly to
10% when Planet Nine is endowed with a i 30 deg9 =
inclination with respect to the inner solar system.

Another notable difference between the direct and semi-
averaged calculations lies in the fact that simulated objects that
circulate in perihelion and match our observability criteria are
somewhat less prevalent in the simulations that include
Neptune’s short-periodic perturbations. This is likely because
apsidally circulating particles tend to experience diminished
eccentricity variations (see Appendix B for details) and thus
retain low perihelion distances, where they are more likely to
be removed by Neptune. Simultaneously, we note that for the
exact same reason, such objects are more readily discoverable
by astronomical surveys and are thus bound to be over-
represented within the observational census of long-period
KBOs. Accordingly, further characterization of the P9-sculpted
orbital distribution, fully accounting for the overlying observa-
tional biases using high-resolution numerical experiments,
constitutes an important step toward the continued evaluation
of the Planet Nine hypothesis within the framework of the
emergent data set.

7. Discussion

Within the current observational census of trans-Neptunian
objects, the longest-period orbits exhibit an unexpected
collective structure that is most readily attributed to gravita-
tional perturbations induced by a yet unseen, massive planet.
Although numerical simulations aimed at reproducing the
Kuiper Belt’s orbital makeup through gravitational interactions
with Planet Nine are now plentiful in the literature (Batygin &
Brown 2016a; Brown & Batygin 2016; Becker et al. 2017;
Millholland & Laughlin 2017), the physics of the dynamical
processes responsible for shaping the distant Kuiper Belt
remains largely unclear (Beust 2016). In this work, we sought
to resolve this problem and characterize the dynamical
evolution induced by Planet Nine in long-period KBOs on
semi-analytic grounds.

The specific aim of this work has been to qualitatively
understand the three primary lines of evidence for the existence
of Planet Nine. They are the (i) orbital clustering of long-period
KBOs, (ii) dynamical detachment of KBO orbits from Neptune,
and (iii) generation of highly inclined/retrograde bodies within
the solar system. We note that none of these effects are new and
have already been pointed out in the work of Batygin & Brown
(2016a). Accordingly, the primary purpose of this study has
been to create an analytical guide for the interpretation of
existing and future numerical results, rather than to generate
new ones. In doing so, we were guided by a series of queries
that we outlined in the introduction. Let us now recall and
provide the answers to these questions.

1. What role (if any) do resonant interactions play within the
dynamical evolution induced by Planet Nine? If reso-
nances are prevalent, what order/multiplet harmonics
dominate the dynamics, and what are their characteristic
widths?

In the most idealized case of a strictly planar physical setup,
all high-eccentricity particles that occupy stable orbits within
Planet Nine’s gravitational domain of influence derive
their prolonged dynamical lifetimes from the phase-protection
mechanism inherent to MMRs.13 The critical angles associated
with these resonances typically have the form resf =
k ℓ k ℓ9 9l l v- - -( ) , and due to the absence of ϖ (i.e.,
the longitude of perihelion of the KBO) from the expression,
these harmonics only modulate the mean anomalies and
semimajor axes of the KBOs.14 The most prevalent interior
resonances that arise in our calculations correspond to the 1:1,
3:2, 2:1, and 5:2 period ratios, with secondary contributions
from the 5:4, 4:3, 5:3, and 3:1 commensurabilities. Provided
nominal Planet Nine parameters, the widths of these resonances
lie on the order of a 2 15 aud ~ – , and scale as a m9

1 2d µ
(Henrard & Lamaitre 1983).
If the strict coplanarity restriction is lifted and the particles

are endowed with a small inclination dispersion relative to the
plane of Planet Nine’s orbit (as in the real Kuiper Belt), a large
portion of resonant dynamics become chaotic and facilitate an
essentially diffusive semimajor axis evolution, with particles
hopping from one resonance to another. Moreover, for high-
eccentricity orbits that reach q 36 au , stochastic semimajor
axis transport is further enhanced by gravitational scattering off
Neptune (Gomes et al. 2008). These complications imply that
only dynamically detached objects with q 40 au can
reasonably be speculated to currently reside in MMRs with
Planet Nine, and any attempt to calculate the present-day
semimajor axis of Planet Nine exclusively from resonant
relationships with the observed KBOs (Malhotra et al. 2016)
may be spoiled by the chaotic nature of the underlying
dynamics.

2. What role (if any) do secular interactions play within the
dynamical evolution induced by Planet Nine? If domi-
nant, how are close encounters avoided on coplanar, anti-
aligned orbits? Moreover, if resonant interactions are
relevant to the Planet Nine hypothesis, why does the
purely secular phase-space portrait provide a good match
to the results of numerical simulations?

While MMRs stabilize the orbits against close encounters,
they do little to modulate the eccentricities and longitudes of
perihelia of the affected bodies. As a result, the e vD–
dynamics induced in distant KBOs by Planet Nine is largely
secular. This explains why the doubly averaged treatment of
the dynamics outlined in Section 2 provides a good approx-
imation to the results of the numerical simulations discussed in
Section 3 (Beust 2016). At the same time, it is important to
keep in mind that the true resonant-secular evolution facilitated
by Planet Nine’s mean gravitational potential is subtly different
from the purely secular limit, since the orbital averaging
process itself is subject to the resonant relationships among the
orbital phases of the bodies. The delicate differences between
purely secular and resonant-secular dynamics induced by
Planet Nine can be noted by comparing Figures 2 and 7.

13 Recall from Section 2 that stable orbits outside MMRs also exist and avoid
close encounters with P9 via low-amplitude apsidal libration around 0vD = .
Such orbits, however, never reach low values of q and are therefore difficult to
detect.
14 This is evident from a simple application of Hamilton’s equations to the
disturbing potential.
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The eccentricity–perihelion projection of the resonant-
secular phase-space portraits outlined in Figure 7 further shows
that the apsidal clustering of distant KBOs and the detachment
of perihelion from Neptune’s orbit exemplified by objects such
as Sedna and 2012 VP113 (Brown et al. 2004; Trujillo &
Sheppard 2014) are actually the same physical effect. That is,
as the orbits of KBOs evolve along the level curves of the
resonant-secular Hamiltonian, they are forced to encircle a
stable equilibrium that resides at 180 degvD = . Thus, the
libration of a KBO’s longitude of perihelion around the
apsidally anti-aligned configuration with respect to Planet Nine
is accompanied by conjugate oscillations of the eccentricity
that periodically detach (and reattach) the perihelion from (to)
Neptune.

Although the gravitational influence of P9 alone provides a
perfectly adequate mechanism for perihelion detachment of
long-period objects, we cannot exclude the possibility that
KBOs were additionally affected by other dynamical processes
(such as interactions with the birth cluster; Morbidelli &
Levison 2004) during the solar system’s infancy. If so, some
fraction of the distant clustered population may occupy secular
cycles that will never bring their perihelia sufficiently close to
the orbit of Neptune for scattering to ensue. In either case, our
calculations reveal that the maximum width of the perihelion
cluster is limited to 180 deg 90 degvD -∣ ∣ —a restriction
facilitated by both the character of the dynamics itself as well
as the collision locus that limits the domain where close
encounters can be avoided on the e vD– plane. Within this
framework, Planet Nine’s mass merely regulates the size of the
chaotic layer and the timescale on which the perihelion cluster
get sculpted.

3. What parameters determine the critical semimajor axis
corresponding to the transition between the randomized
and clustered longitudes of perihelion? What physical
effect controls this transition?

Given that the long-term dynamics induced in KBOs by
Planet Nine are essentially secular in nature, the critical
semimajor axis beyond which orbital clustering ensues
corresponds to a point where quadrupolar torques induced by
Planet Nine begin to dominate over those arising from the
canonical giant planets. Computed in this framework, curves
corresponding to critical semimajor axes of a 150, 200crit =
and 250 au are delineated in e a9 9- space for m 5, 10,9 = and

m20 Å in Figure 8. While these loci provide an approximate
measure of acrit, we note that the transition between apsidally
confined and randomized orbits in our N-body simulations is
somewhat gradual (as shown in Figure 3).

With decreasing semimajor axis, the relative number of
resonant bodies that are apsidally clustered decreases with
respect to those that are not.15 This means that although acrit

provides a characteristic semimajor axis that corresponds to the
onset of orbital clustering, the real Kuiper Belt at a acrit will
show orbital clustering that is increasingly contaminated by
non-anti-aligned bodies—an effect seen in the real data
(Trujillo & Sheppard 2014; Shankman et al. 2017). Meanwhile,
our calculations suggest that the clustering of the orbital planes
of distant KBOs and the corresponding nodal confinement is a

simple consequence of the tilting of the Laplace plane away
from the ecliptic by Planet Nine.

4. What is the qualitative behavior of the inclination
dynamics within the framework of P9-driven evolution?
What dynamical process allows some of the objects to
acquire exceptionally high inclinations in the distant
Kuiper Belt?

Not all objects affected by Planet Nine remain confined to
the Laplace plane on multi-Gyr timescales. Instead, a subset of
long-period KBOs execute large-scale oscillations in the orbital
inclination as well as eccentricity. This mode of P9-induced
evolution is distinct from the Kozai–Lidov mechanism and is
driven by a high-order secular resonance that is characterized
by the simultaneous libration of the critical angle

2q v w= D - as well as vD . This doubly resonant form of
secular coupling forces a particular strenuous exchange of
angular momentum and generally leads to the acute orbit-
flipping behavior of distant KBOs (Li et al. 2014).
The onset of these large-amplitude orbital excursion is

fundamentally chaotic and is facilitated by variations in the
angular momentum deficit that is driven by resonant-secular
e vD– oscillations. That is, oscillations in the eccentricity
modulate the system’s proximity to the q resonance, periodi-
cally allowing low-inclination orbits to enter the highly
inclined dynamical regime. As the subsequent orbital evolution
unfolds, the eccentricity reaches a peak of its cycle when the
inclination is approximately i 90 deg» , meaning that bodies
belonging to the highly inclined population are most readily
observable in a state roughly perpendicular to the plane of the
solar system. This qualitatively explains the observed dynami-
cal state of large semimajor axis centaurs, which constitutes the
third major line of evidence for the existence of Planet Nine.
There exist two other secondary lines of evidence for the

existence of Planet Nine, which we did not discuss in this
paper. The first is the obliquity of the Sun (Bailey et al. 2016;
Lai 2016; Gomes et al. 2017). One reason we chose to not
discuss this dynamical effect is because it is intrinsically trivial.
It is well-known that secular coupling between two mutually
inclined orbits results in a regression of the node of both orbits,
meaning that the twisting of the giant planets’ orbital plane out
of alignment with the solar spin axis is an inescapable
consequence of Planet Nine’s existence. As a result, the
genuinely remarkable aspect of this calculation is not that a
spin–orbit misalignment can be excited, but the fact that a
Planet Nine configuration close to the one deduced from distant
Kuiper Belt constraints can adequately reproduce the solar
obliquity when its gravitational influence is exerted over the
entire lifetime of the solar system.
At the same time, we note that strictly speaking, Planet Nine

is not required to explain the obliquity of the Sun, and other
theoretical models exist. For example, Batygin (2012) argued
that a primordial binary companion to the solar system could
have excited the observed spin–orbit misalignment through the
same exact mechanism, while Lai et al. (2011) proposed that
magnetic interactions between the Sun and the inner regions of
the protosolar nebula could have accomplished the same task.
We note, however, that while a multitude of processes could
have contributed to the observed obliquity of the Sun, the
gravitational influence of Planet Nine provides the only
dynamical mechanism that is directly testable.

15 In our coplanar calculations, this transition also corresponds to the
progressive dominance of the angle resy over resf (see Equation (4)) as the
resonant guiding center.
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Another population of objects that Planet Nine naturally
generates is the highly inclined component of the proximate
(a 100 au< ) Kuiper Belt. This subset of bodies includes all
objects with i 35 deg that do not naturally emerge from
simulations of the solar system’s primordial evolution (Levison
et al. 2008; Batygin et al. 2011; Nesvorný 2015) and include
the retrograde objects “Drac” (Gladman et al. 2009) and
“Niku” (Chen et al. 2016). Although these objects appear
observationally distinct from the nearly perpendicular high
semimajor axis centaurs discussed above, full-fledged N-body
simulations reported in Batygin & Brown (2016b) show that
the highly inclined a 100 au< objects are simply the large-a
objects that have been scattered inwards by Neptune. As a
consequence, they do not require a separate dynamical
explanation from the objects undergoing the large-scale orbital
excursions discussed in Section 5.2 of this paper.

Cumulatively, the aforementioned lines of evidence con-
stitute a compelling case for the existence of Planet Nine, as
none of the objects within the current observational data set
exert any significant tension upon the model. In light of this
broad-ranging agreement (short of a direct detection of Planet
Nine), the most direct avenue toward further reinforcement or
falsification of our theory is the continued detection of
a 250 au KBOs with the aim to better establish the statistical
significance of the clustering of longitudes of perihelion and
ascending node (Brown 2017; Shankman et al. 2017). To this
end, we reiterate that even though the contamination of the
clustered orbital pattern by unconfined particles is an expected
result of P9ʼs gravitational influence, a notable grouping of
long-period trajectories in physical space remains a key feature
of the dynamical model.

Although the evidence for P9 remains strong, as already
discussed in the introduction, a simple proposition of an extant
planet beyond Neptune does not amount to a meaningful
theoretical prediction. Instead, the Planet Nine hypothesis is
uniquely defined by the combination of observational signa-
tures it explains and the specific dynamical mechanisms

through which these astronomical patterns arise. Thus, the
final evaluation of the Planet Nine hypothesis will not simply
correspond to a detection of a planet beyond Neptune, but the
confrontation of the outlined theory with the dynamical
evolution induced by this planet. Thankfully, the observational
prospects for the direct detection of Planet Nine either through
ongoing or future surveys are quite promising (Brown &
Batygin 2016; Fortney et al. 2016; Holman & Payne 2016a,
2016b; Millholland & Laughlin 2017), and it is likely that the
concluding assessment of the theoretical model outlined in this
paper will occur on a timescale considerably shorter than a
decade.

We are thankful to Mike Brown, Greg Laughlin, Chris
Spalding, Matt Holman, Gongjie Li, Tali Khain, and Elizabeth
Bailey for illuminating discussions. Additionally, we are
grateful to Sarah Millholland for providing a thorough and
insightful referee report, as well as to Charles Fairchild, whose
generous support facilitated this collaboration.

Appendix A
Computational Details

Throughout this paper, we relied on various closed-form
computations of the averaged Hamiltonian (specifically,
expressions (1), (10) and (12)), without explicitly stating how
the calculations were carried out. Let us now comment on the
practical details inherent to these evaluations. In the plane, the
Cartesian coordinates of the particle’s position vector, r, are
given by the well-known relations (Morbidelli 2002)

x a E e a e E

y a E e a e E

cos cos 1 sin sin

cos sin 1 sin cos , 15

2

2

v v

v v
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where E is the eccentric anomaly. Identical expressions (with
subscript 9) apply to the position vector of Planet Nine.
While the aforementioned Cartesian coordinates are most

naturally expressed in terms of the eccentric anomaly,

Figure 12. Orbital time series of two resonant objects exhibiting apsidal circulation. The trajectories are drawn from the same simulation as those depicted in Figure 4
and correspond to the 3:1 (top) and 4:1 (bottom) resonances, respectively. Unlike the apsidally confined orbits depicted in Figure 4, these objects derive their resonant
phase-protection mechanism from the libration of resonant angles that contain the particle’s longitude of perihelion, ϖ (Equation (18)).
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canonical averaging of the Hamiltonian is carried out with
respect to the mean longitude, λ. The two quantities are related
via Kepler’s equation. Therefore, rather than solving Kepler’s
equation at every computational step to express x and y in terms
of λ, it is more convenient to integrate directly with respect to E
by introducing the Jacobian (Pichierri et al. 2017)

d e E dE1 cos . 16l = -( ) ( )
For the case of the doubly averaged secular Hamiltonian (1),

it is appropriate to carry out the integral assuming that λ and 9l
are not correlated. This is, however, not the case for the singly
averaged resonant and resonant-secular Hamiltonians (10) and
(12). Particularly, in these instances, the mean longitudes of the
particle and Planet Nine are linked to one another through the
resonant relationship

k ℓ k

ℓ
. 17res 9 9l

f v l
=

- - +( )
( )

Accordingly, in this case, Kepler’s equation must be solved at
every iteration to obtain the eccentric anomaly of the particle as
a function of 9l .

In order to construct resonant-secular phase-space portraits
in the 0  limit, it is necessary to first map out the
equilibrium value of the resonant angle resf on the e, vD( )
domain. For the specific problem at hand, this can be done by
sampling the resonant Hamiltonian (10) as a function of resf
along the a ℓ k a2 3

9= ( ) line and numerically finding the
relevant local maximum. Incidentally, the equilibrium value of

resf typically lies halfway between the collision curves, which
are easily obtained by solving the simultaneous equations
x x y y,9 9= = , and substituting the resulting values of E and
E9 into Kepler’s equation to yield the values of resf that
correspond to collisional trajectories.

Appendix B
Apsidally Circulating Resonant Orbits

In Section 4 of the main text, we constructed a semi-analytic
model for apsidally confined resonant orbits residing in interior
5:2, 2:1, 3:2, and 1:1 MMRs with P9. As demonstrated in
Figure 3, however, particles residing at somewhat lower values

of semimajor axes (particularly those entrained in the 3:1 and
4:1 commensurabilities) predominantly exhibit apsidal circula-
tion. Let us briefly consider the dynamical behavior of such
trajectories in greater detail.
Representative trajectories of particles locked in 3:1 and 4:1

resonances, drawn from the a 700 au= simulation described
in Section 3, are shown in Figure 12. The panels in this figure
are analogous to those depicted in Figure 4 of the main text,
with the exception that the librating resonant angle that drives
the dynamics has the form

k ℓ k ℓ 1 .

18
res 9 9 resj l l v v f v= - - - - - = - D( )

( )

Because these orbits are characterized by the circulation of
vD , no resonant multiplets other than resj are in libration. Note

further that eccentricity modulation associated with the
evolution of the apsidal angle vD is in this case very mild,
especially compared to that shown in Figure 4.
In order to more closely examine the phase-space evolution

of the apsidally circulating orbits, we follow the same semi-
analytic procedure as that outlined in Section 4. To avoid
redundancy, we focus exclusively on the 3:1 MMR, since the
4:1 MMR exhibits a very similar behavior. Similarly to
Equation (7), we define the canonical coordinates that identify

resj as a reference angle:

ℓ

k ℓ

ℓ

k ℓ ℓ . 19

res res

9 9 9 9

9

9 9 9 9

j j

l l
g g g v

g g

L = L  = -

L = L + L  =
G = G + L D = - = -D
G = G + G + - L  =

( )

(( ) ) ( )

As before, upon averaging the Hamiltonian with respect to the
fast angle 9l, we are left behind with an adiabatic system that is
characterized by a resonant degree of freedom in ( resjL -  ) as
well as a secular degree of freedom in ( gG - D ).
Freezing G at a value that corresponds to q 35 au= at

a ℓ k a2 3
9= ( ) and setting v g pD = -D = , we computed

the resonant phase-space diagram akin to those presented in
Figure 5 for the interior 3:1 resonance. However, in this case,

Figure 13. Semi-analytically computed resonant a j- (left) and resonant-secular e vD– (right) phase-space portraits for the 3:1 MMR, assuming equilibrium
libration of the critical angle given by expression (18). Numerically computed trajectories shown in Figure 12 are depicted with red and orange lines in the left and
right panels, respectively, signaling satisfactory agreement between semi-analytic theory and N-body simulations. See the captions of Figures 5 and 7 for further
details.
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the Hamiltonian (10) was computed under the constraint of the
resonant relationship (18) instead of Equation (4). The resulting
(a− resj ) diagram is shown in the left panel of Figure 13 with
the result of our N-body simulation overplotted in red.

Unlike the long-term stable orbits that exhibit steady
perihelion clustering, apsidally circulating trajectories shown in
Figure 12 reside in the subdomain of the (a− resj ) diagram that
is occupied by the ¥-shaped separatrix and encircle this
homoclinic curve from the outside. In contrast with the
neighborhood of the elliptic equilibrium point discussed in
Section 4.1, this phase-space domain is never fully swept by
the collision curves as vD swings from 0 to 2p. As a result,
trajectories that surround this resonance can safely rotate
through all possible values of vD without compromising the
resonant phase-protection mechanism.

This means that in the case of resonances characterized by
the libration of resj , there is no equivalent of the e vD( – )
collision locus that arises within the framework of MMRs
characterized by the libration of resf (shown as the bounding
curves in Figure 7). Nevertheless, the resonance that resides at
the core of the apsidally circulating trajectory (as shown in
Figure 13) undergoes topological changes driven by the
evolution of vD . In particular, as vD shifts away from π
toward 0, the¥-shaped separatrix deforms asymmetrically and
eventually vanishes, as two of the three associated fixed points
disappear. Finally, as vD tends closer to 0, the remaining
(elliptic) fixed point returns to the origin, such that the
trajectory once again encircles 0resj = at 0vD = .16 In other
words, as vD circulates from 0 to 2p, the resonant center of

resj experiences a concurrent oscillation about 0resj = with an
amplitude of order 2p~ (as shown in the right panel of
Figure 12).

In order to approximately elucidate the resonant-secular
dynamics that unfolds in the vD circulating regime, we
computed the averaged Hamiltonian (12) under the constraint
of the resonant relationship (18). Following the discussion
outlined in Section 4.2, we assume that the adiabatic invariant

0 = , and thereby confine ourselves to the a– resj equilibrium
point that remains extant (and stable) in the 0,v pD Î ( )
range, and simply reflect the computed portrait onto the

, 2v p pD Î ( ) domain. The corresponding e vD( – ) diagram is
shown in the right panel of Figure 13, with the N-body
trajectory overplotted in orange.

Although the semi-analytical secular portrait matches the
numerically computed evolution well, we note that for these
apsidally circulating trajectories, the 0 = assumption is a
relatively crude one, since the orbit itself resides outside the
separatrix and does not directly encircle the equilibrium point.
To this end, the kinks in the semi-analytical curves shown in
Figure 13 at v pD = are an unphysical consequence of this
assumption and would disappear if the portrait were more
carefully computed by carrying out the averaging process along
the contour of an (a− resj ) trajectory that encircles a phase-
space area greater than that occupied by the separatrix. In fact,
the reason why the 0 = approximation works relatively well
in our calculation is that the area engulfed by the ¥-shaped
curve is never big. Therefore, a more rigorous treatment of
adiabatic theory can be carried out by assuming a non-zero, but
nevertheless small, value of  .

Irrespective of the details associated with computation of the
Hamiltonian (12) for resj -type commensurabilities, the results
of the N-body simulation shown in Figure 12 as well as the
semi-analytic calculations presented in Figure 13, point to the
fact that resonantly protected trajectories that circulate in the
longitude of perihelion naturally arise within the framework of
the Planet Nine hypothesis. Correspondingly, given sufficient
data, characterization of the specific semimajor axes that such
trajectories occupy may provide key constraints on the present-
day orbital state of Planet Nine.
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