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Abstract This paper reviews habitability conditions for a terrestrial planet from the point
of view of geosciences. It addresses how interactions between the interior of a planet or
a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect
habitability of the celestial body. It does not consider in detail the role of the central star but
focusses more on surface conditions capable of sustaining life. We deal with fundamental
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issues of planetary habitability, i.e. the environmental conditions capable of sustaining life,
and the above-mentioned interactions can affect the habitability of the celestial body.

We address some hotly debated questions including:

– How do core and mantle affect the evolution and habitability of planets?
– What are the consequences of mantle overturn on the evolution of the interior and atmo-

sphere?
– What is the role of the global carbon and water cycles?
– What influence do comet and asteroid impacts exert on the evolution of the planet?
– How does life interact with the evolution of the Earth’s geosphere and atmosphere?
– How can knowledge of the solar system geophysics and habitability be applied to exo-

planets?

In addition, we address the identification of preserved life tracers in the context of the
interaction of life with planetary evolution.

Keywords Habitability · Early Earth · Planet evolution · Exoplanets

1 Introduction

The bulk evolution of a planet (including the Earth) is driven by the internal energy sources
and losses (radiogenic sources, energy from accretion and differentiation, tidal energy), and
depends upon the composition, structure, and thermal state of its core, mantle, lithosphere,
crust. These properties depend on the size and mass of the planet as well as on potential
interactions with a possible ocean and atmosphere and—in the case of the Earth or other
currently unknown planets possibly having life—with a biosphere. In addition, impacts (in
particular, giant collision events) may have had a sustainable effect on the evolution of litho-
spheres, atmospheres, and biospheres.

The paper has a different focus than most other habitability discussions in Earth-System
sciences, planetary sciences and astronomy by encompassing the entire planet from the
upper atmosphere to the deep interior and by including the exogenic influence within the
framework of the study of its habitability. In this aspect, it is broader in scope than e.g., Lam-
mer et al. (2009), Javaux and Dehant (2010), Spohn (2014), Fritz et al. (2014), Southam et al.
(2015), Cockell et al. (2016), and Tosi et al. (2017). The paper addresses questions within
six main sections: (1) Formation of habitable planets, (2) role of cometary, meteorite and
asteroid impacts on planetary evolution, (3) planetary interiors, mantle convection and their
evolutions, (4) atmospheric evolution, (5) interaction of life with the atmosphere, geosphere
and interior of planets, (6) identification of preserved life tracers in the context of the inter-
action of life with planetary evolution, (7) conclusion and implications for planet formation
and habitability conditions and detection in exoplanetary systems.

1.1 Formation of Habitable Planets

The Solar System and planetary systems around other stars are built from an initial proto-
planetary disk around the central star containing gas and dust. Dust grows to pebbles by
coagulation and deposition of volatile ices, but the continued growth to planetesimals is, for
instance, hampered by the poor sticking of mm-to-cm-sized pebbles. Planetesimals can nev-
ertheless form by gravitational collapse of pebble clumps concentrated in the turbulent gas
through the streaming instability (Yang et al. 2017). The subsequent growth initially occurs



Geoscience for Understanding Habitability in the Solar System and. . . Page 3 of 48 42

by planetesimal-planetesimal collisions, but it is the accretion rate of pebbles which domi-
nates the growth of larger (∼1000-km-sized) protoplanets (for pebble accretion, see Ormel
and Klahr 2010; Lambrechts and Johansen 2012) to form terrestrial planetary embryos and
the solid cores of gas giants, ice giants, and super-Earths (extrasolar planets with a mass up
to 10 times the Earth’s), but by an order of magnitude smaller than the masses of the Solar
System’s ice giants like Jupiter.

The formation of the terrestrial planets could begin with planetesimals distributed
throughout the inner Solar System and the asteroid belt. However, in this case it would
end with 0.5–1.0 Earth-masses planets inside 2 AU (Astronomical Unit), much larger than
the actual mass of Mars, namely 0.1 Earth-masses (Raymond et al. 2009). Obtaining the
order of magnitude mass-contrast between the Earth and Mars requires that the planetesi-
mals were concentrated within 1 AU from the Sun, with little total mass beyond this limit
(Hansen 2009). This planetesimal concentration can be obtained in two ways. The “grand
tack hypothesis” (Walsh et al. 2011; Pierens et al. 2014) proposes that, after its formation
at ∼3.5 AU, Jupiter migrated inward to 1.5 AU, before reversing course due to capturing
Saturn in an orbital resonance (Masset and Snellgrove 2001; Morbidelli and Crida 2007),
eventually halting near its current orbit at 5.2 AU. Due to Jupiter’s migration, the inner plan-
etesimal disk was truncated at 1.0 AU, leaving behind only a mass-depleted and dynamically
excited asteroid belt beyond this radius. The second possibility is that the streaming instabil-
ity was effective only inwards of 1 AU (Drazkowska et al. 2016). Beyond this limit, asteroids
could form only later, at the time of the photo-evaporation of the disk (Carrera et al. 2017),
producing a low-mass population of objects. The dynamical excitation of the asteroid belt
in this case requires some chaotic evolution of Jupiter for a period lasting a few My (Izidoro
et al. 2016). Which of these two scenarios is more appropriate is the subject of ongoing
debate.

Our planet formed slowly over tens of millions of years, as indicated by radioactive
chronometers (Kleine et al. 2009) and explained by models of collisional accretion of a disk
of planetesimals and planetary embryos (e.g., O’Brien et al. 2006; Jacobson et al. 2014). The
Earth formed mostly after the disappearance of the protoplanetary disk of gas, via a sequence
of giant impacts. The precursors of the Earth, the planetary embryos, which formed within
the disk lifetime, had a mass presumably smaller than that of Mars. Thus, they did not
migrate significantly while in the protoplanetary disk. In addition, they did not accumulate
a nebula captured primordial hydrogen atmosphere (see Lammer et al. 2014; Stökl et al.
2016). Thus, the final atmosphere of the Earth was mainly formed by degassing. However,
if Earth accreted already more than 0.1 MEarth during the solar nebula phase (which would be
in agreement with radioactive chronometers), it likely could have had a primordial hydrogen
atmosphere, which was lost later on (Johnstone et al. 2015b).

Super-Earths are worlds, possibly rocky, with up to ∼10 Earth masses (mini-Neptune)
based on theoretical estimates for runaway gas accretion (Rafikov 2006). Many of those
found to-date orbit much closer to the central star than the Earth. Some of them may have
migrated from the outer parts of the disk, thus they are probably more similar to Neptune
than the Earth (rich in ice), and are sometimes referred to as mini-Neptunes. However, rocky
super-Earths may have formed differently compared to our planet. In fact, when more mass
is available in the inner system, namely when there is a higher flux of pebbles from the
outer part of the disk, the planetary embryos grow faster and to bigger sizes. Thus, they
start to be affected significantly by orbital migration. Migration in turns affects strongly the
accretion process. Close-in super-Earths were already massive (e.g. Earth-mass) within the
disk lifetime. Their growth was dominated by the accretion of small particles, and post-disc
giant impacts may have been rare. Primordial atmospheres made of H and He are likely. The
water fraction can be high for those bodies that migrated from beyond the snowline.
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Earth-like planets probably have masses ≤ 5 Earth-mass (Rogers 2015; Fulton et al.
2017). There is little direct evidence for rocky super-Earths so far in the observation of ex-
oplanets. We have observed up to now mainly massive super-Earths or mini-Neptunes, for
which initial information about interior and atmospheric properties is starting to become
available (e.g., Madhusudhan et al. 2012; Wagner et al. 2012; Rauer et al. 2011). It is there-
fore interesting to investigate the potential habitability of super Earths from the geophysical
point of view. Note that although lying in the HZ is a pre-requisite for habitability, it does
not however guarantee that celestial bodies lying in this region will indeed be habitable and
note that even outside the classical HZ, bodies like icy moons could be habitable as well
(see discussion on the icy moons and the above definition of habitability).

The Habitable Zone (HZ) is a circumstellar region where one can find liquid surface wa-
ter on an Earth-like planet under conditions of an Earth-like atmosphere. It must be noted
though that for liquid water to stay long on the surface of a planet, the carbonate-silicate
cycle plays a key role in regulating the climate of planets, and can prevent the occurrence
of a runaway greenhouse effect (when the water content evaporates and later becomes irre-
versibly lost) and also can bring a planet back from a snowball state (Kasting et al. 1993a).
If one takes the Earth and puts it in the HZ of an M-dwarf star, its atmosphere will change
due to the interaction with the star emissions (reduced luminosity, shift in spectrum, and
also occurrence of flares), which can be seen with a chemical-climate model. Coupling with
a biogeochemistry model allows determining what kind of composition we can get.

Beside planets, moons can also be habitable (Kaltenegger 2010; Heller and Barnes 2013;
Heller et al. 2014; Dobos and Turner 2015; Forgan and Dobos 2016; Dobos et al. 2017).
In the Solar System, Enceladus and Europa (moons of Saturn and Jupiter, respectively) are
the most likely hosts of extraterrestrial life but subsurface layers of Titan and possibly even
Triton may have liquid water (e.g., Lunine 2005). Below the ice shell of Europa and other
ice moons, global oceans may exist, heated by tidal dissipation in the ice shell or through
hydrothermal vents from the rocky deeper interior (e.g., Spohn and Schubert 2003; Huss-
mann et al. 2006). In particular, in Europa’s and Enceladus’ oceans, a warmer environment
where water interacts with the rocky seafloor may exist and simple life forms may appear.
Such environments may exist in other planetary systems, as well. Moons can form similarly
to planets, i.e. in the circumplanetary disk, or by collision (as it was probably the case for the
Moon), or by binary-exchange which requires two bodies of comparable size that encounter
a giant planet, which captures one of the binary bodies, while the other one is ejected (Barr
2016; Williams 2013).

2 Role of Cometary, Meteorite and Asteroid Impacts on Planetary
Evolution

The evolution of planets and life has been influenced by collisions throughout the history
of our planetary system, as evidenced by the cratered landscapes on terrestrial surfaces.
The violent bombardment of the primordial planets affected their thermal evolution, and
may have been crucial for the formation of habitable worlds. Volatile-rich carbonaceous
chondrites may have been important sources of water and pre-biotic molecules delivering
key ingredients for the formation of an atmosphere and biosphere (e.g., Albarède 2009;
Pizzarello et al. 2001), with very little cometary contribution (less than 1 % for water and
carbon; Marty et al. 2016). However, the delivery of volatiles by impacts that may have
significantly contributed to the growth of atmospheres is counteracted by impact-induced
atmospheric erosion. The current state of research to quantify the source and loss processes
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due to impacts is mostly based on numerical modelling (e.g., Pham et al. 2009; Shuvalov
et al. 2014). Impact erosion of the atmosphere is suggested to be more efficient for Mars
compared to Venus and Earth, because of its smaller size and gravity (Pham et al. 2011). The
threshold mass for ejecta escape, the threshold velocity for erosion, the threshold velocity
for vaporization and the impactor obliquity factor are the major parameters to consider.

2.1 Impactors

Although micrometeorites (<2 mm) dominate the extra-terrestrial flux to Earth (40,000
tons/year), impacts of km-sized objects affect Earth’s evolution much more strongly
(Schlichting et al. 2015). Impactors with diameters from ∼600 m up to 5 km—which are
thought to cause global catastrophes—still occur once every 0.1 to 1 million years (Pierazzo
and Artemieva 2012). Among meteorites, the primary source of compositional information
on extraterrestrial matter on Earth, chondrites represent 86% of the falls, with 80% of these
related to the so-called ordinary chondrites. Chondrites are mainly composed of chondrules
and Calcium-Aluminum-rich inclusions (CAIs), imbedded in a fine-grained matrix (e.g.,
Goderis et al. 2016). Relative to ordinary chondrites, carbonaceous chondrites (types CI,
CM, CO, CV, CK, CR, CH, and CB), a subset of chondrites that makes up ∼4% of me-
teorite falls, are enriched in refractory lithophile elements such as Ca and Al, and plot in
a distinct area of the triple-oxygen isotope space (i.e., below the terrestrial fractionation
line; Clayton 2005). Despite their name, only the CM, CR, and CI groups are significantly
enriched in carbon (up to a few percent as organic matter) and water relative to ordinary
chondrites (Gounelle 2011).

Most extraterrestrial matter such as water and organics on Earth is thought to be derived
from asteroidal sources during the formation of the planet, with the distinction between
comets and asteroids based on activity or orbital properties. Comets are active bodies that
develop an extended tail (coma) when they approach the Sun close enough to sublimate
water and other volatiles at their surface due to their elliptical orbits, many but not all of
which extend beyond Jupiter (e.g., Gounelle 2011; Fernandez et al. 2015). Asteroids have
roughly circular orbits inside the orbit of Jupiter and do not develop comae as they do not
get close enough to the Sun and may not contain sufficient volatile components at their
surface. Although comets are thought to contain approximately equal amounts of dust and
ice, recent sample recovery missions (e.g., Stardust) have shown that a continuum may exist
between primitive, dark (with albedos of <6%) asteroids and comets, and cometary solids
and carbonaceous chondrites comparable to the difference among the different groups of
carbonaceous chondrites (cf. summary in Gounelle 2011).

2.2 Surface Traces of Impactors

Currently on Earth, approximately 190 terrestrial impact craters are known, ranging from
13.5 m to 160 km in diameter for the collapsed transient crater. This number is small com-
pared to the Moon (which features 5185 craters with diameters ≥20 km; Head et al. 2010).
This mainly reflects the geological activity of our planet—the number of craters found in
a particular region on Earth is found to correlate with the available knowledge concerning
geological activity. Since terrestrial impact structures are often affected by erosion, tectonic
deformation and burial by sedimentation, their identification primarily relies on the occur-
rence of shock metamorphic effects or geochemical and isotopic anomalies induced by the
contamination of impact melt rocks and ejecta material with meteoritic matter (e.g., Goderis
et al. 2012; Koeberl et al. 2012).



42 Page 6 of 48 V. Dehant et al.

These terrestrial structures provide ground truth data on the geologic effects of impacts
and the subsurface structure of impact craters on other terrestrial planetary bodies (e.g., the
Moon or Mars). The bombardment history of the inner Solar System is uniquely revealed
on the Moon. Mass delivery due to impacts on Earth is about seventeen times higher than
on the Moon due to the Earth’s larger size and gravity; approximately 70 Chicxulub-sized
events took place on Earth since 3.7–3.8 Ga and 15 basin-forming impactors struck Earth
between 2.5 and 3.7 Ga ago (Bottke et al. 2012). The terrestrial impact history before ∼2 Ga
is mainly restricted to spherule layers, which are distal ejecta from large impacts (Simonson
and Glass 2004; Glass and Simonson 2012). On Earth, the environmental effects of impact
events differ with respect to time (seconds to decades) and spatial (local to global) scales.
Short-term effects include ejecta blankets, thermal radiation, blast-wave propagation in the
atmosphere, crater excavation, earthquakes, and tsunamis, while long-term consequences
comprise of ejected dust and climate-active gases (carbon dioxide, sulfur oxides, water va-
por, methane) into the atmosphere (Pierazzo and Artemieva 2012). Impacts have thus short-
and long-term consequences on the surface evolution and life. Impact cratering may not
only be destructive in nature, as impact cratering may have created hydrothermal systems in
the Archean (or even before) crust inducing environmental conditions (H2O, heat, metals)
favorable for prebiotic synthesis and perhaps organism diversification (Cockell 2006).

In addition to the fact that impacts shaped the evolution of planets and how Earth evolved
into a habitable world, the origin of life on Earth may also be a consequence of impact: the
“Lithopanspermia” hypothesis considers the transfer of life-seeded rock fragments ejected
from one planetary body by impact and then delivered through space to another planetary
body as meteorites (see e.g. Veras et al. 2018).

Brecciation (formation by external shock of breccia, i.e. rock composed of broken frag-
ments of minerals or rock cemented together) and impact melting of the target may have led
to long-term surface and subsurface hydrothermal activity and may have contributed to pos-
sible habitats for the origin of life and its continued evolution, in particular during the early
Archaean. However, large impacts also pose a significant threat for developed biospheres
through catastrophic environmental consequences. For example, 66 Ma ago the Chicxulub
impact event caused one of the most pronounced mass extinctions in Earth history (Schulte
et al. 2010). From a chemical point of view, the extraterrestrial flux to Earth has been sug-
gested to be an important source of bioessential elements, such as phosphorus (Pasek et al.
2013), but may also contribute considerable amounts of toxic metals (e.g., Ni; Davenport
et al. 1990).

Therefore, impacts have definitely shaped the evolution of planets (see Fig. 6, which will
be fully explained below). It must be mentioned that impacts also induce interior changes,
which is explored in Sect. 3.5.

3 Planetary Interiors, Mantle Convection and Their Evolutions

3.1 Internal Structure

After and during their accretion and subsequent melting, terrestrial planets became differ-
entiated, leading them to possess a core and a mantle. The lithosphere can be fragmented
in several mobile plates, or being mono-plate, as a stagnant lid. Heat mainly arising from
accretion and present-day radioactivity is transferred from the core and through the mantle
by conduction and convection. Heat transport through the colder outer layers to the surface
is by conduction, as well as by convection in the case of mobile-lid plate tectonics in which
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Fig. 1 Processes affecting
habitability and
Heat/Interior/Atmosphere
Evolution

the whole silicate layer up to the surface takes part in convection, and is then subsequently
lost to space. This heat loss is enhanced by the existence of plate tectonics, if the latter oc-
curs. Shortly after formation, terrestrial planets might undergo a mantle overturn because
the latest cumulates solidifying at the top of the mantle are denser than the ones formed ear-
lier at the bottom of the mantle (Elkins-Tanton et al. 2003). Isotopic compositions of some
Martian meteorites can be interpreted as evidence for such an episode that occurred early in
the planet’s history, therewith constraining the initial evolution (Debaille et al. 2009). The
occurrence of a major mantle overturn could also decrease the thermal gradient between the
core and the mantle, by injecting heat-producing (rich in radioactive) elements into the deep
mantle (e.g., Hess and Parmentier 1995; Elkins-Tanton et al. 2003; Debaille et al. 2009),
hence inhibiting the magnetic field.

Planetary interiors once differentiated are important for their thermal evolution. The di-
mension and physical states of the planet and the core are considered to be important in their
evolution, possibly with or even without plate tectonics (e.g., Valencia et al. 2007; O’Neill
and Lenardic 2007; Korenaga 2010; van Heck and Tackley 2011; Stamenkovic et al. 2012)
and in the formation of a secondary atmosphere through magmatic outgassing that is needed
to preserve surface water. Volcanic activity and associated outgassing in one-plate planets is
strongly reduced after the magma ocean outgassing phase, if the planet mass and/or core-
mass fraction exceeds a critical value (which depends on the mantle composition, Tosi et al.
2017; Noack et al. 2017; Dorn et al. 2017). Both degassing and volcanism are important for
atmospheric evolution (see Fig. 1).

The volatile elements, C–H–O–N–P–S, that are critical in defining the habitability of a
planet have been processed during the internal and primordial differentiation of a planet
(Southam et al. 2015; Cockell et al. 2016; Marty et al. 2016). These elements are unevenly
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distributed at the surface of terrestrial planets: for example, Venus lacks water (Kasting
1988; Kasting et al., 1988, 2015), while Mars has a surface that is dominated by sulfur
but strongly depleted in carbon with respect to Earth and Venus (Gaillard et al. 2012). We
have in fact different compositions on different planets at various locations in the Solar
System/planetary systems, which could also involve icy bodies. A very limited number of
studies have addressed this issue, and most of the work is recent, implying that the state of
the art is likely to significantly evolve during the next ten years. The magma ocean stage
marking the early history of most terrestrial planets is believed to distribute volatile species
between the planet’s interior and the coexisting atmosphere (e.g., Gaillard and Scaillet 2009;
Hirschmann 2012). The magma ocean covers a vast range of temperature and pressure and
is reduced, possibly due to accretion dominated by enstatite chondrites (Javoy et al. 2010),
allowing the saturation of iron from a molten mantle (Frost et al. 2008). Under such con-
ditions, the core formation (i.e. equilibration between iron-rich metal and molten silicate)
leaves behind a magma ocean, and therefore a silicate mantle, that can be depleted in carbon
(Hirschmann 2012; Li et al. 2015a,b), hydrogen (Okuchi 1997), nitrogen (Roskosz et al.
2013) and sulfur (Gaillard et al. 2012). The behavior of volatiles in the P-T-redox parameter
space of the terrestrial magma oceans is not yet well constrained, but we know that consid-
erable carbon has remained in both the crust and the mantle (Marty et al. 2016). This is a
paradox as most of the carbon, basically a siderophile element, should have segregated into
the core. Several explanations have been given in the literature, which includes carbon de-
livered by the impactor that has generated the Moon (Grewal et al. 2019). The effect of early
planetary differentiation on the surficial volatile contents remains poorly constrained and the
specific delivery process of carbon to the Earth’s surface is unknown (outgassing of primor-
dial C vs late veneer), though recent geochemical constraints limit the role of the late veneer
events (Marty et al. 2016). These issues on the provenance and the fate of volatile com-
ponents throughout the planetary structuration must be investigated in upcoming research
programs.

After crystallization of the magma ocean, dense material cumulates just below the en-
riched layer and sinks to the deep interior. This mixed enriched layer encircles the core
and insulates it from the rest of the mantle, trapping heat in the core (forming a “thermal
blanket”) and preventing the core from cooling convectively, as well as from developing a
dynamo. After a certain period of time, the radiogenic material within this thermal blanket
decays and heats the lower layer. With the removal of the thermal blanket, the core is then
able to convect vigorously, which can produce a thermal dynamo (Breuer and Moore 2015).

The timing and duration of the magma ocean phase and the subsequent thick, steam
atmosphere (see e.g., Hayashi et al. 1979: Lammer et al. 2011) which is catastrophically
outgassed during solidification of the magma ocean could potentially influence subsequent
atmospheric evolution. The presence of a steam atmosphere protects the lower atmosphere
from harsh incoming radiation hence influences atmospheric escape rates, photochemistry
and climate during a critical early stage in Earth’s history when incoming EUV fluxes were
up to ∼100 times higher than present day.

Figure 1 summarizes the processes affecting habitability and Heat/Interior/Atmosphere
Evolution.

3.2 Mantle Convection Regime

Convection of the rocky mantle is a key process that drives the evolution of the interior:
it controls heat loss from the metallic core (which ultimately generates the magnetic field)
and can drive plate tectonics, which in turn governs the long-term volatile cycling between
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the atmosphere/ocean and the interior. Cycling of water and carbon dioxide in particular
(although other species like nitrogen are also important) between the atmosphere/ocean and
interior is thought to regulate habitability (e.g., Langmuir and Broecker 2012). Indeed, the
more CO2 and water in the atmosphere, the higher the temperature, and the more weath-
ering occurs, in turn regulating CO2 content. Some studies suggest that planets with plate
tectonics have larger outgassing rates compared with planets having stagnant lids, and that
such processes could therefore be important for atmospheric formation (e.g., O’Neill et al.
2007; Noack et al. 2014). Further influence from plate tectonic on mantle convection and
vice versa are provided in Sect. 5.3.

The comparison between Earth, Mars and Venus shows that the rocky mantle of terrestrial
planets can shape their possible surface habitability via different internal processes like plate
tectonics and volcanic activity. Similar feedback mechanisms between interior and surface
are thought to exist on rocky exoplanets, even if they may have different chemical compo-
sitions (which might be correlated with the host star’s composition) (see Elkins-Tanton and
Seager 2008). Unfortunately, plate tectonics is still not well understood. It is unclear why the
Earth is the only Solar System planet with plate tectonics and it is still debated when plate
tectonics started on Earth. It has been proposed that Earth’s plate tectonics is the remnant of
magma ocean convection and thus present for most of the planet’s history (Solomatov 2016).
Arndt and Nisbet (2012) present an overview of the geological and geochemical evidence
for plate tectonics in the Archean. Others have argued that plate tectonics only existed on
Earth since 2.5–3.2 Gyr (e.g., Debaille et al. 2013; Dhuime et al. 2012, 2015; Condie 2018)
with the earliest evidence so far for modern style plate tectonics at 2.2–2.1 Gyr (François
et al. 2018), or possibly in place only during the last 1.8 Gyr (Gerya et al. 2015; Weller and
St-Onge 2017; Warren 2017) or 0.85–1 Gyr (Stern et al. 2016). In a similar way, Mars could
also have experienced plate tectonics before switching to stagnant lid convection (e.g., Sleep
1994; Nimmo and Stevenson 2000) and Venus could have had convection regimes close to
plate tectonics for some time (Gillmann and Tackley 2014; Davaille et al. 2017).

At present-day, it is not known precisely how plate tectonics initiates and ends. It has
long been held that water is the major factor in sustaining plate tectonics (e.g. Tikoo and
Elkins-Tanton 2017), because it generally lowers viscosities of mantle rock, thereby en-
abling subduction. Surface conditions, and in particular surface temperature, have been rec-
ognized as important factors for convection regimes (Moresi and Solomatov 1998). High
surface temperature have been reported to limit plate tectonics and favor stagnant lid due
to their lowering viscosity and thus convective stress (e.g., Lenardic et al. 2008; Gillmann
and Tackley 2014). On the other hand, high enough temperatures may reduce the viscosity
contrast over the upper mantle to the point where part of the lithosphere can be mobilized
(Solomatov and Moresi 1996; Noack et al. 2012). Other possible causes for plate tectonic-
like behavior include melt intrusions providing weak zones in the lithosphere that can be
mobilized to initiate subduction processes (Foley and Bercovici 2014; Lourenço et al. 2017;
Rozel et al. 2017) and meteoritic impacts that can mobilize a planet’s upper mantle for tran-
sient mobile episodes and provide weak zones (Gillmann et al. 2016; O’Neill et al. 2017).

3.3 Partial Melting and the Volatile Pipeline

In addition to the thermomechanical processes involved in convection that are crucial to cap-
ture the magmatic production rate, there are chemical controls that must be considered in the
modelling of the mantle outgassing. A key parameter is the oxidation state of the mantle,
usually related to the oxygen fugacity (fO2) (Frost and McCammon 2008; Gaillard et al.
2015). In a reduced mantle, carbon remains refractory (i.e. stable as graphite or diamonds,
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e.g., Stagno et al. 2013; Li et al. 2017; Dasgupta and Tsuno 2017) during melting. Reduced
species such as CO or CH4 (Wetzel et al., 2013; Armstrong et al. 2015; Li et al. 2017) have
solubility in basaltic melts being orders of magnitudes lower than that of CO2. In an oxi-
dized mantle, in contrast, the production of CO2-rich melts permits an efficient extraction
of the mantle carbon (Stagno et al. 2013). We can consider that in the Earth’s mantle (which
is relatively oxidized), no carbon remains in the solid residue after partial melting. Such a
redox control on the efficiency of volatile outgassing from the mantle also holds for other
elements such as sulfur (Jugo 2009) and nitrogen (Li et al. 2015a,b) in that oxidizing condi-
tions favor efficient volatile outgassing of the mantle by melting. Which parameters control
the oxidation of the Earth’s mantle, whether it varies from a geodynamic setting to another
(e.g. subduction vs MORBs (mid-ocean ridge basalts); Kelley and Cottrell 2009; Lee et al.
2010) or whether there have been major secular changes in the mantle fO2 (Kasting et al.
1993b) remain unclear (Gaillard et al. 2015). Most authors (e.g., Canil 1997; Gaillard et al.
2015; Nicklas et al. 2018) have concluded, based on geochemical proxies, that the mantle
redox state has remained unchanged throughout Earth’s recorded history. A recent study
(Aulbach and Stagno 2016) suggested a small secular increase in the sub-oceanic mantle
fO2 during the Archean, but these changes remain within the measurement uncertainties. In
the absence of a definite understanding of the oxidation state of the Earth’s mantle fueling
magmatism, it is difficult to evaluate how this parameter may be set in extraterrestrial set-
tings. Yet, tentative analyses of redox systematics based on the available meteorite database
suggest variations in fO2 of several orders of magnitude in terrestrial bodies (Righter and
Neff 2007). An analysis of specimens from bodies with sizes ranging from small asteroids
up to and including the size of Mars tends to suggest more reduced conditions than those
in Earth’s mantle. This systematics may be explained by disproportionation reactions in the
lower mantle revealed by Frost et al. (2004) implying that planets with a lower mantle should
have a more oxidized upper mantle. Wade and Wood (2005) suggested then that this might
explain why the Martian upper mantle is more reduced than the Earth’s one. In the upper
mantle, the more consensual view is that the mantle becomes more reduced with depth: fO2

tends to decrease as pressure increases due to the fact that high-pressure mantle phases are
able to take on more oxygen (Frost and McCammon 2008). This, however, must imply that
the secular cooling of the Earth’s mantle should produce magma that becomes more oxi-
dized with time (Gaillard et al. 2015), while most observations indicate a steady oxidation
state since the Archean. This short paragraph illustrates the contradiction between our un-
derstanding and our prediction of the redox behavior of the Earth’s mantle. Oxygen fugacity
of the mantle is however critical in defining the habitability of a planet. This is because it
can strongly influence outgassing hence atmospheric formation, which can regulate climate,
protection from radiation and the existence of liquid water on the planet’s surface.

Mantle melting and volcanism define the volatile pipelines connecting the mantle to the
surface where magmatism acts as a volatile cargo. In addition, the presence of volatiles in the
mantle trigger melting. This feedback makes the dynamics of mantle melting more complex
than usually considered (i.e. volatiles are not passively transported by melts). In particular,
small amount of volatiles (i.e. the several hundred ppm of H2O and CO2 usually quoted
for the convective mantle) can trigger a small degree of melting (∼1%) in a vast region of
the mantle where seismic and magneto-telluric methods image Low Velocity Zones (Green
et al. 2010; Sifré et al. 2014). These melts are very volatile-rich, but they never reach the
surface for reasons which remain unclear but as such, they represent a malfunctioning of the
volatile pipelines. Only unconventional geodynamic configurations can bring such volatile-
rich melts to the surface as unexpectedly found in oceanic settings (e.g. Hirano et al. 2006).
The role of this melting regime in the global volatile budgets and whether it is unique to
Earth or can be expected on other terrestrial bodies are important issues to address.
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3.4 Degassing, Volatile Cycles, and Continental Cycling

Mantle dynamics, volcanism and degassing processes lead to an input of gases in the atmo-
sphere. On the other hand, volatile losses to space are estimated through atmospheric escape
modeling.

Degassing under the reduced conditions which likely prevailed during the magma ocean
stage (Javoy et al. 2010) can build the first atmospheres (Hirschmann 2012) and oceans
(Hamano et al. 2015; Salvador et al. 2017). Although a variety of volatile species can be
dissolved in the magma ocean at high pressure (Armstrong et al. 2015; Li et al. 2017), es-
sentially CO and H2 can be produced during the low pressure equilibrium degassing from
the metal-rich and reduced magma ocean (Gaillard et al. 2012). Upon cooling in the atmo-
sphere, however, these volcanic gases must equilibrate and form CH4 and H2O species.

Once the magma ocean dissipated and solidified, the fO2 conditions are tentatively be-
lieved to have rapidly become oxidizing (Frost et al. 2008; Canil 1997; Gaillard et al. 2015).
Such conditions favored the outgassing of CO2, H2O and nitrogen from the mantle that was
precluded in the reduced magma ocean stage (Libourel et al. 2003). During the harsh con-
ditions of the Hadean, a nitrogen-dominated atmosphere was likely not able to survive as
it would have been eroded within a few million years (Lichtenegger et al. 2010; Gebauer
et al. 2019) due to the high EUV flux and the strong solar winds of the early Sun (Tu et al.
2015; Johnstone et al. 2015a). A substantially higher amount of atmospheric CO2 in the
Hadean than at present day, however, most likely prevented strong atmospheric erosion of
nitrogen; at least no footprint of a strong escape can be seen in the atmospheric 14N/15N
isotope structure (Cartigny and Marty 2013). Partial pressure of CO2 declined during the
Hadean and Archean (e.g., Hessler et al. 2004; Kanzaki and Murakami 2015). This suggests
a CO2-dominated atmosphere during the late Hadean N2, which, at some point, likely be-
came the main constituent due to efficient outgassing from the oxidized mantle (Mikhail and
Sverjensky 2014; Lammer et al. 2018). The mid-Archean Nitrogen and Argon isotope data
from atmospheric inclusions in hydrothermal quartz fluids indicate that the partial pressure
of N2 was 0.5–1.1 bar for 3.0–3.5 Gyr ago (Marty et al. 2013) or similar or lower than the
modern one for a similar time span (Avice et al. 2018), whereas about 2.7 Gyr ago the to-
tal surface pressure was found to only be 0.23 ± 0.23 bar (Som et al. 2016). This potential
decline in atmospheric nitrogen is likely to be due to the onset of biogenic nitrogen fixation
at least 3.2 Gyr ago (Stüeken et al. 2015, 2016b; Zerkle and Mikhail 2017). The onset of
biotic nitrogen-releasing processes such as denitrification during the Great Oxidation Event
(GOE) ∼2.4 Gyr ago on the other hand served as an additional nitrogen source counterbal-
ancing abiotic and biotic fixation processes (Zerkle and Mikhail 2017; Lammer et al. 2019).
The GOE thus marks the beginning of the modern geobiological nitrogen cycle (Zerkle et al.
2017).

As mentioned in Sect. 3.3, CO2 degassing is much more efficient on Earth than on Mars
due to likely much more oxidizing conditions in the post-magma-ocean Earth’s mantle than
its Martian counterpart (e.g., Stagno et al. 2013 vs. Grott et al. 2011). The contrasting man-
tle fO2 conditions between both planetary bodies is certainly linked to planetary size (Wade
and Wood 2005). Nevertheless, the H2O/CO2 ratio of volcanic gases during that era was
controlled by the atmospheric pressure, with dense atmospheres favoring dry volcanic emis-
sions while tenuous atmospheres favored H2O-rich volcanic gases (Gaillard and Scaillet
2014; Tosi et al. 2017). This is linked to the fact that H2O is orders of magnitude more sol-
uble than CO2 in basalts and that solubility laws imply that, with decreasing pressure, the
faction of water partitioning into the fluid must increase (see Iacono-Marziano et al. 2012).
This results in a dilution of CO2 in the magmatic fluids. Many geochemical observations on
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volcanic centers attest this behavior (e.g. Edmonds and Gerlach 2007). We nevertheless must
acknowledge that this is true in a reasonable range of CO2 and H2O contents in the magmatic
source. If a mantle contains large amount of water and very little CO2, this degassing filter
will be poorly efficient and the volcanic gas compositions will mostly reflect the composi-
tion of the magmatic mantle sources. Noteworthy, though this has never been specifically
reviewed in the literature, this filtering process by volcanic degassing also applies to sul-
fur degassing (sulfur-rich magma may not degas sulfur-rich gas). All this complicates the
planetary degassing picture and introduces feedbacks that seem promising to address and
to relate to the concept of formation of the oceans, climate and habitability (Gaillard and
Scaillet 2014; Tosi et al. 2017).

Once the oceans are formed, submarine volcanism and subaerial volcanic degassing must
be taken into account and both processes may lead to very different compositions of volcanic
gases (Gaillard et al. 2011). For example, sulfur (and water) outgassing is mostly not pos-
sible at seafloor pressure implying that submarine volcanism does not supply SO2 to the
biosphere while subaerial volcanic gases are very SO2-rich. Historically, some confusion
has arisen in the planetary sciences literature due to the assumption that seafloor volcanism
and hydrothermal venting are identical processes (Kump and Barley 2007). While the former
is recognized to outgas mantle sulfur less efficiently (Gaillard et al. 2011), the latter, well
known as black smokers, emits massive quantity of H2S and FeS in the ocean. The sulfur
emitted by black smokers is however not of mantle origin since it mostly recycles seawa-
ter sulfates by sulfate reduction processes (Holland 2002; Lyons and Gill 2010). It appears
therefore that only subaerial volcanism can produce SO2-rich volcanic gases. A fraction of
outgassed SO2 can be oxidized to SO3 depending on the redox state of the atmosphere.
SO2 plays a role in generating mass-independently fractionated sulfur isotopes on the Early
Earth (e.g., Farquhar et al. 2000; Pavlov and Kasting 2002). The whole chain of processes
ruling the sulfur biogeochemical cycles, as we know it on present-day Earth, may therefore
become rate-limited by volcanic outgassing of SO2 if submarine volcanism dominates on
a planetary body. Given the importance of the sulfate-reduction reactions associated with
atmospheric SO2 (Halevy et al. 2010), the ratio of submarine to subaerial volcanism is an
important parameter to consider.

At the same time, the volatile content of the surface environment, particularly the pres-
ence of liquid water is thought to have a large feedback on the interior, for example by
favoring plate tectonics (e.g. Nakagawa and Iwamori 2017). Partial melting depletes the
mantle in volatiles and extracts water from the interior to the surface, where it is released
via volcanism (e.g., Breuer et al. 2016 for a review for Mars; and Poirier 2000; Karato
et al. 2013, for Earth’s interior). Volatiles can accumulate in a planet’s atmosphere but other
mechanisms exist that can remove them from it. Those so-called loss mechanisms can be
very diverse but can be classified into three different types and are detailed in other sections
of this manuscript:

(i) Atmospheric escape that covers interaction between radiation by the sun and the upper
atmosphere, leading to the loss of volatile into space (Tian 2015). It is generally most
efficient early in the evolution of the planet. Large Impacts or cumulative effect of small
impacts could lead to atmospheric erosion (see Sect. 4.2).

(ii) Interaction with the interior of the solid planet, like silicate rock alteration, carbonate
formation and seafloor sequestration before possible subduction (Walker et al. 1981;
Kump et al. 2000). Part of the volatile cycle, it operates on a million years timescale.

(iii) Other singular processes that can be transient (like the formation of a polar cap, which
does not affect the global volatile budget) or remove gases for good (like impact ero-
sion).
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Fig. 2 Coupled feedback cycles related to mantle water budget (blue) and continental coverage (red), adapted
from Höning and Spohn (2016)

Over time, those escape mechanisms can substantially modify atmospheric mass but also
composition, in cases where species are removed preferentially (like the light species from
atmospheric escape). Such processes can be studied by analyzing the isotopic fractionation
that they cause and are believed to have potentially far reaching consequences. They could
even govern the atmospheric evolution if enough water remain in the atmosphere to con-
densate into an ocean for example (Gillmann et al. 2009; Hamano et al. 2015). Outgassing
and volcanism are also related to volatile cycles. It is thus necessary to consider a coupled
atmosphere-interior evolution for the understanding of habitability (see Fig. 1).

The existence of plate tectonics leads to considerably more complex carbon and water
cycles, which could significantly alter the outgassing expected from a convective mantle
covered by a lid: an unknown amount of carbon, hydrogen, and other atmophile elements is
reintroduced into the mantle with the oceanic lithosphere at subduction zone. The sediments
can carry a considerable amount of carbon and water (Plank 2014) and fluid-rock reactions
occurring at seafloor hydrate and introduce carbonates into the oceanic crust down to a depth
that remains debated (Alt et al. 2012). This form of C–H atmosphere-lithosphere exchange is
related to the presence of the water cycle at the surface. Subduction geometries and thermal
status imply then that the surficial carbon and hydrogen must be returned to the convective
mantle and sustain a long-term geodynamic cycle (Hammouda and Keshav 2015; Höning
and Spohn 2016). Capturing fluxes of carbon and hydrogen associated with subduction and
how these compare with the outgassing rates of C and H from volcanic centers is a central
task which is difficult to quantify (Hirschmann and Dasgupta 2009; Kelemen and Manning
2015) but which is strongly relevant to the understanding of habitable world.

When water is incorporated into the Earth’s mantle, it is believed to reduce its viscosity
(e.g., Karato et al. 1986). Since a reduction in viscosity enhances both the water degassing
and regassing rates, the mantle water budget can be described as a feedback cycle (e.g.,
McGovern and Schubert 1989). In addition, subduction of water is crucial to the production
of continents (e.g., Campbell and Taylor 1983). With the emergence of a large continental
area, the weathering rates increase. As a result, large amounts of sediments are produced
and subducted into the Earth’s mantle. Subducting sediments carrying water in stable phases
complete the continental feedback cycle thereby further coupling it to the mantle water cycle
(illustrated in Fig. 2).

Particularly important are self-reinforcing mechanisms associated with continental
growth, such as an increased subduction rate of sediments with the emergence of continents.
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Although these feedbacks are difficult to quantify, a system with strong positive feedbacks
is well suited to explain the geological record of continental growth (Höning and Spohn
2016). This implies that multiple equilibrium points could exist in the continental and man-
tle water system (Höning and Spohn 2016), implying that the present-day Earth fraction of
emerged continents is not a necessary result for Earth-sized plate tectonic planets in general.
Rather, the fraction of emerged continents should strongly depend on initial conditions (e.g.,
initial mantle temperature, initiation time of plate tectonics) as well as on the weathering
rate (Höning et al. 2016, 2019).

3.5 Consequences of Impacts on the Interior of Planets

Impacts of cosmic bodies on planetary surfaces cause consequences in several respects. Most
obvious is the formation of a crater, but other effects such as fracturing of crustal rocks,
ejection of material, heating of crustal and mantle rocks up to melting and vaporization
temperatures, and the addition of material to the target body are of crucial importance.

Consequences of impacts on solid planetary surfaces have been investigated by labora-
tory analogue experiments (e.g. Kenkmann et al. 2017) and numerical modeling (e.g. Collins
et al. 2013; Jutzi et al. 2015). Impacts forming craters smaller than some tenth of kilometers
in diameter are considered to have little direct effect on the long-term evolution of a planet;
however, such impacts considerably contribute to the development of planetary landscapes
that are often peppered by thousands of craters varying in size and frequency, with small
craters occurring much more frequent than larger crater structures. The size-frequency dis-
tribution of craters provides a way to date the planet’s surface (e.g. Werner and Ivanov 2015)
and to estimate its erosive, volcanic (resurfacing) and interior activity.

Upon hypervelocity impact a shock wave is generated that propagates hemispherically
away from the point of impact decreasing in amplitude as a function of distance (e.g.,
O’Keefe and Ahrens 1977; Melosh 1989). As a consequence of shock wave compression
and subsequent unloading material is heated (the temperature increase is directly propor-
tional to the maximum shock pressure Pmax the material experienced, e.g. Pierazzo et al.
1997) and accelerated. The former causes vaporization (Pmax > 100–150 GPa) melting
(Pmax >∼ 60 GPa), or an increase in temperature, the latter is the driving process result-
ing in the excavation of a crater by displacement and ejection of material. The ejecta plume
is composed of vapor, molten, and lithic particles originating from the impactor, but mostly
from the target. Lithic ejecta vary significantly in size ranging from dust particles to large
fragments whose upper size limit depends on the size of the crater. The interaction of the
ejecta plume with an existing atmosphere has constructive and destructive consequences
for the evolution of atmospheres, which is discussed in the next section (Sect. 4.2). A small
amount of material is ejected sufficiently fast to escape the planet’s gravity field and to fall as
meteorite on other planets such as Martian meteorites on Earth (Head et al. 2002; Artemieva
and Ivanov 2004). By this mechanism, an interplanetary exchange of mass and maybe also
life (lithopanspermia) is possible (Napier 2004; Cockell and Cockell 2008; Cockell et al.
2015; Veras et al. 2018). The vast majority of the ejected material follows approximately
ballistic trajectories and is deposited as a continuous ejecta layer up to 2–3 crater radii away
from the crater. The thickness of the layer decreases approximately proportional to a power-
law with distance and can reach a thickness of several kilometers close to the crater for
impact basins several 100 km in diameter. Impactors forming basin structures of such a size
(impactor radius > 100 km) lead to the redistribution of mass several times the impactor
mass over the whole planet (Shuvalov et al. 2012). The accumulative effect of ejecta depo-
sition by numerous impact events ranging from impact craters of a few meters to several
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10 s of kilometers and the periodically occurring complete overturn of the deposit by large
basin-forming impacts are commonly referred to as “impact gardening”. The resulting thick
surface veneer is composed of megaregolith and regolith that grades from one into another.
As such, lithological units are thought to have very poor thermal conductivity properties
they have been suggested to have a strong insulation effect on the thermal history of a planet
(Rolf et al. 2016).

The vast majority of the kinetic energy of the impactor is transferred into internal energy
that is distributed by the shock wave deep into the interior of a planet. Depending on the
size ratio of the impactor diameter and the planets diameter an increase of temperature can
also occur at the antipode to the point of impact (Bierhaus et al. 2012). However, most mod-
elling attempts to quantify the effect of impact-induced heating on the thermal evolution
(e.g., Watters et al. 2009; Roberts and Arkani-Hamed 2014; Gillmann et al. 2016; Monteux
et al. 2007) often rely on simple scaling laws that are based on small-scale laboratory exper-
iments (O’Keefe and Ahrens 1979; Housen et al. 1983) or simple estimates from numerical
modelling (e.g., Abramov et al. 2012; Pierazzo et al. 1997). Such scaling laws suggest that
impacts create a thermal anomaly with an almost constant temperature increase in the near
field, the so-called “isobaric core”, which extends, depending on incident angle and ve-
locity, to approximately 1–2 times the size of the impactor. Outside the isobaric core, the
shock wave-induced temperature rise decreases with distance approximately proportional
to the power of 2. (Pierazzo et al. 1997; Monteux et al. 2007; Ruedas 2017). Such simple
estimates are not applicable for giant collisions of planetary embryos, such as the Moon-
forming event (see Nakajima and Stevenson 2014, 2015; Cameron and Ward 1976; Canup
2004; Melosh 1990; Pahlevan and Stevenson 2007: for further details); they become already
inaccurate for sufficiently large impactors (e.g. some 10 s of km diameter for the Earth),
where the pre-impact temperature of the interior and the interaction of the shock wave with
the core-mantle boundary become important for the distribution of impact-generated heat
(Manske et al. 2018).

Depending on the lithology, whether more crustal rocks or mantle material is involved, a
melt volume is generated that corresponds approximately 5–15 times the volume of the pro-
jectile; however, this does include the additional melting that occurs due to decompression
melting as a consequence of the uplift of originally deep-seated mantle rocks (Manske et al.
2018; Jones et al. 2005).

Besides the immediate production of shock melt, the impact-induced heating of the inte-
rior of a planet has further important implications. Smaller impacts generate shallow thermal
anomalies that do not reach far enough to affect the mantle, but cause melting and degassing
of the lithosphere (see Sect. 4.2). Impactors big enough so that their thermal anomaly sig-
nificantly reaches into the mantle, can have long-term and sustainable consequences for
convection processes. The impact-induced thermal anomaly is hot and positively buoyant. It
rises toward and flattens against the surface, leading to lateral spreading in a low viscosity
flow. The material can stay hot for hundreds of thousands to millions of years, leading to
widespread melting and resurfacing (Watters et al. 2009; Roberts and Arkani-Hamed 2014;
Gillmann et al. 2016; O’Neill et al. 2017; Rolf et al. 2016; Padovan et al. 2017; Ruedas and
Breuer 2017). For major impacts, the thermal anomaly can spread beyond the hemisphere
the impact occurred on, leading to global scale perturbations. To conserve mass, the upper
mantle is mobilized, with material being pushed away from the impact location. Eventu-
ally, it may accumulate at an antipodal position, where it forms downwellings/subduction
events (Gillmann et al. 2016; O’Neill et al. 2017). In this situation, large impacts can drive a
transient plate tectonics-like global convection in the mantle of terrestrial planets for tens of
millions of years. Moderately sized impacts (10 km < radius < 100 km) can help triggering
these events by thinning lithosphere causing upwelling.
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Mantle partial melting also means mantle depletion. Water and CO2, especially, are
incompatible species and go into the melt easily. Thus, impacts could contribute to re-
move volatiles from planetary mantles (Davies 2008). It has been suggested that a sin-
gle large impact (radius > 800 km) may be capable to efficiently deplete the upper man-
tle in the vicinity of the impact due to the large extent of the thermal anomaly generated
by such an event (Gillmann et al. 2016). However a number of moderately large impacts
(200 km < radius < 500 km) is much more efficient to deplete the upper mantle of a planet
than a single event of the same cumulated mass (Gillmann et al. 2017). Such a scenario leads
to a drier planet, especially if no rehydration (and remixing) mechanism is present (i.e. no
subduction). This diminishes the odds that the planet could sustain significant degassing
(especially of water) during later phases of its evolution, leading to drier, cooler surface
conditions.

On the long term, large impacts can still affect the convection regime of terrestrial plan-
ets hundreds of millions of years after the event occurred. They contributed to emplace a
large amount of fresh crust at the surface, which is preferentially located near the impact
location, where the bulk of the melting takes place (Nimmo et al. 2008; Golabek et al. 2011;
Padovan et al. 2017). Impact angle, however, has been suggested to be a crucial parameter
determining crustal distribution (Golabek et al. 2018).

Sufficiently large impacts can also affect the core of a planet. For larger collisions, the
thermal anomaly can reach down to the core-mantle boundary (CMB) affecting the heat flux
from the core into the mantle. Large variations of heat flux (at the top but also at the bottom
of the mantle) and corresponding changes in convective regime (considering massive hotspot
near the top of the core or equally large-scale downwellings of colder material to the CMB)
are likely to elicit a response. It is still difficult to assess the precise consequences of a large
impact on the core. Roberts and Arkani-Hamed (2014) predict that the high temperature
layer on top of the core would contribute to its symmetric stratification, preventing cooling
of the core. As a consequence, the reduced heat flow would shut down core convection
and cripple the magnetic dynamo. It could take around 1 Gyr for the core to go back to its
previous convective state. On the other hand, however, O’Neill et al. (2017) suggest that
an increase in the convective vigor just after an impact could lead to a resurgence of the
magnetic field.

The last main effect of collisions is the delivery of material to the solid planet. During
the end of the accretion, the so-called Late Veneer phase, while the bulk of the mass of ter-
restrial planets is already in place, it has been estimated that 0.5% of Earth’s mass is still
being delivered by a small number of large (radius > 750 km) bodies (Raymond et al. 2013).
Those impacts are thought to be responsible for the repartition of the highly siderophile el-
ements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Re, Au; Walker 2009), which are found in higher
concentration in the mantle than would be the case in a silicate-metal equilibrium. The com-
mon explanation is that accretion went on after core formation (Kimura et al. 1974; Rubie
et al. 2015). Impacts responsible for this late accretion would have been also susceptible to
have a strong effect on volatile repartition and mantle convection. It is however difficult to
estimate how much of the projectile mixes with the target body, especially for differentiated
impactors, as would probably be the case for the late Veneer collisions. While undifferenti-
ated material could equilibrate with the mantle, for differentiated bodies, the metallic core
could sink toward the CMB with little equilibration (Kendall and Melosh 2016). This im-
plies that more impact mass might be needed to reach measured HSE mantle concentrations
(Marchi et al. 2018).
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Fig. 3 Habitability and heat/interior/atmosphere evolution, and the role of the Sun and atmospheric escape

4 Processes Affecting Atmospheric Development

Atmospheric development is affected mainly by five processes, namely escape (Sect.
4.1), delivery (or/and erosion) via impacts (Sect. 4.2), outgassing and surface emissions
(Sect. 4.3), surface removal (Sect. 4.4), and finally, life itself. Figure 3 summarizes these
processes and their main interactions (note that the effects of life are discussed separately
further below (Sect. 5).

4.1 Atmospheric Escape

Atmospheric escape can be diffusion-limited or energy-limited depending on numerous fac-
tors such as atmospheric mass, composition, and the incoming stellar energy (see e.g. Wat-
son et al. 1981). Also potentially relevant is the efficiency by which photochemistry can
release the light hydrogen atoms from their heavier molecular reservoirs in the middle-to-
upper atmosphere. Energy-limited escape includes thermal (Jeans) escape that is related to
the Maxwell-Boltzmann energy distribution, so depends upon temperature hence upon at-
mospheric absorption and incoming stellar energy. At higher (EUV) energies, e.g. typically
during the earlier stages of evolution for Earth-like planets, statistically driven Jeans es-
cape can transition into an organized, bulk gas outflow known as hydrodynamic escape or
blow-off. Larger species (such as helium, carbon or oxygen atoms) can undergo escape via
so-called hydrodynamic drag where they are carried along in the stream of lighter, hydrogen
atoms. Hydrodynamic escape is a determining factor in early planetary atmospheric evolu-
tion (Tian and Ida 2015). It is believed that hydrodynamic escape is able to generate noble
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gas isotopic fractionation, as observed on Venus (Gillmann et al. 2009). It has however been
shown (Odert et al. 2018) that non-unique set of conditions existed to reach the present-
day observation. Also for close-in extrasolar planets, hydrodynamic escape is believed to
play a major role in shaping the bi-modal distribution of terrestrial-type and gas-rich planets
(Fulton et al. 2017; Owen and Wu 2017). Hydrodynamic escape is an important process
for establishing volatile inventories, particularly for small bodies (<0.8 ME, where ME is
Earth’s mass) as they would be unable to retain their inventory of volatiles like water (Lam-
mer et al. 2014, 2018). Therefore, hydrodynamic or thermal escape also leads to the loss of
volatiles from planetary embryos (Tian et al. 2018), thus affecting planetary formation.

Non-thermal (non-Jeans) escape processes include interactions between the atmospheric
molecules and solar radiation (EUV) like charge exchange and dissociative recombination
(see e.g. Shizgal and Arkos 1996), sputtering (Chassefière and Leblanc 2004) or plasma
clouds instabilities (Lammer et al. 2006). In the present-day Solar System, non-thermal
escape mechanisms constitute the bulk of the measured escape on terrestrial planets.

Non-thermal escape is thought to have had a significant effect on the long-term evolu-
tion of terrestrial planets, contributing to the shift from a wet early Mars to dry present-day
conditions as evidenced by the D/H ratio in the Martian atmosphere (Carr 1990). The same
scenario has been discussed for Venus (Donahue 1999) but here the situation is more com-
plex (Grinspoon 1993, 2013) because of large variations of D/H ratio with altitude (Marcq
et al. 2018).

Non-thermal escape, unlike Jeans escape, is affected by planetary magnetic fields gener-
ated by core dynamos (e.g., Lammer et al. 2009). Intrinsic magnetic fields are generated by
conductive fluid motion within a terrestrial planet’s liquid outer core through either thermal
or chemical convection. Core conditions necessary to magnetic field generation are likely
highly dependent on core composition, global mantle dynamics (e.g., existence of plate tec-
tonics), water repartition and even surface conditions (Lammer et al. 2009). Venus shows no
sign of past or present-day intrinsic magnetic field due to its young surface. However, it is
believed that Venus is likely to have generated one in the past even though reasons behind
its absence at present-day are still debated (Stevenson 1983; Jacobson et al. 2017; Dumoulin
et al. 2017; O’Rourke et al. 2018). Mars, while also lacking a present-day intrinsic field, still
exhibits remnants of magnetized crust (Acuña et al. 2001; Connerney et al. 2001). Differ-
ences between Mars, Venus and Earth have been linked to the lack or presence of magnetic
fields (see Lammer et al. 2009), implying that water loss and cessation of habitability were
related to the lack of a shielding magnetic field (Lundin et al. 2007).

Present-day escape on Venus and Mars has been measured by Venus Express, Mars
Express and MAVEN. Observations suggest that escape rates for both planets is similar
to Earth’s despite the Earth’s magnetosphere possibly acting as a shield. It has been pro-
posed that a large magnetosphere presented a larger interaction region to the solar radiation
(Barabash et al. 2007), resulting in a similar net loss. The debate is still currently open.
Uncertainties about the re-entry of ions along the magnetic lines (Tarduno et al. 2014) may
indicate lower actual losses and favour the shielding effect. On the other hand, some recent
models indicate that losses from magnetospheres could be enhanced near the magnetic poles
and cusps (Gunell et al. 2018) thus limiting further protection offered by magnetic fields.

One needs also to consider variations in conditions (both Solar and atmospheric) over
the history of planets. Magnetic fields are likely to play a stronger role early on, when solar
activity was stronger (Lammer et al. 2009, 2018). This affects two important aspects. First,
the response of early atmospheres to Coronal Mass Ejections (CMEs) from the young Sun,
much more frequent than at present-day (Lillis et al. 2015; Ramstad et al. 2017), could lead
to enhanced escape on planets lacking a magnetic field. Second, a magnetic field could have
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played a role against large non-thermal escape rates of nitrogen caused by the high EUV
flux of young stars (Lammer et al. 2018), leading to one of the defining features of Earth.

Finally, whether or not magnetic fields affect atmospheric escape, they still offer a pro-
tection to life from high-energy particles, which is perhaps the most their straightforward
effect on habitability.

4.2 Impacts

Collisions are complex events that can affect a terrestrial planet’s atmosphere in dramatic
ways immediately after an impact but also have lasting long-term consequences.

The first immediate effect of impacts on the atmosphere is the heat that is released in the
gaseous envelope of a planet. Even smaller impacts (Radius < 50 km) can heat significantly
a planet’s atmosphere. In some cases, the sequence of processes related to the atmospheric
interaction and long-term climatic consequences may have led to extinction events as it
happened 65 Ma ago on Earth. In contrast, smaller impact events (Radius < 5 km) may have
created favorable spots for life (for example warm ponds and hydrothermal system; Sleep
et al. 2001). Those impacts can also change the chemistry of the atmosphere. Bulk species
(H2O, CO2, SO2) are obviously important, but less common species are also important to life
and impacts can affect their chemistry (Kasting 1990). Iron meteorite could lead to increased
concentrations of reduced gases like H2 and CH4, which is important for prebiotic chemistry.
Organic molecules/hydrocarbons can also be generated during an impact (Mukhin et al.
1989). It is unlikely that those impacts can affect the long-term climate of a terrestrial planet.
Studies have shown on Mars (Turbet et al. 2017) that single impacts (Radius < 50 km) do
not produce stable warm climate but only local precipitations for no more than 5–7 years
per bar of water injected.

Larger collisions could have more violent consequences and generate enough heat to
vaporize an ocean or even create a local (or global for giant impacts) magma ocean. In an
ocean-vaporizing impact, it is likely that the atmosphere goes through a transient silicate
vapor phase lasting from a few hours to months, depending on the energy of the collision.
This is caused by the plume rising after impact and condensing into nanoscale particles
during its expansion and cooling by radiating out to space and into the ocean (Nisbet et al.
2007), leading to the formation of a steam atmosphere. The temperature of the atmosphere
also decreases at the end of the phase over timescales of the order of a year, while steam
atmosphere rains back down over decades to centuries after the event (Zahnle and Sleep
1997, 2006).

The main long-term consequence of collisions is the changes they can cause to the global
volatile inventory of the atmosphere. Impacts by meteorites have long been known to be able
to erode planetary atmospheres (Cameron 1983; Melosh and Vickery 1989). Planets with
lower mass (like Mars compared to Earth or Venus) are more likely to see their atmospheres
eroded efficiently (Pham et al. 2011). Several different mechanisms can lead to atmospheric
loss: (1) direct burst and ejection (quite substantial) of the atmosphere (related to the shock
wave); (2) plume effect involving the vaporized projectile and sediments; (3) basement clasts
particle ejections; the particles ejected in the atmosphere accelerate and heat the atmosphere;
here the impact angle is important for the amount of particles; (4) a fourth mechanism also
exists in the case of large collisions: the ground motion of the planet caused by the impact
that can accelerate particles of the atmosphere above escape velocities (Fig. 4).

Atmosphere losses due to giant impacts (above 1000 km radius) are at the level of 20% of
the mass of the impactor (Genda and Abe 2003), which can be significant. Ground motion
seems to be the cause of this large atmosphere loss in the giant impact scenario. Precise
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Fig. 4 Impact effects on the planet and its atmosphere

modeling is, however, difficult to constrain for those sizes and numerical simulations usually
focus on the consequences for the solid planet. Erosion of the atmosphere by a few large
impacts (above 200 km radius) appears limited, unless airburst processes are considered,
especially in a dense atmosphere (Shuvalov 2009; Shuvalov et al. 2014). Swarms of smaller
(1 km < R < 100 km) more mass-effective impactors seem required for this effect to be
significant. In fact, those small impacts erode atmospheres very efficiently because most of
their energy and momentum can directly be available to fuel volatile escape at a local scale.
On the contrary, large/giant impact must act on a global scale and generate enough shock
to generate ground motion (strong vibrations of the planet’s surface), which is much less
efficient. The cumulated effect of the different impactor populations is then vastly tilted in
favor of small objects, mainly due to how many of those smaller bodies can affect the planet
over its history (Schlichting et al. 2015; Schlichting and Mukhopadhyay 2018).

Impactors can create a large input of volatile in the atmosphere from the melting they
cause during the impact and through the volatiles that they carry. It is quite difficult to
estimate which of those two origins for volatile input dominates, as it depends on many
parameters, like the vaporization of the projectile, its content, target material composition
and so on. However, for volatile rich meteorites (like carbonaceous chondrites for example)
and comets, input from the impactor seems the major component. It is thus possible to
compute the net balance of erosion and retention assuming a given impactor flux/different
scenarios (i.e. Pham and Karatekin 2016; Schlichting et al. 2015) The way impactors can
deliver volatiles mainly depends on three parameters, which are the volatile content of the
impactor, the amount of impactor material remaining on the planet, and the fraction of the
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retained impactor mass which is released as vapor. For typical asteroidal impacts, silicates
are not completely vaporized (Pierazzo and Melosh 2000). Studies on the atmospheric loss
and delivery due to impacts differ sometimes by orders of magnitude, mainly due to different
equation of state and dynamical models used (Hamano and Abe 2010; Melosh and Vickery
1989; Newman et al. 1999; Shuvalov 2009; Svetsov 2007; Vickery and Melosh 1990).

This leads to an increase/decrease in atmosphere density, greenhouse effect and surface
temperatures, depending on which effect is dominant. Results typically vary from planet to
planet: planetary mass, atmosphere density, impactor parameters all interact to the end-result
difficult to intuit (Pham et al. 2011; Marounina et al. 2015; Schlichting and Mukhopadhyay
2018).

The vaporization rate depends on the impact energy. Smaller and slower collisions tend to
contribute less to the atmosphere. It is quite difficult to estimate which of the two origins (tar-
get melting or impactor vaporization) for volatile input dominates, considering how many
parameters can vary and their uncertainties. Small impactors are able to deliver volatiles on
vaporization but are usually less efficient at creating degassing of the planet. For volatile-rich
meteorites (like carbonaceous chondrites for example) and comets, input from the impactor
seems the major component.

4.3 Outgassing and Surface Emissions

Outgassing of volatile species such as CO2, H2O, CO and Sulphur-containing compounds
(see e.g., review by Cadle 1980; Holland 1984; Catling and Kasting 2017) likely played
an important role in shaping Earth’s atmosphere. The main points have been discussed in
Sect. 3. In addition to volcanic outgassing, surface emissions on Earth can also arise due
to e.g. geological processes such as serpentinization, anthropogenic emissions e.g. from
industry, vehicles etc. and biomass emissions due to life (Sect. 5).

4.4 Surface Removal

Gases can be removed onto surfaces essentially depending on species properties (e.g. gas
velocity, polarity etc.), the type of surface (e.g. phase, composition, roughness etc.) and
atmospheric properties (e.g. density, temperature). Dry deposition is usually parameterized
with a so-called (species-dependent) sticking coefficient multiplied by the flux of gas-phase
species impinging onto the surface. Removal from the gas-phase into bulk surface liquids
(e.g. absorption of CO2 by the oceans) can be parameterized using Henry’s law coefficients.
Raindrops falling through the atmosphere can scavenge soluble gases and lead to gas-phase
removal by rainout. For a review of these processes, see e.g., Seinfeld and Pandis (2016).

5 Interaction of Life with the Atmosphere, Geosphere and Interior of
Planets

5.1 Evolution of Earth’s Atmosphere

Earth’s (N2–O2) dominated atmosphere is essential for all life on Earth because it regu-
lates climate (e.g. due to radiative absorption, emission and scattering) and by distributing
energy, moisture and momentum via dynamical transport. The atmosphere also offers pro-
tection from both harmful electromagnetic radiation (e.g. via UV-absorption in the ozone
layer) as well as high energy particles, and most importantly, its influence upon pressure
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and temperature enables the long-term presence of surface liquid water, required by all
life on our planet. As explained in Sect. 3.4, simulations however of the terrestrial paleo-
magnetosphere as well as of the solar wind induced atmospheric ion-pickup escape ∼4
billion years ago (Lichtenegger et al. 2010) are indicating that during the harsh conditions
of the Hadean and early Archean eons, a nitrogen-dominated atmosphere would not have
been able to survive, but would have been eroded within a few million years due to the high
EUV flux and the strong solar wind of the early Sun (as discussed above). In addition, these
results are indicating higher amounts of CO2 during the Hadean and early Archean in agree-
ment with studies of the CO2 partial pressure evolution (e.g., Hessler et al. 2004; Kanzaki
and Murakami 2015). Recent works have suggested that uncertainties in the early rotation
rate and associated activity evolution of the Early Sun (Johnstone et al. 2015b) could have a
potentially large influence on Earth’s atmospheric evolution.

Early Earth (before ∼2.3 Gyr) atmosphere was likely anoxic and methane-rich, main-
taining habitable conditions despite the so-called faint young Sun problem (Haqq-Misra
et al. 2008). Around 2.3 Gyr, the Earth underwent a great oxidation event (or multiple ox-
idation events) at the planetary scale, linked to the evolution of oxygenic photosynthesis
by cyanobacteria and to geological processes permitting O2 accumulation (Catling et al.
2001; Holland 2002). This event involved the shift in redox conditions from O2-free at-
mosphere to moderately oxidizing conditions typically containing 0.1% O2 (Catling et al.
2005). This great oxidation appears so far decoupled from that of the Earth’s mantle men-
tioned in Sect. 3.4, because almost 2 Ga separate both events. However, a possible tectonic
regime transition from the Archean with microplates floating on a low viscosity mantle to
the Proterozoic regime with deeper subduction and mantle mixing may have facilitated oxy-
genation of the upper mantle by subduction of iron oxides (Mikhail and Sverjensky 2014).
Initiation of deep subduction would also have allowed the ascent of oxidized lower mantle
material towards the Earth’s surface; both could have contributed to the GOE (Andrault et al.
2018). This appealing model (Andrault et al. 2018) however, implies that the oxidation state
of volcanic rocks or of their mantle sources must have changed during or just before the end
of the Archaean. So far, this long-standing hypothesis is not fully supported since available
geochemical observations indicate that the oxidation states of mantle melts reaching the sur-
face have remained constant from the early Archaean to present-day (Canil 1997; Gaillard
et al. 2015; Nicklas et al. 2018). This redox constancy in the oxidation state of the Earth’s
mantle remains however unexplained. It may simply reveal our inability to capture the signa-
ture in ancient rocks of any redox modifications or, that another process may have modified
the oxidation state of volcanic gases without requiring a change of the mantle source. For
example, Gaillard et al. (2011) have shown that the conditions of volcanic degassing may
trigger important changes in the oxidation state of volcanic gases while the magmatic source
remains unchanged; this does not exclude a change in the oxidation state of the source, but
it adds a degree of freedom in the processes linking the deep Earth to its surficial chemistry.
Changes in the solid Earth that may have triggered the GOE could also include higher rates
of serpentinization on more ultramafic seafloor and lower rates of ferrous iron delivery at
mid-ocean ridges (Kasting 2013a).

Earth redox conditions remained heterogeneous in space and time, with redox-stratified
oceans and slight oxygenated atmosphere for more than a billion years before reaching mod-
ern conditions of fully oxic ocean and atmosphere only 800–600 Ma ago (Lyons et al. 2014).

Over longer, geological timescales, the biosphere on its own cannot change Earth’s net
global oxidation state because every biologically generated oxidant is accompanied by a
mole-equivalent reductant. Carbon stored in biomass reservoirs, for example, is released
back into the atmosphere-ocean system during e.g. organic decay or/and respiration. In-
stead, a net atmospheric redox shift requires that these redox products couple differentially
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to geologic fluxes, for example by increasing carbon sinks and burial of organics during
tectonic events (Van Valen 1971; Catling et al. 2001). The “carbon rain” (“marine snow”) of
organic material from the upper ocean layers down to the ocean surface can be subducted
via burial into the Earth’s mantle (a process that is likely to be much more efficient on a
planet with plate tectonics). The removed organic material—which would otherwise have
combined with oxygen during respiration—therefore implies a net excess of O2 (g).

Plate tectonics also has a strong influence on the continuous existence and diversity of
volcanism. This is linked to subduction of hydrated material, which is released in the mantle
wedge and triggers arc volcanism close to the subduction zone. Changes in the organic and
inorganic components of the carbon cycle would have affected key gases in Earth’s early
atmosphere (O2, CO2, CH4 and N2), and are linked to the evolution of life.

The actual O2, CH4 and N2 levels on Earth can be understood by considering their evo-
lution in a global redox situation.

After the continents formed, the CO2 cycle was influenced by both continental weath-
ering (carbon-silicate cycle) and (to a smaller extent) seafloor weathering. On early Earth,
seafloor weathering was likely the dominant weathering process (Kasting 2013b; Coogan
and Gillis 2013; Coogan and Dosso 2015; Krissansen-Totton and Catling 2017).

Regarding the atmosphere, life interacts with biogeochemical systems in numerous ways,
which we will only briefly describe here. In the carbon cycle (Falkowski et al. 2000) for ex-
ample, phytoplankton absorb aqueous CO2 in the upper ocean layers, which leads to a “bi-
ological pump” favoring absorption of CO2 from the atmosphere into the ocean. Biomass
and soil contain about three times the amount of carbon than what is present in the atmo-
sphere, hence they influence carbon storage and atmospheric-ocean fluxes. Regarding the
oxygen cycle (see e.g., Catling and Claire 2005; Falkowski and Godfrey 2008), the main
atmospheric source (biological) is regulated by burial which controls an imbalance between
primary production and respiration from the biosphere (as discussed above). Finally, the evo-
lution of the nitrogen cycle may have had an important role in Earth habitability (Stüeken
et al. 2016a) and is controlled by the evolution of Earth redox-state. N2 is important in at-
mospheric pressure, itself controlling the stability of surface liquid water. Several nitrogen
species (nitrous oxide N2O, nitrogen dioxide NO2, nitrogen gas N2, and ammonia NH3)
are important greenhouse gases, or affect the production of ozone (O3), also a greenhouse
agent, or combine with organic compounds to produce aerosols hazes blocking solar inso-
lation (Stüeken et al. 2016a). Microbes play a crucial role in fixing inert molecular nitrogen
from the atmosphere into ammonium, which can subsequently be recycled back into the
atmosphere as nitrous oxide (see e.g., Kasting 2013b; Canfield et al. 2010; Yung and De
More 1999; Ward 2012). Biomass emissions on Earth include e.g. oxygen, carbon diox-
ide, methane, nitrous oxide, chloromethane and isoprene, and sulfur-rich aerosols, which
can affect atmospheric composition, climate and cloud cover, hence habitability. However,
some of these gases are biologically produced only recently on the geological timescale,
and only by complex eukaryotic algae. Before the GOE (∼2.5 Ga), probably only methane
was an important gaseous contribution of life to the atmosphere composition (Catling et al.
2001). With the appearance of cyanobacteria, the biological contribution of molecular oxy-
gen by oxygenic photosynthesis, and molecular nitrogen and nitrous oxide by nitrification
and denitrification increased in the atmosphere. Sulfur-rich aerosols (DMS: dimethyl sul-
fide, oxidized into sulfur compounds serving as nuclei for cloud formation) are produced
by eukaryotic algae (haptophytes and some dinoflagellates) only since the Cenozoic (or the
Neoproterozoic, see Feulner et al. 2015), but also by volcanic activity, and have an impact on
climate, perhaps even triggering the Neoproterozoic snowball Earth although this remains
speculative. The origin and evolution of these biogeochemical cycles on the early Earth has
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important implications for the characterization of plausible spectral biosignatures to detect
in exoplanetary atmospheres (see below), and the possibility of complex life (active mobile
organisms like metazoans) beyond Earth (Catling et al. 2005).

5.2 Other Terrestrial Planet Atmospheres

Understanding our Solar System Planetary Atmospheres is a significant step forward for
paving the way for future studies of atmospheres of Extrasolar Planets. Notably, Venus and
Mars are natural comparative laboratories to investigate the diversity of atmospheric mass,
composition and circulation regimes. In this context, comparative studies are useful to un-
derstand the evolution of climate of our Earth, both in the past and in the future.

Emissions of atmospheric greenhouse constituents such as methane could have played
an important role in the early evolution of the Earth, by preventing it from becoming a frigid
snowball (Pavlov et al. 2000; Kasting 2013a). Serpentinization is one of the most efficient
ways to create CH4 abiotically (Etiope and Sherwood Lollar 2013; Oze and Sharma 2007)
and it could have happened also on Early Mars with stronger volcanic activity, higher rates
of large impact cratering, and liquid water temporarily flowing on the surface compared
to present. This metamorphic process, by which low-silica mafic rocks are hydrothermally
altered, produces serpentine and magnetite by storing water, and releasing H2. The released
H2 reacting with oxidized carbon compounds, such as CO2 and CO, can create CH4 in
reduced conditions through Fischer–Tropsch-type reactions (Etiope and Sherwood Lollar
2013). The detection of methane in Mars atmosphere up to ∼50 ppb locally (Mumma et al.
2009) indicates the presence of highly localized and sporadic CH4 sources that could have
been trapped in clathrates which are in stable form at depth (Chastain and Chevrier 2007).
The scientific objectives of the ESA’s ExoMars programme include investigating Martian
atmospheric trace gases and their sources. A particular emphasis is given to Methane and its
origin. A potential biological origin would indicate the existence of long-extinct microbes
or methane-producing organisms still active (Vago et al. 2017). An abiotic origin on the
other hand, would have implications for the geochemical processes, atmospheric evolution
and environmental conditions on early Mars (Chassefière et al. 2013, 2016) and Martian
remanent magnetic field (Lasue et al. 2015).

5.3 Influence of Life on the Interior Evolution of Planets

Major shifts in Earth’s evolution led to progressive adaptations of the biosphere. Conversely,
effects of the emergence and evolution of life significantly affect the Earth’s system (atmo-
sphere, hydrosphere, geosphere, and mantle). The emergence of continents permitted more
widespread use of solar energy. Land plants and benthic mats on exposed continents, but
also mats and phytoplankton in oceans, use solar energy to convert CO2 into biomass via
photosynthesis, with O2 as a by-product. This biomass is consumed by other organisms in
soils and the oceans. Most terrestrial biomass is ultimately exported to the ocean as dis-
solved and particulate organic matter, and preserved in shales, unless oxidized or eroded
(Wallmann and Aloisi 2012). Tectonic activity creates relief, enhancing weathering that lib-
erates carbon from organics or carbonates. Indeed, biologically enhanced weathering rates
of silicate rock (Schwartzman and Volk 1989; Drever 1994; Hoffland et al. 2004) are likely
crucial for the evolution of plate tectonics planets in various respects. Weathering is also
an important component in the long-term silicate-carbonate cycle, which stabilizes Earth’s
climate. In this context, the biological enhancement of weathering rates has been argued to
lengthen the lifespan of the biosphere (Lenton 2002). In addition, the chemical dissolution
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Fig. 5 Habitability and heat/interior/atmosphere evolution, and the potential role of life

of rock enhances the rate of surface erosion and thus the flux of sediments into subduc-
tion zones, including biological carbon. This establishes potential links to the deep interior
(Rosing et al. 2006; Sleep et al. 2012; Höning et al. 2014). Water stably bound within the
sediments contributes to the subduction rate of water into the Earth’s mantle. The mantle re-
sponds by enhancing its rates of convection, water outgassing, and subduction. Water that is
released in subduction zones at a depth of 100–200 km induces partial melting and therefore
the production of new continental crust (Höning et al. 2014; Höning and Spohn 2016). Im-
portantly, this causes a positive feedback cycle, since more continental crust is subjected to
weathering. Part of the geological carbon cycle is controlled by life and is also important to
consider in Earth’s habitability. On a long time-scale, the most relevant fluxes in recycling
organic carbon are the weathering of fossil organic carbon on land and burial of organic
matter, carbonates and methane in marine sediments (Wallmann and Aloisi 2012). Meta-
morphism of subducted carbonate rocks and fossil organic carbon, and mantle degassing at
subduction zones, hot spots, and volcanoes are important sources of CO2, in the atmosphere,
while life and weathering as important sinks, as explained above. As the biosphere enhances
weathering, it can be argued to play an important role in preserving the present-day Earth
state with large emerged continents. An Earth-like planet without biosphere could evolve
into a water-world scenario with no or few emerged continents as suggested by Höning and
Spohn (2016). Mechanisms related to the presence of life on the surface of a planet like
Earth are shown in Fig. 5.
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Fig. 6 Habitability and heat/interior/atmosphere evolution, and the role of impacts on life

5.4 Combined Effects on Atmosphere and Interior Evolution

Having considered various factors individually, we graphically link their combined effects
in Fig. 6.

Figure 6 illustrates the potential complexity of processes that could influence planetary
habitability. It is clear that an interdisciplinary approach is required in order to elucidate the
potentially subtle feedbacks that can operate.

6 Identification of Preserved Life Traces in the Context of the Interaction
of Life with Planetary Evolution

6.1 Life’s Origin and Environmental Tolerances

The origin of life remains one of the most challenging questions and although it will never
be known for certain, we can still propose plausible scenarios. Whether life appeared in a hot
or lukewarm, deep or surface environment, life is a natural phenomenon, and resulted from
complexification of organic matter (Reisse 2011). Elements (C,H, N, O, P, S, metals) and
abiotic organic molecules are common in the universe and form through various processes
in space and on Earth, including some of the molecular building blocks of life (amino acids,
bases, sugars). The origin of water on Earth is reasonably well established (see above),
and comes mainly from carbonaceous chondrites and degassing. Earth has been habitable
(with liquid water and some crust) since the Hadean, as evidenced by geochemical and
mineralogical analyses of 4.3 Ga zircons (review in Martin et al. 2006; Whitehouse et al.
2017), and thus life could have originated soon after the cooling and differentiation of our
planet. Various scenarios propose that life originated with the appearance of a (lipidic or
mineral) membrane first, of nucleic acids first (genetic code, proteins or RNA before DNA),
or metabolism first. The plausibility of these scenarios can be tested in light of the geological
conditions prevailing in the early Earth, although we have little information for the Hadean,
from which rocks are not preserved, but only minerals (zircons). For a review, see e.g.,
Hazen (2012); Bada and Lazcano (2002); Szostak (2017).
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Life on Earth has adapted to a wide range of physico-chemical conditions (e.g. Javaux
and Dehant 2010). Organisms called “extremophiles” not only tolerates but also thrives in
extreme values of these parameters (temperature, salinity, oxygen concentration, pressure,
vacuum, pH, radiation, metal concentrations . . . ), offering a perspective on the limit of life
on Earth. Some of the metabolisms allowing adaptation to these ecological niches appeared
early in Earth history, but many are derived, e.g. appeared as secondary adaptations and
cannot be used as analogs of early life or extraterrestrial life. Another point to consider is
how these extremophiles benefit from nutrients originating from less extreme environments
transported by wind or water. Carbon-based life needs, at the minimum, liquid water in con-
tact with minerals, where nutrients (elements) are concentrated. To replenish the sources of
nutrients, recycling is necessary, and thus perhaps plate tectonics or some sort of geological
activity. Some forms of life, but not all, also need light. A much wider range of environmen-
tal parameters certainly exists on planetary bodies within and beyond our Solar System and
the question arises which set of environmental parameters would still allow the origin and
persistence of life.

6.2 Early Earth

The search for the existence of life on the early Earth or beyond Earth requires the charac-
terization of biosignatures, or “indices” or “traces” of life. These traditionally include fossil
chemicals produced only by biological activity, isotopic fractionations of elements indicative
of biological cycling, biosedimentary structures induced by microbial mats such as stroma-
tolites, and microstructures interpreted as morphological fossils. However, these traces can
also be produced by abiotic processes or later contamination, in some cases, leaving a con-
troversy surrounding the earliest record of life on Earth. Only the combined characterization
of possible and multiple traces of life and their geological context, from the macro- to the
micro- and nanoscales, can increase confidence in the fossil record and help discard abiotic
explanations.

Geobiological studies can improve our understanding of preservational environments and
taphonomic processes (how organisms decay and become fossilized), abiotic processes and
products, and help us to develop a multidisciplinary approach to establish the biogenicity
(biological origin), endogenicity (the fact that the microfossil or other trace of life is not a
contamination in the rock), and syngenicity (the fact that the trace of life has the same age of
the host rock) of these in situ biosignatures or the possible biogenicity of atmospheric signa-
tures (e.g., Brasier et al. 2006; Javaux and Lepot 2017; Van Zuilen et al. 2002; Javaux 2019).
Combining minimum ages of fossil biosignatures with molecular phylogeny (“tree of life”)
permits to produce molecular clocks, that provide dating of branching events and important
biological innovations, and allow predictions for the evolution of former and later clades or
metabolisms. The analysis of these fossils and other traces of life has allowed the reconstruc-
tion of the co-evolution of Earth and life. This suggests that the Earth was inhabited early in
its history, since at least 3.5 Ga (Allwood et al. 2009). Among the oldest unambiguous traces
of life preserved on Earth, stromatolites, isotopic fractionation of C, S, N, and microfossils
indicate the presence of a microbial biosphere at least since 3.45 Ga (review in Knoll et al.
2016; Javaux 2019). Claims for older traces range up to 4.3 Gyr but are ambiguous and could
be explained by alternative abiotic processes (e.g., McCollom and Seewald 2001; Van Zuilen
et al. 2002; García-Ruiz et al. 2009; Grosch et al. 2017; Wacey et al. 2018). Such putative
traces include the presence of organics with carbon isotope fractionation in zircons (Bell
et al. 2015) or metamorphic rocks (Tashiro et al. 2017), folded structures interpreted as stro-
matolites in deformed metamorphic rocks (Nutman et al. 2016), or mineral tubes interpreted
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as microfossils (Dodd et al. 2017), or traces interpreted as endolithic burrows in pillow laves
(Furnes et al. 2004). Within possible windows of preservation relevant both for early Earth
and early Mars (see below), fine-grained (shales and siltstones) or coarse-grained (sand-
stones) siliciclastic rocks preserve very well fossil organic remains through the geological
record, including microscopic cells and microbial mats as old as 3.2 Ga (Javaux et al. 2010;
Homann et al. 2015; Noffke et al. 2006), photosynthetic pigments as old as 1.6 Ga (Brocks
et al. 2005; Gueneli et al. 2018) and eukaryotic steranes as old as 800 Ma (Brocks et al.
2016; Love et al. 2009). Probable abiotic organics have recently been reported from 3 Ga
Mars samples (Eigenbrode et al. 2018). Carbonates, chert (Sugitani et al. 2010; Westall et al.
2011) and evaporites may also preserve traces of life, but chert are formed by hydrothermal
fluids, that can also lead to the formation of abiotic organics migrating around minerals and
creating abiotic pseudofossils (e.g., Van Zuilen et al. 2002; Knoll et al. 2016) or preserving
volcanic glasses resembling tubular or lenticular microfossils (Wacey et al. 2018; Hickman-
Lewis et al. 2018), and carbonates can host folded structures or mineral precipitates that can
be confused with stromatolites. Evaporites are very soluble, but can be sometimes preserved
in the geological record (e.g. Allwood et al. 2013). Some of these lithologies are common
on the early Earth, and may be relevant to Mars (Westall 2008; Vago et al. 2017; McMahon
et al. 2018).

The preservation of molecules such as pigments, signature of photosynthetic metabolisms,
can be used to track life’s traces on the early Earth, and as analog studies for the detection
of complex biological molecules in early Mars sedimentary rocks (e.g. Storme et al. 2015).
Modern cyanobacterial mats growing in Antarctica provide an opportunity to study micro-
bial biosignature preservation in clastic environment exposed to high UV radiation, and
undisturbed by metazoans (Lepot et al. 2014).

As discussed above, cyanobacteria are crucial microorganisms because they “invented”
oxygenic photosynthesis, changing forever the chemistry of early Earth oceans and atmo-
sphere and creating new ecological niches where mobile complex life diversified. Determin-
ing new biosignatures of cyanobacteria might help to constrain the timing of oxygenic pho-
tosynthesis and to pinpoint the origin of the chloroplast, resulting from an important symbi-
otic event that led to a large diversification of the photosynthetic eukaryotes (Demoulin et al.
2019). The characterization of biosignatures from cyanobacterial mats growing in high UV
Antarctic lacustrine habitat showed that their cells and filamentous sheaths with diagnos-
tic pigments (scytonemin) can be preserved in 4000 years old siliciclastic sediments (Lepot
et al. 2014). The preservation of these organic remains occurred through the precipitation of
nanominerals (aragonite and clays).

Complex organic molecules and simple and complex organic morphologies, and also
abiotic organics from meteorites or geological processes, can thus be preserved in unaltered
mudstones or shales and can be searched for in ancient Earth rocks or in extraterrestrial
rocks with similar lithologies (e.g., Javaux et al. 2010; McMahon et al. 2018; Eigenbrode
et al. 2018).

6.3 Mars

Searching for life (past and present) on Mars is one of the main motivators for exploring the
planet.

The preservation of organic remains in clay minerals in early Earth samples and pos-
sibly analogue to those deposited during the Noachian on Mars permit the identification
of strategies for detection of biosignatures on Mars by the future Martian rovers. Indeed,
the rovers are using a combination of macro-to microscopic tools to characterize the ge-
ological context and possible habitability of local martian areas and lithologies, such as
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panoramic cameras, close-up imager (like the future CLUPI-a ExoMars instrument, Josset
et al. 2017, microscopes, IR and RAMAN microspectrometers to identify minerals and pos-
sible (abiotic or biotic) organics, and mass spectrometers measuring C isotopes). Because
of the destructive effects of the strong radiation environments at the surface of Mars, or-
ganic biosignatures need to be looked for under sediment or rock surfaces, as proposed for
the ExoMars rover equipped with a drill. Recently, organics were detected in 3 Ga mud-
stones of the Martian Gale crater by the NASA rover curiosity (Eigenbrode et al. 2018). As
discussed above, the mere presence of organics is not at all indicative of biological origin,
but this discovery shows that they can be preserved in ancient Martian sediments. Collec-
tion of well-characterized fossil-rich and fossil-barren rocks can serve as reference to test
instruments and landing and sampling strategies for future missions.

Westall et al. (2015) provided a recent review which summarizes how, where and what to
search for. The future ExoMars 2020 mission includes a rover that will search for life signs.

The Martian surface is subject to intense UV irradiation as well as and features a highly
oxidizing and acidic soil. How organism would respond to such conditions can be measured
in laboratory experiments designed to simulate planetary (and asteroid surface) conditions.
The Trace Gas Orbiter (Korablev et al. 2014) (part of the ongoing ExoMars mission) will
deliver groundbreaking data on the evolution, composition and climate of Mars’ atmosphere.

6.4 Earth-Like Exoplanets

The process of defining a scientific roadmap towards detecting biosignatures on Earth-like
exoplanets has considerably expanded and matured in recent years. The first step is to com-
pile a suitable target list. This involves identification of an appropriate sample of rocky
planets lying in the Habitable Zone of their central stars—which is a central task of the
PLATO 2.0 mission (Rauer et al. 2014). The so-called eta-Earth (ηEarth) parameter describes
the percentage occurrence rate of Earth-like planets around main sequence stars. For exam-
ple, 3.2 ± 1.6% of F,G,K stars are estimated to have planets with up to two Earth radii with
orbits from (100–200) days (Petigura et al. 2013), and an even higher percentage of stars
would be expected to have planets in their entire habitable zone.

The second step is to perform the measurement itself. For this, several remote methods
have been proposed. For example, atmospheric spectrophotometry has been examined by
numerous studies as a possible technique to measure spectral features of potential gas-phase
biosignatures such as oxygen (O2), ozone (O3) and nitrous oxide (N2O) (see e.g., Des Marais
et al. 2002; Segura et al. 2003; Tinetti et al. 2006; Kaltenegger et al. 2010; Rauer et al. 2011;
Grenfell et al. 2013; Meadows 2017; Gillon et al. 2016, 2017 to name but a few). However,
these biosignatures result from complex metabolisms that evolve relatively late on Earth
(around 2.5 Ga), hence are less probable to appear also beyond Earth. The plausibility of
Earth-like spectral biosignatures in exoplanet atmospheres should be assessed in light of
the origin and evolution of these biogeochemical cycles on the early Earth (see Sect. 5.1).
Surface spectroscopy has been proposed to search for e.g. leaf reflectance (the “red edge”,
see e.g. Seager et al. 2005), to look for biopigments (Schwieterman et al. 2015) or even
to search for microorganisms (Hegde et al. 2014). Spectropolarimetry has been suggested
as a technique to detect photosynthetic biopigments (see e.g. Berdyugina et al. 2016). An
excellent summary of recent advances in exoplanetary biosignature science can be found in
a series of review papers from the NASA Nexus for Exoplanet System Science (NExSS)
and Astrobiology Program, namely: Schwieterman et al. (2018) who provide an all-round
review of the topic; Meadows et al. (2018) who focus on oxygen; Catling et al. (2018) who
discuss a Bayesian approach; Walker et al. (2018) who propose future methods for biosigna-
ture assessment and Fujii et al. (2018) who summarize future relevant missions. A review of
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atmospheric biosignatures with a focus on photochemical responses in an exoplanetary con-
text is provided by Grenfell (2017). In addition to considering spectral bands of individual
gas-phase species, one can alternatively search for two (or more) species present simulta-
neously with relative abundances that can only be accounted for by invoking the existence
of life. Examples are e.g. the species pair (CH4 and O2). Without life on Earth to re-supply
them, these species would react and be removed to form carbon dioxide and water (see e.g.
Krissansen-Totton et al. 2018). Krissansen-Totton et al. (2018) and Lammer et al. (2018)
discuss nitrogen and oxygen cycles in a biosignature context. Kasting et al. (1993a, 1993b)
noted that nitrate removed to an abiotic ocean would be reduced to either N2 or NH3 during
passage through the mid-ocean ridge hydrothermal vents, and NH3 would be photochem-
ically converted back to N2. Thus, the presence of N2 in a planet’s atmosphere does not
require the existence of biological denitrification.

The third step is to retrieve atmospheric state variables (e.g. p, T , composition) by per-
forming a backwards calculation starting with the observed spectra (see e.g., von Paris et al.
2013; Barstow et al. 2016) combined with an estimate for noise sources (e.g. photon noise,
instrument noise etc.). Chemical species with strong, unique spectral features i.e. without
overlapping bands are therefore favored during this process to avoid convergence issues and
numerical degeneracies (see e.g. Benneke and Seager 2012).

The fourth step is to interpret and assess biosignature candidate signals. This involves
identifying and discounting so-called biosignature false positives (i.e. dead planets which
nevertheless mimic the presence of life) and false negatives (i.e. planets with life which is
not detected) (see e.g., Selsis et al. 2002; Schwieterman et al. 2016). Useful in this context
are estimates (e.g. from model studies) of the atmospheric climate and composition of a so-
called “dead Earth” i.e. a planet with the same properties as Earth except where life did not
develop (see e.g., Yung and De More 1999; Margulis and Lovelock 1974) in order to have
a benchmark against which to compare. There exists additional data which is useful to have
when assessing potential biosignatures, including the stellar class, metallicity, the age of the
system, the planetary (mass, interior), orbit and atmospheric properties (mass, composition,
temperature, albedo, clouds etc.) hence climate and habitability. Many of these issues have
been discussed e.g. in the special issue on “Planetary evolution and life” (Spohn 2014 and
references therein).

There exists a range of (exo)planetary parameters proposed to be related to the evolution
of life for which observational techniques have been suggested. Some of these however are
still in an early, discussion stage. For example, the bulk atmospheric composition could be
derived from measuring the so-called Rayleigh slope (see e.g. Kreidberg et al. 2014) arising
due to atmospheric scattering in the transmission spectrum in the UV/visible. The absorption
spectra of key molecular absorbers such as CO2, H2O can be derived during the primary tran-
sit (i.e. where the planet passes in front of the star) and from this, one can estimate species’
abundance profiles. From the secondary transit (where the planet disappears behind the stel-
lar disk), one can constrain e.g. the planetary temperature and climate-related profiles. From
reflection spectra and/or planetary phase curves (see e.g. Selsis et al. 2011) one can con-
strain clouds, albedo and atmospheric circulation. Some works (e.g. Vidotto et al. 2010)
suggested that the exoplanetary bow shock could be constrained from the early UV ingress
of the planetary transit. Planetary reflection spectra could in principle deliver information
about surface mineralogy and help distinguish between ultramafic, hydrated or/and water
ice surfaces (see e.g., Mukhin et al. 1989; Hu et al. 2012) or even between ocean, soil, snow
and vegetation based on isotropic scattering model (Fujii et al. 2010). Robinson et al. (2014)
reported a detection of Earth’s ocean glint from the Lunar CRater Observation and Sensing
Satellite (LCROSS) mission and discussed the consequences for Earth-like exoplanets.
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Biosignature detections for next generation missions such as the James Webb Space Tele-
scope (JWST) (see e.g. Barstow et al. 2016) and the European-Extremely Large Telescope
(E-ELT) are estimated to be very challenging (e.g. Rodeler and López-Morales 2014) but
could be possible if suitable targets are found. Somewhat farther into the future are mis-
sions discussing rocky, Earth-like planets and their potential biosignatures, including the
Large UV/Optical/IR Surveyor mission (LUVOIR, France 2016), the Habitable Exoplanet
Imaging Mission and the Origins Space Telescope. Further details of these missions are
summarized in Fujii et al. (2018).

7 Conclusion on Habitability and Planet Formation in a Broader Context

The search for and characterization of Earth-like planets in the habitable zone of stars has
become a central focus of research in astronomy, astrobiology and the planetary sciences al-
though life may also have formed in water-rich planetary objects outside of habitable zones.
Understanding whether a planet could be potentially habitable—and understanding the hab-
itability of Earth—requires a deeper knowledge of the geophysical processes driving the key
elements for habitability as developed in the present paper. To gain a better understanding of
these processes, the evolution of Earth is often taken as a reference case for the interaction
of atmosphere, geology and biological processes. Such processes are expected to take place
on terrestrial exoplanets also, but are much harder to constrain without in situ information.
Furthermore, terrestrial planets which orbit different stars of different spectral classes, in
particular M-dwarf stars, or/and young planetary systems, may experience much harsher
space weather conditions that could affect habitability as well as the presence of biosigna-
tures.

Terrestrial exoplanets are currently starting to be observed around different stars. Terres-
trial planets can have deep or shallow oceans; they have been suggested to possess hydrogen-
rich atmospheres or could lose their entire atmospheric inventories due to loss processes
such as escape. Spectroscopic measurements during planetary transits and occultations give
insights into the composition of exoplanetary atmospheres and albedos, which may help in
hypothesizing the presence of oceans and lands, and might give some hints on the interaction
between surface and interior. These measurements however must be further studied in light
of the geophysical context, which affects atmospheric evolution as discussed in the previous
section.

The recent discovery of seven roughly Earth-sized planets orbiting the ultra-cool, low-
mass star TRAPPIST-1 (Gillon et al. 2016, 2017) has vaulted this system to the forefront
of exoplanetary characterization. The planets orbit the star with semi-major axes <0.1 AU,
and orbital periods of a few Earth days. Given their proximity to the star, and the star’s low
mass and low luminosity, each TRAPPIST-1 planet has a moderate effective temperature
(from ∼160 to 400 K, Gillon et al. 2017). Depending on their atmospheres and possible
greenhouse effects, the surfaces can either be solid composed of water ice and/or rock, or
could support liquid water (Gillon et al. 2017; Checlair et al. 2017; Wolf 2017; Turbet et al.
2018). The planets’ orbits are in a near mean motion resonance, which maintains their ec-
centricities, raising tidal forces in the bodies that heat their interiors by tidal dissipation.
Tidal heating may be an important energy source for the innermost planets that can signif-
icantly increase their temperatures (Luger et al. 2017; Gillon et al. 2017; Barr et al. 2018).
Interior models can help in estimating the possible structures of the planets and give some
insights into their possible habitability (see Barr et al. 2018). Similar planetary systems to
TRAPPIST-1 are expected to be discovered in the next few decades, because M dwarfs are
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the most numerous stars in the Galaxy and the detectability of their close-in planets makes
them favorable targets for investigating possible life-harboring worlds, although the effect
of higher radiation rates and tidal locking on habitability need to be assessed. Due to the low
luminosity of the star, the habitable zone is located in a very close distance around the star.
For this reason, the planet/star size ratio for planets in the habitable zone is large, making
their detection easier. Current and upcoming missions will find new exoplanetary systems,
and their detailed modelling will be an important task to reveal their astrobiological poten-
tial.
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