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ABSTRACT

The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure
bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet
mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid
composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc
and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio.
Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of
the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law
that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled
to the gas, with Stokes number τf < 0.005 can drift through the partial gap at pebble isolation mass. However, as the planetary mass
increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to
an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble
size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by
numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting
the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant
planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.
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1. Introduction

Protoplanetary discs consist of gas and approximately 1% dust
grains. These grains collide and grow to millimeter and even
centimeter sizes (Brauer et al. 2008; Güttler et al. 2010). These
particles are often referred to as pebbles. Pebbles interact with
the gas disc through gas drag and drift inwards (Weidenschilling
1977; Brauer et al. 2008). Pebbles can become concentrated
in pressure bumps and through the streaming instability (see
Johansen et al. 2014 for a review), leading to planetesimal for-
mation by gravitational collapse of the filaments. Planetesimals
formed by the streaming instability have characteristic sizes of
100 km (Johansen et al. 2015; Simon et al. 2015).

In classical planet formation models, the cores of the giant
planets form through mutual collisions between these planetesi-
mals (Pollack et al. 1996). However, to achieve a core mass high
enough (≈10 ME) to attract a gaseous envelope, a surface density
of planetesimals of a few times the Minimum Mass Solar Nebula
(MMSN) is needed. Additionally, the growth timescale increases
steeply with orbital distance, making the formation of the ice
giants in the solar system basically impossible to achieve with
planetesimal accretion alone. Gravitational stirring of the plan-
etesimals by a set of growing protoplanets decreases the growth
rates even more (Levison et al. 2010).

In recent years, a new paradigm of solid accretion has
emerged: pebble accretion (Johansen & Lacerda 2010; Ormel
& Klahr 2010; Lambrechts & Johansen 2012; Morbidelli &
Nesvorny 2012). When a pebble enters the planetary Hill sphere,
it is subject to gas drag, which robs the pebble of angular
momentum, resulting in an inward drift of the pebble onto the
planet. When the largest planetesimals have grown to a few hun-
dred kilometers in size by accreting other planetesimals, rapid
pebble accretion allows further growth to cores of ten Earth
masses well within the lifetime of the protoplanetary disc (Ida
et al. 2016; Visser & Ormel 2016; Johansen & Lambrechts 2017).

A growing planet opens a partial gap in the protoplane-
tary gas disc, which influences the motion of solids in the disc
(Paardekooper & Mellema 2006; Rice et al. 2006). Pebble accre-
tion stops when the gap carved by the planet generates a pressure
maximum outside of its orbit, which stops the inward flux of
pebbles (Morbidelli & Nesvorny 2012; Lambrechts et al. 2014).
This is referred to as the pebble-isolation mass. As the influx of
pebbles is stopped, the planet’s gas envelope loses its hydrostatic
support, and the envelope can then contract to form a planet with
an extensive gaseous atmosphere (Lambrechts et al. 2014). In the
solar system, pebble isolation is a potential mechanism to explain
the dichotomy between the ice and gas giants, with ice giants
never reaching the pebble-isolation mass and hence not able to
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undergo gas accretion within the lifetime of the protoplanetary
disc (Lambrechts et al. 2014; Venturini & Helled 2017; Frehlik
& Murray-Clay 2017).

Lambrechts et al. (2014) used hydrodynamical simulations to
infer a pebble-isolation mass given by

ML14
iso ≈ 20

(
H/r
0.05

)3

ME , (1)

where H/r is the discs aspect ratio. Lambrechts et al. (2014)
found a weak dependence on the viscosity parameter. This is not
surprising, since a dependence of gap opening on viscosity was
also reported by Crida et al. (2006). However, because the depen-
dence on the viscosity was not explored in detail in Lambrechts
et al. (2014), an explicit mapping of the pebble-isolation mass as
a function of viscosity is of crucial importance. Additionally, the
headwind felt by the particles depends on both the disc aspect
ratio, as evident in Eq. (1) above, and on the radial, initially
unperturbed, pressure gradient ∂ ln P/∂ ln r.

Here, we investigate the dependence of the pebble-isolation
mass on all local disc parameters, namely the disc aspect ratio
H/r, the viscosity ν, and the pressure gradient of the disc
∂ ln P/∂ ln r. In order to probe this large parameter space, we
adopt 3D isothermal simulations executed with the FARGOCA
code (Lega et al. 2014; Bitsch et al. 2014). As particles with dif-
ferent sizes are coupled in different ways to the gas disc, we
additionally integrate the trajectories of single pebbles with vari-
ous sizes (and therefore Stokes numbers) in the gas disc to probe
which particle sizes can be trapped in the pressure bump as a
function of planet mass.

The paper is organised as follows. In Sect. 2 we present our
hydrodynamical set-up and discuss the different parameters that
influence the pebble-isolation mass, to which we provide a fit in
absence of turbulent diffusion. In Sect. 3 we integrate the tra-
jectories of single pebbles in discs with embedded planets and
infer the pebble sizes that are trapped in the pressure bumps.
We then discuss turbulent diffusion of dust particles through
the pressure bump. We also present the fitting formula for the
pebble-isolation mass including turbulent diffusion, which is
useful for planet formation simulations involving pebble accre-
tion, in Sect. 3.3. In Sect. 4 we show the influence of the
new-found pebble-isolation mass on simulations of planet for-
mation, where we compare our results to Bitsch et al. (2015b).
We additionally discuss implications of our results in Sect. 5 and
finally summarise in Sect. 6.

2. Hydrodynamic simulations

2.1. Simulation set-up

In order to simulate the 3D disc-planet interaction, we used the
3D hydrodynamical code FARGOCA (Lega et al. 2014; Bitsch
et al. 2014) in a locally isothermal configuration, where the radial
temperature profile remains fixed throughout the simulation. We
used the locally isothermal configuration because it allows a fast
probing of parameter space in α, H/r, ∂ ln P/∂ ln r, and plane-
tary masses, which is needed to constrain the pebble-isolation
mass. Here α is related to the viscosity through ν = αH2ΩK
(Shakura & Sunyaev 1973), where ΩK denotes the Keplerian
rotation. Additionally, locally isothermal simulations allow an
easier probing of the aspect ratio because it can be set as an
input parameter in contrast to simulations with heating and cool-
ing, where the aspect ratio is set ultimately by the opacity profile
that determines the cooling. Nevertheless, in Sect. 2.7 we test

the predictions made with the isothermal simulations against
simulations with heating and cooling.

We used for our simulations a 3D grid in spherical coordi-
nates (r, φ, θ) with 315, 720, and 32 grid cells. Our grid ranged
from 0.4 to 2.5 in radius, where the planet is located at 1, and
spanned the full azimuthal range. We used evanescent bound-
ary conditions for the radial boundaries to damp out the spiral
waves exerted by the planet in order to avoid disturbances due to
reflections of the spiral waves caused by the planet. We simulated
different values of the viscosity parameter α, the aspect ratio
H/r, the pressure gradient ∂ ln P/∂ ln r, and a range of planetary
masses (5–120 ME).

The planetary potential was modelled with a cubic potential
(Kley et al. 2009). We used a smoothing length of rsm = 0.6rH,
where rH denotes the planetary Hill radius. This is the same
smoothing length as in Lambrechts et al. (2014). The smooth-
ing length has no influence on our results because the pressure
bump generated by the planet outside of its orbit lies well beyond
the smoothed zones. We tested different smoothing lengths, for
instance, rsm = 0.8rH and rsm = 0.4rH, and the pressure bump
outside of the planetary orbit did not change compared to our
standard smoothing length of rsm = 0.6rH.

2.2. Measurement of the pebble-isolation mass

Pebbles in protoplanetary discs are subject to radial drift that
is due to the headwind they feel from the gas (Weidenschilling
1977; Brauer et al. 2008). The gas orbits at a slightly sub-
Keplerian speed because of the force exerted by the radial pres-
sure gradient in the protoplanetary disc. This velocity difference
is expressed as

vgas,φ = vK(1 − η) = vK − ηvK = vK − ∆v , (2)

where

η = −
1
2

(H
r

)2 ∂ ln P
∂ ln r

, (3)

and P is the pressure in the protoplanetary disc. In isother-
mal discs the pressure is given by P = c2

sρg, with cs being
the isothermal sound speed cs = HΩK and ρg the gas volume
density.

If η is lower than 0, the azimuthal gas velocity becomes
higher than the Keplerian velocity and thus the particles feel a
net outwards acceleration that will stop the inward motion of
pebbles. As the planet grows, it carves a (partial) gap in the gas
distribution around it by pushing material away from its orbit.
This will eventually accelerate the gas outside of the planetary
orbit to super-Keplerian velocities (Lambrechts et al. 2014). We
calculate in the following an azimuthally averaged value of η.
The azimuthally averaged η quantity gives a good handle on
the generation of the pressure bump (see Appendix A). The
planetary mass at which the created pressure bump stops the
radial inward flow of pebbles through radial drift is called the
pebble-isolation mass M†iso without diffusion.

In Fig. 1 we display the η parameter outside of the plan-
etary orbit (the planet is fixed at r = 1) for several planet
masses in a disc with H/r = 0.05, α = 0.001 and Σg ∝ r−0.5,
where Σg denotes the gas surface density of the disc. A nega-
tive value of η means that the gas velocity is super-Keplerian,
and inwards-drifting pebbles are stopped and cannot reach the
planet any more. The pressure gradient is calculated for an
azimuthally averaged pressure in the protoplanetary disc. In this
case, a pebble-isolation mass of M†iso ≈ 25 ME is found, in rough
agreement with Lambrechts et al. (2014).
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Fig. 1. Pressure gradient parameter η as a function of orbital distance
from the planet for α = 0.001, H/r = 0.05, and different planetary
masses. The location of the planet is fixed at r = 1. A negative η
parameter indicates the formation of a pressure bump and with it super-
Keplerian gas velocities that stop the inwards drift of pebbles. Here a
mass of about 25 Earth masses is needed to generate the pressure bump
outside of the planetary orbit. Inside of the planetary orbit, η is always
positive.

2.3. Dependence on viscosity and aspect ratio

In Fig. 2 we present the pebble-isolation mass determined by
3D hydrodynamical simulations with different viscosities and
aspect ratios. We define the pebble-isolation mass as the plane-
tary mass at which the pressure bump outside of the planetary
orbit becomes large enough to turn η negative. The pebble-
isolation mass increases with α and with H/r, as predicted by
Lambrechts et al. (2014). We show a fit for our obtained data that
scales with the aspect ratio, similar to Lambrechts et al. (2014),

M†iso (H/r) ∝
(

H/r
0.05

)3

. (4)

Additionally, the fit includes a dependency on α, which varies the
pebble-isolation mass by a factor of 2–3 between low and high α
values. Our fit is therefore also a function of α in the following
way:

M†iso (α) ∝

0.34
(

log(α3)
log(α)

)4

+ 0.66

 , (5)

where α3 = 0.001.
In contrast, the original formula from Lambrechts et al.

(2014), which is at the base of the new, refined formula pro-
posed here, is similar to the expression of the critical mass for
the wake to shock in a disc (Goodman & Rafikov 2001; Rafikov
2002). This highlights the fact that opening a deep gap around
the orbit of the planet and creating a small gap that just reverses
the pressure gradient are not similar processes and obey different
physics.

To emphasise this effect, we calculated the depth of the gap
following the formula for giant planet gap depths by Crida &
Morbidelli (2007) given as

G(P) =

{
P−0.541

4 , if P < 2.4646
1.0 − exp

(
−P

3/4

3

)
, otherwise.

(6)

The parameter P is given by Crida et al. (2006) as

P =
3
4

H
rH

+
50
qR
≤ 1 . (7)

Fig. 2. Pebble-isolation mass as a function of α and for different aspect
ratios H/r. The pebble-isolation mass is fitted through different α values
with a simple fit that also scales with (H/r)3.

Here q is the star-to-planet mass ratio, rH the planetary Hill
radius, and R the Reynolds number given by R = r2

PΩP/ν. In our
simulations we have checked that the left term of Eq. (7) varies
from 2 to 10 for planets that have reached the pebble-isolation
mass. Thus Eq. (6) predicts a gap depth of between 15% and
60%, while our 3D simulations yield gap depths of only 10–
20%. The partial gap opened at the pebble-isolation mass thus
corresponds to a different regime compared to the gap open-
ing mass for giant planets of Crida et al. (2006) and the gap
depth of Crida & Morbidelli (2007). Hence, the expression of
Crida & Morbidelli (2007) for the depth of the gap should not
be extrapolated to the regime of large P (see Eq. (7)), low planet
masses, and shallow gaps, and cannot be used to estimate the
pebble-isolation mass.

2.4. Global pressure gradient

By changing the background gradient in surface density, the
global pressure gradient changes. We varied the background
surface density gradient Σg ∝ rs in the disc from s = 0.5 to
s = −1.5 and determined the pebble-isolation mass for discs
with H/r = 0.05 and α = 0.001 with the same method as above.
A global inversion of the gas surface density gradient does not
already imply a pressure bump in 3D simulations, in contrast
to 2D simulations, because a pressure gradient inversion in 3D
isothermal discs can only be reached by an inversion of the vol-
ume density gradient, where ρ ∝ rs−1 for a radially constant H/r.
The difference between 2D and 3D simulations regarding the
pebble-isolation mass is discussed in more detail in Appendix B.
In Fig. 3 we show the pebble-isolation mass as a function of the
background value of ∂ ln P/∂ ln r of the unperturbed disc.

The dependence on the background gradient of surface den-
sity (and thus on the background value of ∂ ln P/∂ ln r) is not very
strong. We approximated the dependency of the pebble-isolation
mass on ∂ ln P/∂ ln r with the expression

M†iso

(
∂ ln P
∂ ln r

)
∝

1 − ∂ ln P
∂ ln r + 2.5

6

 , (8)

where the reference value ∂ ln P/∂ ln r = −2.5 corresponds to an
unperturbed disc with H/r =const. and Σg ∝ r−0.5.
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Fig. 3. Pebble-isolation mass as a function of ∂ ln P/∂ ln r of unper-
turbed discs with different surface density gradients. Steeper surface
density slopes s result in more negative ∂ ln P/∂ ln r values. All simula-
tions have been performed for planets in discs with H/r = 0.05, f = 0
and α = 0.001.

2.5. Flared discs

Using Σg ∝ rs and H/r ∝ r f , one can derive a dependency of η
on the orbital distance r (using P = c2

sρ = H2Ω2ρ),

η = −
1
2

(H
r

)2 ∂ ln P
∂ ln r

= −
1
2

(
H0

r0

)2

r2 f ( f + s − 2) . (9)

Here H0/r0 indicates the aspect ratio at r = 1. This equation
indicates that η only varies radially in discs with non-constant
H/r. As the pressure bump generated by the planet is located
about 2H outside of the planet position, one could imagine that
a change in η with orbital distance might influence how the pres-
sure bump is generated. We therefore tested the influence of the
flaring index on the pebble-isolation mass in isothermal discs
with α = 0.001, Σg ∝ r−0.5 and H/r = 0.05r f , where f spans
from −0.42 to +0.42. We did not find any dependence on the
pebble-isolation mass in discs with different flaring index. The
pebble isolation mass in this case is determined only by the local
unperturbed ∂ ln P/∂ ln r value, α and H/r at the location of the
planet, but not by the flaring of the disc itself.

2.6. Pebble isolation mass without diffusion

To summarise the results of Sects. 2.3–2.5, we find that the
pebble-isolation mass without diffusion M†iso is given by

M†iso = 25 ffitME , (10)

where

ffit =

[
H/r
0.05

]3 0.34
(

log(α3)
log(α)

)4

+ 0.66

 1 − ∂ ln P
∂ ln r + 2.5

6

 , (11)

with α3 = 0.001.

2.7. Radiative simulations

In reality, discs have complex radial temperature profiles and a
non-isothermal vertical structure. Different heating sources (vis-
cous heating, stellar heating) are balanced by radiative cooling,
which can alter the disc structure quite severely compared to

Fig. 4. Pressure gradient parameter η as a function of orbital distance
in a disc set-up with heating and cooling for two different plane-
tary masses. The planet is placed at r = 1. The pebble-isolation mass
is reached at ≈28.3 ME in the simulations, in good agreement with
Eq. (10).

simple power laws (Bitsch et al. 2015a). In order to test the pre-
dictions of the pebble-isolation mass (Eq. (10)), we studied the
pebble-isolation mass in discs with heating and cooling.

In the adiabatic (and radiative) case, the sound speed changes
by a factor of

√
γ compared to the isothermal sound speed. This

leads to a difference in the scale height of the protoplanetary disc
for the isothermal and adiabatic configuration, which are related
in the following way:

Hadi =
√
γHiso . (12)

In the radiative configuration, we therefore used the adiabatic
scale height to estimate the pebble-isolation mass in a radia-
tive disc. The disc set-up was similar to before, where we now
additionally included radiative cooling and viscous heating (with
α = 6 × 10−3) as described in Kley et al. (2009). At the planet
location, Hadi,pla = 0.0414 and ∂ ln P/∂ ln r = −3.26 (the flaring
index of the disc is f = −0.38 at this location), which leads to a
pebble-isolation mass of M†iso ≈ 28.6 ME according to Eq. (10).
The results of our 3D simulations in discs with heating and
cooling are shown in Fig. 4. Clearly, Eq. (10) matches the 3D
simulations of discs with heating and cooling well.

2.8. Application of the new fitting formula

The pebble-isolation mass depends not only on the disc aspect
ratio H/r, but also on the viscosity and the radial pressure gra-
dient of the protoplanetary disc (Eq. (11)). For a fixed H/r, a
change in α from 10−4 to 10−2 increases the pebble-isolation
mass by a factor of ≈3 (Fig. 2), while an increase in ∂ ln P/∂ ln r
from −3.5 to −1.5 decreases the pebble-isolation mass by about
≈30%. Making use of Eq. (10), we calculated the pebble-
isolation mass in a disc with H/r = 0.05 for different values of α
and ∂ ln P/∂ ln r and show the resulting pebble-isolation mass in
Fig. 5.

Clearly, high values of viscosity (≈10−2) increase the pebble-
isolation mass significantly, where the pebble-isolation mass can
reach over ≈50 ME for our nominal ∂ ln P/∂ ln r = −2.5. Never-
theless, the strongest dependence of the pebble-isolation mass is
on the disc aspect ratio H/r. The disc aspect ratio is determined
by the heating of the disc, either through viscosity or stellar irra-
diation. As the disc evolves in time, the aspect ratio decreases in
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Fig. 5. Pebble-isolation mass M†

iso as a function of the pressure gradi-
ent ∂ ln P/∂ ln r and α in a disc with a constant H/r = 0.05. The two
black lines mark 20 and 50 ME. Clearly, higher values of viscosity and
∂ ln P/∂ ln r result in significantly higher pebble-isolation masses.

the inner part of the disc as a result of reduced viscous heating
and in the outer parts as a result of a decreasing stellar luminosity
(Bitsch et al. 2015a). These effects reduce the pebble-isolation
mass in time and only discs with high viscosities can maintain a
high pebble-isolation mass in the outer parts of the disc, as the
disc evolves in time.

3. Drift of small pebbles through the bump

Small particles (τf � 1) are strongly coupled and move with the
radial gas accretion flow, while larger particles (τf � 1) are only
weakly affected by gas drag. Here τf denotes the Stokes number
of the pebbles. The acceleration of a pebble in a gas disc is given
by

dupeb

dt
= −

GM?

r3 r − 2∆vΩK −
1
tf

(
upeb − ugas

)
, (13)

where r denotes the vector between the central star and the peb-
ble, and tf is the friction time, which is related to the Stokes
number with τf = tfΩK and ∆v = ηvK. The variables upeb and
ugas are the pebble and gas velocities, respectively.

In Fig. 6 we show the radial and azimuthally averaged gas
velocities in locally isothermal discs with embedded planets.
The pressure bump generated by the planet outside of its orbit
is clearly visible in the azimuthal velocity pattern, where the
gas can reach speeds higher then the Keplerian value. Particles
entering this pressure bump can be trapped, depending on their
size.

A negative radial velocity indicates an inward flow of the
gas, while a positive radial velocity indicates an outward move-
ment of the gas. The planet generates a radial outward flow of
gas close to its vicinity, but limited to the region in front of the
pressure bump. This outward flow is related to the gap-opening
process, where the planet pushes the material away from its orbit.
This material can then move upwards to maintain hydrostatic
equilibrium and again falls in from the top regions of the disc
onto the planet. The same meridional flow was also observed for
gap-opening giant planets (Morbidelli et al. 2014). In this region,
inflowing particles might in principle be trapped as well.

After the hydrodynamical simulations shown in Sect. 2
reached an equilibrium state, we integrated the movement of
test particles in the steady-state gas distribution to determine the
dependence of the pebble-isolation mass on the Stokes number
of the particles. The steady-state surface density profile and η
profile of the disc are shown in Appendix A, where the pressure
bump is clearly visible for a 25 ME planet.

Fig. 6. Midplane gas velocities as a function of orbital distance in discs
with H/r = 0.05, α = 0.001, and Σ ∝ r−0.5. Top plot: radial velocity
in units of the sound speed at r = 1.0. A negative velocity indicates
an inward flow of the gas. The red line indicates the radial velocity of
the unperturbed disc. Bottom plot: azimuthal velocity in units of the
Keplerian velocity. If vθ is larger than 1, the gas orbits super-Keplerian,
indicating the pressure bump in the disc.

We integrated the pebble trajectories in 2D planes of the pro-
toplanetary disc, where we mainly focused on integration in the
disc midplane. Pebbles injected at higher altitudes in the disc
are additionally subject to vertical settling, which moves them
quickly towards the midplane. Integrating the pebble trajectories
in a 2D plane above the disc midplane revealed, however, that
pebbles are stopped at all altitudes when the planet has reached
isolation mass. This implies that at higher altitudes pebbles
cannot drift through the generated pressure bump either.

In Fig. 7 we show the trajectories of pebbles in the mid-
plane with constant τf = 1.0 in the gas velocity field generated
by planets with 10 ME and 25 ME. As the 10 ME planet does not
generate a pressure bump outside of its orbit (Fig. 1), the pebbles
drift through towards the inner disc. The 25 ME planet generates
a pressure bump in the disc (Fig. 1) where the pebbles can be
trapped.

In the top panel of Fig. 8, we show the time evolution of
the orbital distance of integrated pebble trajectories with differ-
ent Stokes number τf in a disc with an embedded 25 ME planet.
Pebbles with τf > 0.005 are trapped in the pressure bump and
do not drift inwards any more. Particles with τf < 0.005 are well
enough coupled with the gas to move through the pressure bump
towards the system interior to the 25 ME planet. The pressure
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Fig. 7. Trajectories of pebbles with τf = 1.0 that started at (1.5; 0) mov-
ing in the gas velocity field generated by planets with MP = 10 ME and
MP = 25 ME. We plot the pebble trajectories in the rotating frame, and
the planet position is marked by the black dot. The 10 ME planet does
not generate a pressure bump, so the pebble drifts through all the way
towards the inner boundary of the computational domain. The 25 ME
planet, on the other hand, generates a pressure bump outside of its orbit
and thus blocks the flow of pebbles.

bump generated by the 25 ME planet is even quite weak (Fig. 1),
which explains why small particles can still drift through.

The pressure bump generated by the planet increases in
strength with planetary mass (Fig. 1), which allows the trapping
of pebbles with smaller τf in it for higher planetary masses (bot-
tom panel in Fig. 8 for 30 ME planet). Increasing the planetary
mass by 20% reduces the Stokes number of particles that can
still drift through the generated pressure bump by more than
an order of magnitude. Now particles with τf > 5 × 10−4 are
trapped inside the pressure bump and can no longer reach the
inner system.

Very small particles, however, with τf ≈ 1 ×10−4, are so
strongly coupled with the gas that they completely follow the
gas flow (Brauer et al. 2008) and are thus no longer blocked by
the pressure bump located at r = 1.13 (see Sect. 3.1). Instead,
the pebbles drift through the pressure bump, but are then caught
just outside of the planetary orbit because of the radial outward
flow of the gas (Fig. 6), which prevents further inward drift. For
the 25 ME planet, the pebbles also drift through the radial out-
ward flow of the gas because it was not strong enough to keep
the pebbles from the inner disc (see Sect. 3.1).

3.1. Dependence on the radial gas velocity

The radial velocity of the gas in an α accretion disc is determined
directly by the viscosity of the disc,

vr = −
3
2
ν

r
= −

3
2
αH2Ωk

r
. (14)

However, there is a strong debate in the literature about the
causes of the turbulence and about the size of its magnitude

Fig. 8. Evolution of the orbital distance of pebbles as they drift through
a disc with an embedded 25 ME planet (top) and an embedded 30 ME
planet (bottom). Even though the planet has generated a pressure bump
outside of its orbit (maximum at r = 1.123, see Fig. 1), small pebbles
with τf < 0.005 can drift through the pressure bump for the 25 ME
planet, while the Stokes number of the particles has to be an order of
magnitude smaller to drift through the pressure bump generated by the
30 ME planet.

(Turner et al. 2014). As the drift velocity of the particles depends
on the gas velocity, we investigate in this section how a change
in the radial gas velocity influences particle drift through the
disc. We are particularly interested in how a change in the radial
gas velocity allows or hinders particles from drifting through the
pressure bump generated by the azimuthal gas velocity changes
induced by the planet outside of its orbit (Fig. 6). We artificially
modified the radial velocity pattern to a fixed value, but kept the
azimuthal gas velocity profile of a disc perturbed by a planet
(Fig. 6). In this way, we mimicked the effects of different levels
of turbulence without simulating discs with magneto-rotational
instability (MRI) or vertical-shear instability turbulence.

In Fig. 9 we show the trajectories of pebbles embedded in
discs with fixed radial gas velocities, but with azimuthal gas
velocity profiles that correspond to Fig. 6 for the 25 ME planet.
In the top panel we show the trajectories of pebbles in discs with
radial gas velocities lower than in Fig. 8, while in the bottom
panel we show the trajectories of pebbles in discs with radial
gas velocities higher than in Fig. 8. Clearly, a lower radial gas
velocity allows for more efficient trapping of smaller pebbles
compared to a higher radial gas velocity.
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Fig. 9. Evolution of the orbital distance of pebbles as they drift through
a disc with an embedded 25 ME planet, where the radial velocity is fixed
to −1 × 10−5cs,0 (top) and −3 × 10−5cs,0 (bottom). As the drift speed of
the particles depends on the gas velocities, particles of different sizes
cannot be blocked or drift through compared to the nominal case shown
in Fig. 8. In particular, a slower gas flow allows for a more efficient
particle trapping in the pressure bump generated by the planet.

The reason is that the radial pressure gradient is negative
everywhere in the disc except at the centre of the outer pres-
sure bump generated by the planet, where it is zero for a planet
that has just reached pebble-isolation mass. Hence any tiny radial
gas velocity can transport dust particles of any size across the
pressure bump. Pebbles are only safe when the planet is more
massive and the inner edge of the pressure bump has a positive
radial gradient in pressure. As the radial gas velocity is deter-
mined by the viscosity in an α-accretion disc, the movement of
particles is determined by viscosity for discs with high viscosity
and by drift in discs with low viscosity (de Juan Ovelar et al.
2016).

Pebbles with a (positive) terminal velocity

vr,t = τf
1
ρ

∂ ln P
∂ ln r

= 2τf∆v, (15)

high enough to compensate for the (negative) radial gas veloc-
ity vr,g can be trapped in the pressure bump. This can be
reformulated as

τf >
vr,g

2∆v
. (16)

Using this equation, we can estimate the Stokes number of par-
ticles that are blocked by the pressure bump generated by the

Fig. 10. Velocity perturbation ∆v as a function of planet mass at the
location of the pressure bump. A negative ∆v value indicates that the
gas speed is super-Keplerian. The blue circles mark the lowest Stokes
number of particles that can be stopped at the pressure bump assuming
a radial gas velocity of 1 cm s−1 and following Eq. (16).

planet by just looking at the velocity fields. The radial gas veloc-
ity is ≈1 cm s−1 in our disc model, and the measured ∆v is shown
in Fig. 10. This indicates that pebbles with τf > 0.005 should be
blocked by a planet of 25 ME and particles with τf > 0.0003
should be blocked by a planet of 30 ME, in agreement with
our simulations (Fig. 8). We have marked the minimal Stokes
number of particles that can be blocked by the pressure bump
generated by the planet with blue circles in Fig. 10 for a radial
velocity of 1 cm s−1 . The lowest Stokes number depends lin-
early on the radial gas velocity, which is slightly different for the
higher planetary masses (Fig. 6). For a 50 ME planet, the radial
gas velocity is roughly ≈2 cm s−1 (Fig. 6), higher than for the
25 ME planet, because the planet influences the velocity pattern
of the disc. This implies that pebbles with τf > 1.2 × 10−4 can
be stopped by a 50 ME planet, but we note that the blue dots in
Fig. 10 correspond to vg = 1 cm s−1. This is also in agreement
with our simulations. These results do not take diffusion into
account, which we discuss in the next section.

3.2. Diffusion of dust particles

Our hydrodynamical simulations do not include any turbulent
motion of the gas, such as those seen in magnetohydrodynamics
(MHD) simulations (Bai 2017) or in simulations with the vertical
shear instability (Nelson et al. 2013; Stoll & Kley 2016). These
turbulent motions in the gas velocities can act on the move-
ments of the pebbles, giving them random kicks. Several authors
have considered the effects of diffusion on particles embedded
in discs with planets. Paardekooper & Mellema (2006) included
diffusion into the motion of dust particles in gas discs in the pres-
ence of 30 ME planets and estimated this effect to be of the order
of 1%, indicating that diffusion of dust particles does not play a
role in opening a gap in dust distribution of protoplanetary discs.
Pinilla et al. (2016), on the other hand, studied dust filtration by
giant planets in the context of transition discs. Giant planets open
deep gaps in protoplanetary discs that prevent dust from drift-
ing through. However, in their 2D simulations, the authors found
that a planet of 1 MJup still does not stop all dust particles and
small dust grains (τ f ≈ 10−3) can drift through the gap gener-
ated by the planet at 20 AU. Their disc set-up would lead to a
pebble-isolation mass of 27.5 ME according to Eq. (10), where
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the pebble-isolation mass is reached in 2D disc simulations at
lower masses (see Appendix B) than in 3D simulations.

Pinilla et al. (2016) considered turbulent mixing of dust par-
ticles, where the dust diffusivity follows the prescriptions by
Youdin & Lithwick (2007), which depend on the Stokes num-
ber and the gas diffusivity (assumed to be equal to the disc
viscosity). If then the pressure gradient is not steep enough, the
particles can be released from the pressure bump, where particles
with τf > α are trapped. Smaller particles are diffused out of the
pressure bump and dragged by the gas. Without diffusion, the
trapping of particles is more efficient (Pinilla et al. 2012). This
mechanism allowed the small particles to move across the pres-
sure bump generated by the planet in Pinilla et al. (2016), while
our simulations show an effective trapping of small particles as
a result of the lack of diffusion. The difference of Pinilla et al.
(2016) to Paardekooper & Mellema (2006) is probably related
to different prescriptions of diffusion. We therefore estimate
the effects of diffusion in the following for the pebble-isolation
mass.

The equilibrium between radial advection of dust particles
and turbulent diffusion is achieved when (as also stated in Pinilla
et al. 2012)

vr,pρp − Dρg
dε
dr

= 0 , (17)

where vr,p is the radial velocity of the pebbles, ρp the pebble den-
sity, ρg the gas density, D the diffusion coefficient parameterised
by D = αcsHg , and ε = ρp/ρg is the dust-to-gas ratio. The radial
velocity of the pebbles is given by

vr,p = −2τf∆v . (18)

To efficiently trap dust in a pressure bump despite turbulent dif-
fusion, the equilibrium flux stated above must be obtained for a
radial dust scale-length (Hp) that is roughly equal to the extent of
the pressure bump (Hb). As the latter has an approximate width
of one gas scale-height, this leads to

Hp ∼ Hg . (19)

We estimate the scale-height of the dust in the pressure bump
from Eq. (17) to obtain

D
2τf∆v

∼ Hg . (20)

Expanding now D, we arrive at

αcsHg

2τf∆v
∼ Hg , (21)

which leads to

τf ∼
α

2Π
, (22)

where Π = ∆v/cs. Particles with Stokes numbers larger than this
(Eq. (22)) are still trapped in a pressure bump, particles smaller
than this can diffuse through the pressure bump. We show this
critical Stokes number in Fig. 11 for a disc with H/r = 0.05.

We show ∆v/cs as a function of planetary mass in a disc with
α = 0.001 and H/r = 0.05 in Fig. 12. We can now compare
directly to Fig. 11 to determine when and how pebbles inside
the pressure bump are affected by diffusion. For a 30 ME planet
in a disc with α = 0.001, the minimum Stokes number of parti-
cles that are not affected by diffusion is ≈0.025, while for the 50

Fig. 11. Critical Stokes number of particles that are affected by turbulent
diffusion as a function of absolute ∆v/cs in the pressure bump and α.
Particles with Stokes numbers lower than the critical value easily diffuse
and can drift through a pressure bump. The black lines denote particles
with Stokes numbers of 10, 1, 0.1, 0.01, and 0.001 from left to right.
The white dots correspond to different planetary masses, where we have
taken the maximum value of the pressure bump generated by the planet
for simulations with different α. The planetary masses are marked with
the white numbers next to the dots. The horizontal dashed black line
markes our nominal α = 0.001.

Fig. 12. ∆v/cs as function of orbital distance in discs with α = 0.001
and H/r = 0.05 and embedded planets of different masses. Note that
∆v/cs = η/(H/r). The ∆v/cs values shown here correspond to the white
dots at α = 0.001 (dashed line) in Fig. 11.

ME planet, this particle size is ≈0.004, which corresponds to the
particle size stopped by the 25 ME planet in the case of no dif-
fusion (Fig. 8). This indicates that the pebble-isolation mass for
these Stokes numbers in case of diffusion is a factor of ≈2 higher
than in the case without diffusion for H/r = 0.05 and α = 0.001,
depending on τf .

Inside the pressure bump generated by a Jupiter-mass planet
in 2D simulations of a disc with α = 0.001 and H/r = 0.05, the
maximum ∆v/cs = 0.66. This leads to a critical Stokes number
of τf = 7.5 × 10−4, in agreement with previous studies including
diffusion, see for example Pinilla et al. (2016), where very small
particles can drift through the pressure bump generated by large
planets. Adding the effects of particle diffusion in 2D disc simu-
lations, Ataiee et al. (2018) found that diffusion can increase the
pebble-isolation mass, in agreement with Pinilla et al. (2012) and
our estimates.

The difference between the pebble-isolation mass derived
from pure hydrodynamical simulations compared to simulations
taking diffusion into account also depends on the level of tur-
bulence in protoplanetary discs. For example, blocking particles
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with τf = 0.001 requires for α = 2 × 10−4 an increase in pebble-
isolation mass by about a factor of 1.5, while for α = 0.001 an
increase of much more than a factor of 2 is needed (a Jupiter-
mass planets blocks pebbles with τf > 7.5 × 10−4 in the case of
diffusion).

However, the level of turbulence in discs is not very well
constrained, where α values from 10−4 to 10−1 can be reached
in simulations of the MRI (see Turner et al. 2014 for a review).
Simulations with hydrodynamical instabilities in regions of the
disc that are not subject to MRI-driven turbulence show α values
of a few times 10−4, which probably sets a lower limit on turbu-
lence (Klahr & Bodenheimer 2003; Nelson et al. 2013; Stoll &
Kley 2016). Recent simulations indicate that disc winds could be
the main driver of disc accretion. In these simulations, the mid-
plane regions only have a very low level of turbulence. For such
a low level of turbulence, the effect of turbulent diffusion on the
pebble-isolation mass is quite low compared to discs with high
viscosity.

The dominant particle size in the planet formation simula-
tions of Bitsch et al. (2015b) with α = 0.0054 presented below
is of the order of 0.1 (Fig. 13), and about 0.01–0.2 when taking
fragmentation into account (see below). From Fig. 11 it can be
inferred that taking turbulent diffusion into account, the pebble-
isolation mass for these Stokes numbers is higher than predicted
in the case without diffusion by about a factor of 2.

3.3. Pebble-isolation mass including diffusion

The pebble-isolation mass does not only depend on H/r, α and
∂ ln P/∂ ln r, but also, as shown in the previous subsection, on
the turbulent diffusion of particles. The critical pressure gradient
parameter Πcrit to block particles of Stokes number τf is given by

Πcrit =
α

2τf
. (23)

From our hydrodynamical simulations we can measure how
Π = ∆v/cs in the pressure bump generated by a planet that has
already reached M†iso changes with planetary mass as

Π = λ(Mp/ME − M†iso/ME) , (24)

where

λ ≈ 0.00476/ ffit , (25)

where ffit is defined in Eq. (11). This fit only applies to plan-
ets that have already reached the pebble isolation mass without
diffusion M†iso, because λ gives the slope of the change of Π

inside the pressure bump generated by the planet, where M†iso
is the minimum mass needed to invert the radial pressure gradi-
ent ∂ ln P/∂ ln r in the disc. We note that λ is only valid until
Mp ≈ 2.5 M†iso, when λ changes, because the growing planet
slowly transitions into the gap depth regime predicted by Crida
& Morbidelli (2007). When setting Πcrit = Π, we can define the
pebble isolation mass with diffusion Miso as

Miso = M†iso +
Πcrit

λ
ME . (26)

Using Eq. (26), we study in the next section the effect of this
new-found pebble isolation mass on the formation of planetary
systems and the core masses of the formed planets.

4. Influence on planet formation

The pebble isolation mass determines the final mass of the plan-
etary core in the pebble accretion scenario because the reduced
accretion luminosity facilitates the accretion of gas (Lambrechts
et al. 2014; Lambrechts & Lega 2017) and the planet can even-
tually grow to become a gas giant. The formation pathway of
the growing planet is determined by the growth rate and size of
the planetary core because it influences its gas accretion rates
(Piso et al. 2015) and migration behaviour (Baruteau et al. 2014).
By reaching a different pebble isolation mass, the planet can
undergo a different formation pathway.

We therefore investigate in this section the influence of the
pebble isolation mass on planet growth by comparing planet
growth simulations to the new pebble isolation mass (Eq. (26))
with simulations with the pebble isolation mass measured by
Lambrechts et al. (2014), who only inferred the dependence on
H/r. For this we make use of the planet growth simulations
including planet migration and disc evolution presented in Bitsch
et al. (2015b).

4.1. Planet growth and migration model

The planet growth and migration model is described in great
detail in Bitsch et al. (2015b), therefore we only repeat the essen-
tial points here. The planet growth and migration rates strongly
depend on the disc structure. We used here the disc structure
model of Bitsch et al. (2015a). This semi-analytical disc model
features bumps and dips in the inner disc structure caused by
transitions in the opacity at the water ice line, which can act as
planet traps for low-mass planets (Bitsch et al. 2015a; Bitsch &
Johansen 2016) and evolves in time. We used a disc lifetime of 3
Myr.

The growth rate of the planet depends on the pebble surface
density Σpeb at the planet location of the protoplanetary disc

Ṁc = 2
(
τf

0.1

)2/3
rHvHΣpeb , (27)

where rH is the planetary Hill radius and vH the Hill speed at
which the particles enter, given by vH = rHΩK. In the drift-
limited growth of dust particles to pebbles (Birnstiel et al. 2012),
the pebble surface density depends on the pebble flux Ṁpeb
(Lambrechts & Johansen 2014) in the following way:

Σpeb =

√
2ṀpebΣg
√

3πεPrPvK
. (28)

Here εP = 0.5 (Lambrechts & Johansen 2014). We note that the
nominal pebble flux used in Bitsch et al. (2015b) was overesti-
mated by a factor of ≈10 and that we used here a modified pebble
growth model presented in Bitsch et al. (2018).

After the planet has reached its pebble-isolation mass, it can
contract a gaseous envelope (Piso & Youdin 2014), and as soon
as the mass of the gaseous envelope is higher than the core mass
of the planet, runaway gas accretion can start (Machida et al.
2010).

Growing planets interact with their natal protoplanetary disc
and migrate in it. Low-mass planets do not perturb the disc sig-
nificantly and migrate in type I migration, which depends mainly
on the disc viscosity and on the radial gradients of surface den-
sity, temperature, and entropy (Paardekooper et al. 2011). The
disc structure is therefore of crucial importance in determining
the migration rates. Planets growing further (e.g. as a result of
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rapid gas accretion) push the gas away from their orbit (or accrete
it, Crida & Bitsch 2017) and open a gap in the protoplanetary disc
and migrate in type II migration. This migration rate depends on
the viscosity of the protoplanetary disc. For a review on planet
migration, see for example Baruteau et al. (2014).

To calculate the torque Γ exerted by the disc on the planet,
we followed Paardekooper et al. (2011) for type I migration and
the viscous evolution for type II migration. The orbital migration
time tm is given as

tm = −
J

(dJ/dt)
, (29)

where J is the angular momentum of the protoplanet. Migration
here is thus defined in terms of the total torque exerted on the
orbit. The migration time so defined is positive when the total
torque is negative. For constant eccentricity, the time taken to
migrate to the centre is tm/2 (Papaloizou & Larwood 2000). This
factor of 2 was absent in the original simulations of Bitsch et al.
(2015b) and was now added here.

4.2. Stokes numbers in the planet formation model

The Stokes numbers of the pebbles in our model are shown in
Fig. 13 as a function of distance and time. The blue lines indicate
the growth tracks of the planets shown in Fig. 14 as the planets
grow and migrate. The solid lines correspond to solid accre-
tion, which stops when the planet reaches pebble-isolation mass
(marked as a dot), while the dashed lines indicates gas accretion.

Typically, the pebbles accreted by planets in our model
have Stokes numbers in the range of 0.05 < τf < 0.4, as those
are the Stokes numbers of the pebbles dominated by radial
drift (Birnstiel et al. 2012; Lambrechts & Johansen 2014). As
shown in Sect. 3.2, only small pebbles can drift through the
pressure bump (with τf < 0.01 when the planet just reached
pebble-isolation mass in the absence of diffusion, M†iso). In our
model, α = 0.0054, indicating a strong turbulent diffusion effi-
ciency (Fig. 11), but even turbulent diffusion cannot carry the
particles of the dominant Stokes number across the pressure
bump because of the large pebble sizes (Fig. 13). Therefore the
pebble-isolation mass is only slightly increased by the effects of
turbulent diffusion in our model. This means that the bulk of the
pebbles and therefore also the bulk of the solid mass is blocked
by a planet that has reached the pebble-isolation mass if the par-
ticle size is dominated by radial drift. Additionally, the blocking
of pebbles becomes more efficient as the planet grows and starts
to accrete a gaseous envelope.

The final pebble sizes in our model were determined by
radial drift alone, where we did not take the effects of frag-
mentation (Brauer et al. 2008; Birnstiel et al. 2011), bounc-
ing (Zsom et al. 2010), or condensation (Ros & Johansen
2013; Schoonenberg & Ormel 2017) into account. Fragmenta-
tion and bouncing can lead to smaller pebble sizes than in the
drift-limited case, while condensation of volatiles onto already
existing pebbles can increase their size.

The sizes of pebbles determined by the fragmentation limit
are given in Birnstiel et al. (2015) as

af =
2

3π
Σg

ρpebα

vf

cs
, (30)

where ρpeb is the density of the pebble itself (set to 1.5 g cm−3 for
water ice) and vf is the fragmentation velocity limit, where water-
ice particles have a higher fragmentation velocity of 10 m s−1

Fig. 13. Stokes number of the pebbles in the simulations presented in
Figs. 15 and 16 at a given time t and orbital distance r in the disc. The
black lines mark Stokes numbers of 0.05 to 0.4. Note that each planet
growth trajectory stars at a given point in r-t and the planet the moves
to higher time values, indicating that the Stokes number of the pebbles
accreted by the planet increases. Additionally, the planet migrates in the
disc to smaller orbital distances, which also increase the Stokes num-
ber of the accreted particles. The over-plotted blue lines correspond to
the growth tracks shown in Fig. 14, where the solid line corresponds to
solid (pebble) accretion, the dot marks the pebble-isolation mass, and
the dashed line corresponds to the gas accretion phase. The planetary
growth track moves upwards to increasing time.

than silicate grains (Gundlach & Blum 2015). When we use only
this fragmentation limit for icy particles, the Stokes numbers of
the particles in our disc model are 0.01–0.2, which is slightly
smaller than in the drift-limited case (shown in Fig. 13). Lower
Stokes numbers will result in higher pebble-isolation masses
(Eq. (26)) and thus higher core masses. However, condensation
at ice lines could lead to even larger particles in these regions.
Future models of planet formation have to take these effects into
account in order to calculate more realistic grain sizes.

In the following, we use Eq. (26) to include the effects of
diffusion in the calculations of the pebble-isolation mass and to
simulate the growth of planets through pebble accretion, where
we use the Stokes numbers of the drift-limited solution shown in
Fig. 13.

4.3. Growth tracks

Growth and migration depend on the structure of the protoplane-
tary disc, where we follow the disc model of Bitsch et al. (2015a),
and use a dust metallicity of Zdust = 0.5% to set the disc opac-
ity. The disc viscosity is α = 0.0054. The planetary growth rate
depends crucially on the amount of available pebbles that can
be accreted by the planet. In the remainder of the paper, we use
Zpeb = 1.0% as in Bitsch et al. (2015b). We set the disc lifetime
to be 3 Myr.

In Fig. 14 we show the growth tracks of planetary seeds start-
ing at different locations in a disc that is already 1.5 Myr old,
meaning that the planets evolve for 1.5 Myr to reach a disc life-
time of 3 Myr. For each orbital distance we ran two simulations,
where the only difference was the final pebble-isolation mass,
determined either by Lambrechts et al. (2014), Eq. (1), or by
the new-found pebble-isolation mass, Eq. (26). This means that
the initial growth is the same for the two simulations, until the
planet in one simulation reaches the pebble-isolation mass and
gas accretion starts. This is generally the case for simulations
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Fig. 14. Growth tracks of planets starting at several different initial posi-
tions in a disc that is already 1.5 Myr old for pebble-isolation masses
ML14

iso given by Lambrechts et al. (2014) in Eq. (1) and for the new-found
pebble isolation mass Miso in Eq. (26). The initial growth phase is the
same for both isolation masses, so the growth tracks diverge only when
the pebble-isolation mass (Eq. (1)) is reached, marked by the dots. The
solid lines indicate pebble accretion, while the dashed lines mark gas
accretion.

following the pebble-isolation mass of Eq. (1), which is gener-
ally lower than Eq. (26), especially for the given disc model with
α = 0.0054.

The final core mass also determines the contraction phase
of the envelope, where Ṁenv,gas ∝ M11/3

core (Piso & Youdin 2014),
which in turn determines how fast the planet transitions into run-
away gas accretion and can then open a gap and transition into
the slower type II migration phase.

In the inner parts of the protoplanetary disc, the pebble-
isolation mass is low because of the low H/r, while the pebble-
isolation mass is high in the outer parts of the disc because H/r
is high. For planets forming in the inner regions of the disc
(r < 15 AU), the difference between Eq. (1) and Eq. (26) is not
that large, allowing planets to arrive at similar total masses and
orbital distances. However, the core masses of planets formed
using Eq. (26) are higher. In the outer disc, the pebble flux is
quite low, so that the differences in the pebble-isolation mass
result in a slower growth of the planets, where Miso is deter-
mined by Eq. (26), because pebble accretion is slower than gas
contraction for these pebble densities. This also results in further
inward migration before the planet opens a deep gap and transi-
tions into type II migration. In total, the differences regarding the
final orbital position and the final planetary mass seem not very
great. However, the differences in the core masses can be up to
30% (see Fig. 16), which is crucial for the formation of the ice
giants in our solar system, which had low core masses in Bitsch
et al. (2015b).

4.4. Global picture

We now extend the approach of the growth tracks to probe the
planetary growth for starting positions of the planetary seeds
from r0 = 0.2 AU to 50 AU and from t0 = 100 kyr to 3 Myr.
In Fig. 15 we show the final total planetary mass of planets as
a function of r0 and t0 for pebble-isolation masses following
Eq. (1) (top) and Eq. (26) (bottom). The white crosses mark the
growth tracks shown in Fig. 14.

Fig. 15. Final masses of planets (total mass MP = Mc + Menv) as a func-
tion of formation distance r0 and formation time t0 in the disc. Planets
that are below the dark blue line have reached pebble-isolation mass
and can accrete gas. All planets that are below the white line have
Mc < Menv, indicating that they have undergone runaway gas accre-
tion. The black lines indicate the final orbital distance rf of the planet,
namely 0.1, 0.5, 1.0, 5.0, 10.0, and 20.0 AU. The top plot corresponds
to the pebble-isolation mass found in Lambrechts et al. (2014), while
the bottom plot corresponds to the pebble-isolation mass in this work
(Eq. (10)). The higher pebble-isolation mass suppresses the formation
of gas giants in the very outer parts of the disc at late times.

At first glance, the difference in final orbital position rf and
final planetary mass Mp is not that large compared for the dif-
ferent pebble- isolation masses, in agreement with Fig. 14. For
0.1 Myr < t0 < 2.0 Myr and r < 20 AU, the formation of
close-in planets that have reached the inner edge of the disc at
0.1 AU is triggered. These planets form too close to the cen-
tral star, so that planetary migration drives them towards the
inner edge of the disc during the lifetime of the protoplane-
tary disc for our migration rates in discs with high viscosity.
As the pebble-isolation mass is higher, the planetary cores with
low-mass gaseous envelopes (that have not reached runaway gas
accretion) become too large to be contained in the region of out-
ward migration (which can only hold planets of a few Earth
masses after about 1 Myr; Bitsch et al. 2015a). These planets
then drift inwards as rock-dominated planets (bottom panel of
Fig. 15 in contrast to the top panel of Fig. 15).

Planets forming in the outer part of the protoplanetary disc
reach higher pebble-isolation masses owing to the higher aspect
ratio. In the top panel of Fig. 15, the pebble-isolation mass is
reached earlier, but the core masses are high enough (≈10 ME)
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to allow a transition into runaway gas accretion and thus gas
giant formation. However, in the bottom panel of Fig. 15, the
pebble-isolation mass is higher, which prolongs the core forma-
tion timescale and thus results in gas accretion at later stages.
The overall differences in rf and Mp are not very large, however.

Clearer differences can be seen with respect to the core
masses of these planets (Fig. 16), where Eq. (26) delivers core
masses that are about ≈30% higher, compared to Eq. (1) in
our model with α = 0.0054. Figure 2 shows the clear depen-
dence on H/r for the pebble-isolation mass, explaining why the
core masses increase with orbital distance of the formed plan-
ets, because H/r increases outwards in a stellar irradiated disc
(Bitsch et al. 2013, 2015a). However, the 10 ME core mass line
seems to be constant as a function of t0 at early times in the inner
regions of the disc (r < 15 AU) of Fig. 16: the growth time in
the outer parts of the disc is much longer because of the lower
pebble flux and the larger pebble scale height. The planetary
growth additionally competes with planetary migration (driving
the planet inwards to parts of the disc with lower H/r and thus
lower pebble-isolation mass) and disc evolution, where the disc
aspect ratio decreases with time (Bitsch et al. 2015a).

These higher core masses are more consistent with the plan-
etary structure of the solar system1, where Uranus and Neptune
have not reached the pebble-isolation mass (Lambrechts et al.
2014) and thus stayed at 15–20 ME without accreting a large
gaseous envelope. The final core mass could additionally be
increased if more pebbles are available, allowing a faster growth
of the planets.

5. Discussion

5.1. Planet migration versus pebble-drift speeds

Planets embedded in protoplanetary discs interact gravitation-
ally with the disc and move through the disc (Paardekooper
& Mellema 2006; Baruteau & Masset 2008; Kley et al. 2009;
Paardekooper et al. 2011). The migration timescale τmig of low-
mass planets is estimated in Tanaka et al. (2002) and given
as

τmig = C
M�
Mpl

M�
Σg(rpl)r2

pl

(H
r

)2

pl
Ω−1

K

≈ 7.8 × 105
(

Mpl

ME

)−1

yr . (31)

Here, rpl and (H/r)pl = 0.05 = const. are the orbital distance and
the aspect ratio at the planet location. The constant C reflects
the migration speed through the disc surface density profile and
disc temperature profile, given by C = 1/(2.5 + 1.7βT − 0.1αΣ)
(Paardekooper et al. 2011), where αΣ is given by Σg = Σ0r−αΣ

with Σ0 = 350 g/cm2 and βT by T ∝ r−βT . For our standard disc
with αΣ = 0.5 and βT = 1, the pre-factor is C = 0.24.

We can now compare this with the radial drift speed of
particles (Brauer et al. 2008), which is given by

vd,rad,tot = vr,d +
vr,gas

1 + τ2
f

. (32)

1 The findings in Bitsch et al. (2015b) and Bitsch & Johansen (2016)
produced core masses around 10 ME, approximately a factor 2 lower
than Uranus and Neptune.

Fig. 16. Final core masses of planets Mc as a function of formation
distance r0 and formation time t0 in the disc. The white lines correspond
to core masses of 10, 15, and 20 ME (top to bottom) and are marked by
white numbers. The black and blue lines have the same meaning as in
Fig. 15. The top plot corresponds to the pebble-isolation mass stated
in Lambrechts et al. (2014), while the bottom plot corresponds to the
pebble-isolation mass in this work (Eq. (10)). Clearly, Eq. (10) allows
for higher core masses, which is crucial for the formation of ice giants
in our own solar system.

The radial speed of the gas vr,gas in an α disc is estimated by
Takeuchi & Lin (2002) as

vr,gas = −3α
c2

s

vK

(
3
2
− αΣ

)
. (33)

The quantity vr,gas that describes the radial drift of individual dust
particles is given by Weidenschilling (1977) as

vr,d = −
2∆v

τf + 1/τf
, (34)

where ∆v is the maximum drift velocity, which is calculated as

∆v =
c2

s

2vK

(
αΣ +

7
4

)
. (35)

In Fig. 17 we show the radial drift speed of particles as a
function of Stokes number, the radial gas velocity, and the migra-
tion speed of planets with 25 ME (corresponding directly to the
pebble-isolation mass without diffusion) and 50 ME in a disc
with α = 0.001. Clearly, the particles drift faster than the planet
migrates when the pebble-isolation mass is reached. Even for
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Fig. 17. Total inward velocity of a dust particle (red) as a function of
Stokes number τf and the corresponding gas velocity for a disc with
α = 0.001 (magenta). Over-plotted are also the radial speeds of a 25
and a 50 ME planet in the same discs, assuming pure type I planetary
migration. Even for the 50 ME planets, particles with τf > 0.001 drift
faster than the planet and would thus accumulate at the pressure bump
outside of the planetary orbit.

the 50 ME planet, particles with τf > 0.001 drift faster than the
planet migrates, indicating that particles drifting inwards from
the outer disc will be trapped in the pressure bump outside of the
planetary orbit.

However, planetary migration is more complicated than the
simple estimate provided in Eq. (31). The corotation torque can
change the migration speed and also the direction of migration
(Paardekooper & Mellema 2006; Baruteau & Masset 2008; Kley
et al. 2009; Paardekooper et al. 2011). This can result in regions
of the disc where the planet does not migrate at all, so-called
zero-torque regions (Bitsch et al. 2013, 2014, 2015a; Baillié et al.
2015). However, the corotation torque is prone to saturation,
which depends on the local viscosity of the protoplanetary discs
(Paardekooper et al. 2011), where a lower viscosity allows an
easier torque saturation, preventing outward migration. Even in
these cases, however, the pebbles with τf > 0.001 drift faster
than the planet migrates and will thus accumulate outside of the
planetary orbit in the generated pressure bump.

5.2. Mass loading in the pressure bump

As soon as the planet reaches the pebble-isolation mass, pebbles
drifting inwards from the outer disc are stopped in the pressure
bump generated by the planet. As the flux of pebbles from the
outer disc continues, pebbles accumulate in the pressure bump
and the pebble-to-gas ratio increases. However, an increased
pebble-to-gas ratio will trigger the streaming instability (Bai &
Stone 2010; Carrera et al. 2015), transforming the pebbles into
planetesimals. For the streaming instability to occur, a vertically
integrated pebble-to-gas ratio of a few percent is needed.

Pebbles can also accumulate in vortices generated outside of
the gap carved by the planet, where they would form planetesi-
mals. Raettig et al. (2015) showed that the accumulated pebbles
could destroy a vortex in a disc, but in our case, the vortex is
fed by the presence of the planet itself, which was not taken
into account in their work. Auffinger & Laibe (2018) studied
the linear growth regime of the streaming instability in pres-
sure bumps in discs, and they found that streaming instability
can occur within the pressure bump. The accumulated pebbles

inside the pressure bump therefore turn into planetesimals, which
do not affect the gas velocities and thus do not disrupt the pres-
sure bump. However, how the presence of a planet influences
the streaming instability in a pressure bump is still subject to
investigation.

Nevertheless, the current evidence occurrence of planetes-
imal formation inside the pressure bump before mass load-
ing with pebbles influences the gas dynamics of the pressure
bump itself. This makes the pressure bump outside of the
planetary orbit an interesting candidate for subsequent planet
formation.

5.3. Particle filtering by proto-Jupiters

The pebble accretion scenario does not only allow for fast accre-
tion of planetary cores at large distances, it also gives potential
solutions to (a) the great dichotomy between the terrestrial plan-
ets and the gas giants (Morbidelli et al. 2015), (b) the inward
motion of the water ice line as the protoplanetary disc evolves
in time and crosses the orbit of the Earth in less than 1 Myr
(Morbidelli et al. 2016), and (c) explain the difference between
the non-carbonaceous and carbonaceous meteorites through dif-
ferent isolated reservoirs (Kruijer et al. 2017). The solution to all
these problems could be related to the growth of the Jupiter core
and to the amount of pebbles that can drift past it after reaching
pebble-isolation mass.

In these scenarios, the Jupiter core forms in the cold part of
the protoplanetary disc (r > rice), where the pebbles are large.
This makes the accretion very efficient because larger pebbles
can be accreted more efficiently, allowing Jupiter to grow faster
than the bodies in the terrestrial region (Morbidelli et al. 2015).
Additionally, as soon as Jupiter reaches its pebble-isolation mass,
the inward flux of large pebbles (τf > 10−1) is stopped. The small
pebbles drifting through are accreted very inefficiently (unless
they grow again through coagulation), slowing down the growth
of the bodies in the terrestrial region.

Morbidelli et al. (2016) reported that the inward flux of icy
pebbles was stopped by a proto-Jupiter that had reached pebble-
isolation mass, thus fossilizing the water ice line at ≈3 AU
because the bulk of the material was stopped outside of the
proto-Jupiter. However, a small fraction of water ice is needed
to explain ordinary chondrites (and to a lesser extent, even
enstatite chondrites) as they show evidence for some water alter-
ation. The amount of water available had to be much lower than
expected from solar proportion, however. This shows that these
meteorites formed in a cold environment, but the availability
of icy grains was somehow strongly reduced. The passage of
small grains (<10µm) through the barrier at the Jupiter pressure
bump coupled with the inefficient accretion of such small grains
explains these observations and is in agreement with the block-
ing efficiency of planets at pebble-isolation mass found in this
study.

Kruijer et al. (2017) showed through meteoritic evidence
that the reservoir between non-carbonaceous meteorites and
carbonaceous meteorites was spatially separated in the proto-
planetary disc around the young Sun at about ≈1 Myr. This
separation can be achieved by a growing planet that stops
the inward flux of particles, which corresponds to the core
of Jupiter. Kruijer et al. (2017) gave the mass of the Jupiter
core as ≈20 ME. This is in agreement with thepebble-isolation
mass we found here, but the exact mass at which a growing
Jupiter generated a pressure bump outside of its orbit depends
on the disc properties (viscosity, aspect ratio, and pressure
gradient).
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5.4. Ice giant formation

As soon as the planet reaches its pebble-isolation mass, the enve-
lope of the planets is no longer heated by infalling pebbles, and
gas accretion can start (Lambrechts et al. 2014). This initial con-
traction of the gaseous envelope depends on the cooling for the
envelope and with that on the opacity inside it (Piso et al. 2015).
At low temperatures (below 1000 K), the opacity is dominated by
the dust grains, where a larger amount of dust grains increases
the opacity and thus prolongs the contraction of the planetary
envelope. However, in the pebble accretion scenario, the planet
blocks the influx of new pebbles, and only very tiny dust grains
can reach the planet.

As soon as the main flux of pebbles onto the planet is
stopped, the core stops to grow, but very small grains might
still enter the planetary atmosphere and thus keep the opacity
high, prolonging gas envelope contraction (Lambrechts & Lega
2017). However, even in the case of no diffusion, particles with
τf < 0.005 can reach the planet (Fig. 8) and keep the opacity
high. Only for larger planets can the pebble flux sufficiently be
reduced. Additionally, this depends on the viscosity of the pro-
toplanetary disc because of the diffusion of particles through the
pressure bump, where higher viscosities allow a more efficient
diffusion and the planet has to reach higher masses to block
pebbles with the same Stokes number compared to planets in
low-viscosity environments. This initial growth stage might be
very important for the growth of ice giants, preventing them from
immediately entering into rapid gas accretion and thus explain
why Uranus and Neptune have envelopes of 10–15% of their
mass without entering into runaway gas accretion.

Lambrechts et al. (2014) found that Uranus and Neptune may
never have reached pebble-isolation mass and that this prevented
them for accreting gas. Our findings indicate that these planets
might have reached the pebble-isolation mass without diffusion
limit (to stop efficient growth of the core), but the influx of
small particles prevented an efficient cooling of the atmosphere
and thus runaway gas accretion. However, this could only have
occurred if the viscosity of the protoplanetary disc was very low
(α ≈ 10−4) because otherwise the pebble-isolation mass is higher
than the mass of Uranus and Neptune for typically expected disc
aspect ratios (H/r > 0.04) in the outer disc at late disc evolution
stages. We note that the outer disc structure is dominated by stel-
lar irradiation, so that it is independent of the disc viscosity and
H/r becomes smaller through the reduced stellar irradiation as
the system ages (Bitsch et al. 2015a).

6. Summary

We have conducted 3D hydrodynamical simulations to mea-
sure the pebble-isolation mass as a function of the disc struc-
ture and turbulence strength. In particular, we investigated
the dependence on the disc aspect ratio H/r, the disc vis-
cosity (parametrised through α), the radial pressure gradient
∂ ln P/∂ ln r, and the particle size described by the Stokes num-
ber τf . Our findings generally agree with the results presented
in Lambrechts et al. (2014), who inferred the cubic dependence
on the disc aspect ratio H/r, but we refined the pebble-isolation
mass to more disc parameters and also confirmed our results in
fully radiative discs with heating and cooling. In Eq. (26) we pro-
vide the pebble-isolation mass as a function of our investigated
disc parameters, which is useful for planet formation simulations
involving pebble accretion (Bitsch et al. 2015b; Levison et al.
2015; Chambers 2016; Matsumura et al. 2017).

Our findings result in a pebble-isolation mass that is up
to a factor of 2–3 higher than found in Lambrechts et al.
(2014) in the high-viscosity case (α ∼ 0.01) and a factor
of ≈1.5 higher than in 2D simulations, see Appendix B. A
higher viscosity and a steeper radial pressure gradient both
result in a higher pebble-isolation mass. For very low viscosi-
ties, our simulations match the results of Lambrechts et al.
(2014). This results in higher core masses in planet forma-
tion simulations compared to previous simulations (Sect. 4) in
discs with α = 0.0054. Discs with higher viscosity thus bet-
ter match the heavy element content of the ice giants in our
own solar system, because even as the disc evolves and H/r
decreases, the pebble isolation mass stays high enough so that
the ice giants did not reach pebble isolation mass. Addition-
ally, discs with higher viscosity can more easily match overall
the heavy element content of giant exoplanets (Thorngren et al.
2016).

We also investigated the penetration of particles of various
Stokes number τf through the pressure bump by radial advec-
tion with the gas and through turbulent diffusion. In the absence
of turbulent diffusion, a planet that has reached pebble-isolation
mass can readily block pebbles with τf > 0.005, while a mass
higher by a factor two is necessary to block pebbles with Stokes
numbers as low as τf ∼ 10−4. Including turbulent diffusion of
particles due to viscosity changes this picture. Depending on vis-
cosity and the particle size, the generated pressure bump needs
to be stronger. To block particles of τf = 0.05, a typical size in
drift-limited pebble growth models (Birnstiel et al. 2012), the
planetary mass has to be increased by up to a factor of ≈2 com-
pared to the pebble-isolation mass without turbulent diffusion
(Eq. (10)) for high-viscosity discs. In low-viscosity discs, block-
ing of particles with τf = 0.05 requires a much smaller increase
of the planetary mass than in the pebble-isolation mass without
diffusion (Fig. 11).
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Appendix A: Azimuthal disc structure

We present here the 2D surface density structure of a 25 ME
planet embedded in a disc with α = 0.001 and H/r = 0.05 (top
panel of Fig. A.1) as well as the η value in the 2D configuration.
The data of these simulations correspond to the purple line in
Fig. 1, indicating that the pebble-isolation mass has been reached
when calculating the azimuthally averaged η profile. However,
as can be seen in the bottom panel of Fig. A.1, a negative η
value and with it a blocking of inward-drifting pebbles can be
achieved at all azimuthal values when the pebble-isolation mass
is reached. In principle, there is a small region in parameter space
that might allow pebbles to “tunnel” through the pressure bar-
rier, but the planet and with it the spiral waves orbit the central
star at a frequency of ΩP, whereas the pebbles orbit with a fre-
quency Ω(r), which results in the trapping of the pebbles inside
the pressure bump.

Fig. A.1. Surface density (top) and η value (bottom) for discs with
α = 0.001, H/r = 0.05 with an embedded 25 ME planet. The planet
is located at r = 1 and φ = −1. A planet with this mass opens a par-
tial gap in the disc density and has reached the pebble-isolation mass
(Fig. 1). The η value reaches negative values outside of the plane-
tary orbit over the whole azimuthal range, indicating that taking the
azimuthally average η value to compute the pebble-isolation mass is
correct.

Appendix B: Comparison to 2D simulations

The pressure in isothermal 3D simulations is related to the gas
volume density P3D = c2

sρg, while for isothermal 2D simulations,
the pressure is related to the gas surface density with P2D = c2

s Σg.
However, the gas surface density and the gas volume density are
related through

ρg =
Σg
√

2πHg
, (B.1)

where Hg is the gas scale height. For power-law discs in 3D
with Σg ∝ rs and with H/r = const., this implies ρg ∝ rs−1 and
c2

s ∝ r−1. In 2D discs, the surface density needs to have s > 1 to
invert the pressure, while in 3D s > 2 is needed, making it harder
to open a pressure bump in the protoplanetary disc.

In Fig. B.1 we show the η value as function of orbital dis-
tance for 2D discs with α = 0.001, H/r = 0.05, and different
planetary masses, the same as in Fig. 1. Clearly, a much lower
planetary mass is needed to generate a pressure bump outside
of the planetary orbit. In 2D simulations, planetary masses of
about a factor of 1.5 less are needed to open a pressure bump in
the protoplanetary disc than in 3D simulations.

Fig. B.1. η parameter as function of orbital distance from the planet
for α = 0.001, H/r = 0.05 and different planetary masses in 2D discs.
The location of the planet is always at r = 1. A negative η parameter
indicates the pressure bump. Here a mass of about ≈10 Earth masses is
needed to generate the pressure bump, which is about a factor of 1.5–2
lower than in the 3D case.
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