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ABSTRACT

Early dynamical evolution of close-in planetary systems is shaped by an intricate combination of planetary gravitational interactions,
orbital migration, and dissipative effects. While the process of convergent orbital migration is expected to routinely yield resonant plan-
etary systems, previous analyses have shown that the semi-major axes of initially resonant pairs of planets will gradually diverge under
the influence of long-term energy damping, producing an overabundance of planetary period ratios in slight excess of exact commen-
surability. While this feature is clearly evident in the orbital distribution of close-in extrasolar planets, the existing theoretical picture
is limited to the specific case of the planetary three-body problem. In this study, we generalise the framework of dissipative divergence
of resonant orbits to multi-resonant chains, and apply our results to the current observational census of well-characterised three-planet
systems. Focusing on the 2:1 and 3:2 commensurabilities, we identify three three-planet systems, whose current orbital architecture
is consistent with an evolutionary history wherein convergent migration first locks the planets into a multi-resonant configuration and
subsequent dissipation repels the orbits away from exact commensurability. Nevertheless, we find that the architecture of the overall
sample of multi-planetary systems is incompatible with this simple scenario, suggesting that additional physical mechanisms must play
a dominant role during the early stages of planetary systems’ dynamical evolution.
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1. Introduction

The search for exoplanets in recent years has uncovered a mul-
titude of planetary systems, the study of which is the key to an
understanding of planetary formation and evolution. Currently,
the exoplanet population is dominated by Kepler’s transit detec-
tions, making the planetary physical radii and orbital periods the
better constrained parameters of the sample. Concerning the first
aspect, much work has been done recently to understand how
photoevaporation sculpts the physical radii of planets (Fulton
et al. 2017, and references therein). In this work we address the
second, complementary problem of the orbital period distribu-
tion. One of the most notable aspects of the Kepler data is that
the distribution of the period ratios of neighbouring planets in
multi-planets systems shows two seemingly conflicting features:
on the one hand, it appears relatively broad and smooth, without
any single, unmistakably emerging feature; on the other hand, a
slight preference for near-resonant configurations is evident upon
close examination. In fact, it is often pointed out that there is a
lack of planet pairs in correspondence with period ratios very
close to low-integer ratios, and a definite excess just wide of
these values, especially the 2:1 and 3:2, see Fig. 1.

Numerical simulations show that compact chains of mean
motion resonances are a common outcome of slow, conver-
gent orbital transport of planets within protoplanetary discs.
Although details of disc-driven migration remain an active topic
of research, it is clear that such a process should play some role
in the dynamical history of planetary systems. For example, it
is not easy to envision a formation narrative which does not

require convergent migration for systems such as Trappist-1, a
star famously hosting seven planets with period ratios very close
to small integer ratios (Gillon et al. 2016, 2017, Luger et al.
2017). Indeed, Gillon et al. (2017) performed N-body integra-
tions with the orbital fits as initial conditions and these went
unstable over timescales 10 000 times shorter than the estimated
age of the system; in contrast, Tamayo et al. (2017) remarked
that if an initial condition which results from capture into reso-
nance through migration is chosen, then the system is stable over
timescales two orders of magnitude longer then the ones found
in Gillon et al. (2017). They also note that the addition of tidal
eccentricity damping should help maintain the evolution stable
over the system’s age. Other good examples of systems neces-
sarily sculpted by migration are the four sub-Neptune planets of
Kepler-223 (Mills et al. 2016) and the now-classic example of
Laplace-like resonance in GJ-876 (Rivera et al. 2010; Batygin
et al. 2015).

In light of the fact that convergent migration should lock
planets into mean motion commensurability, it is pertinent to
ask how we can explain the lack of planets with exactly reso-
nant period ratios and the excess just wide of them. Analytical
models of resonance do predict that a pair of planets in a first
order mean motion resonance need not satisfy the exact reso-
nance condition a;/a, = ((k — 1)/k)*® (where a; and a; are the
semi-major axes of the inner and outer planet, respectively, and
k is a positive integer), but they can reside wide of resonance
while the resonant angles are still librating. This divergence
of the resonant equilibrium configurations happens at vanish-
ingly low eccentricities and is linked to a fast precession of the
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Fig. 1. Observations of planet-hosting stars reveal that multi-planetary systems are not rare, hosting over 1600 confirmed planets (panel a).
The period ratio distribution of neighbouring planets is shown in panel b. One can observe an overall broad distribution as well as a number
of peaks slightly wide of resonant ratios, especially the 2:1 and 3:2 commensurabilities. Data was obtained from the Nasa Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu/). Panel a: histogram of multi-planetary system by number of planets in each system.
Panel b: distribution of period ratios of neighbouring planets in exoplanetary systems.

perihelia, which is well understood analytically. However some
Kepler systems are so wide of resonance that, after the resonant
configuration is attained and the disc of gas is dissipated, an aux-
iliary mechanism might need to be invoked which actively drives
these planets farther away from the exact resonance. As we see
in Sect. 3, observations show that a significant fraction of nearly
resonant systems lie up to 50 times wider from the resonance
than the typical resonant width, and at lower eccentricities than
are expected for such planets captured in resonance via migra-
tion in protoplanetary discs. These observations can potentially
be interpreted as evidence for dissipative processes acting on the
planetary systems after the disc phase.

Papaloizou & Terquem (2010) considered the specific case
of the K-dwarf HD 40307, which hosts! 3 hot super-Earths/mini-
Neptunes with both pairs wide of the 2:1 mean motion reso-
nance, and planetary masses obtained with Radial Velocity. They
showed that as tidal interaction between the planets and the star
reduces the eccentricities, the system maintains the libration of
the resonant angles even when the period ratios are considerably
far away from exact commensurability. Subsequently, Batygin &
Morbidelli (2013a), Lithwick & Wu (2012) and Delisle & Laskar
(2014) showed that two planets in mean motion resonance repel
each other as energy is lost during tidal evolution. They thus
proposed this as a viable mechanism to explain the observed
distribution of period ratios in exoplanetary systems. We note
that, for two planets, this repulsion can be easily understood
if one considers that any process that dissipates the energy,
E o —mj/a; — my/ay, and at the same time conserves angular
momentum, L o« my y/a; + my v/az, should give rise to such an
evolution. Indeed, this study applies to any dissipative evolu-
tion that maintains constant the angular momentum, not just tidal
dissipation, and not just resonant coupling (Delisle et al. 2012).

Thanks to these studies, the case of two planet system is well
understood. However the data also contains numerous systems
of more than two planets (Fig. 1). Accordingly, in this paper we
aim to expand the study to detected extrasolar systems of three
planets. More specifically, we envision the following scenario
for the formation and evolution of these planetary systems. First,

I We note that since the publication of the aforementioned paper, more

planets have been observed in the same system, including two confirmed
planets HD 40307 f and HD 40307 g. For this reason, we will not con-
sider this system in the current work, although we draw inspiration from
the analysis of Papaloizou & Terquem (2010).
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three planets are embedded in the protoplanetary disc in which
they formed; they interact with the disc, which ultimately results
in a resonant capture. Then, after the disc is slowly depleted, the
dissipative effects mentioned above are introduced, leading to
orbital divergence.

Naturally this is a simplified and idealised scenario. In
reality, we still do not know with enough accuracy the final con-
figuration obtained by multi-systems migrating in a disc of gas.
One approach towards a better approximation would be to per-
form full hydrodynamic simulations of planets immersed in their
protoplanetary disc accounting for various disc parameters (such
as disc surface density, turbulence, opacity, etc.). This approach
would however be very expensive computationally. Moreover, to
date we have virtually no direct observations of the specific phys-
ical processes acting during planet formation and evolution in the
early epochs of the disc phase, so these simulations, no matter
how exhaustive in terms of the implementation of the plausi-
ble physics, cannot yet be directly constrained by the available
data. In any case, the fact that slow convergent orbital trans-
port strongly favours resonant captured states is well supported
both analytically and numerically, as well as by the specific
observations of multi-planets systems mentioned above.

In this paper we focus on slow convergent Type-I migration
in a disc of gas, and adopt simple synthetic analytical formule
for the work and the torque generated by the disc on the plan-
ets (Cresswell & Nelson 2006, 2008); the requirement that exact
prescriptions for the interaction between the planets and the disc
be implemented will be relaxed, invoking the aforementioned
arguments favouring the plausibility of mean motion resonant
capture. A similar reasoning can be applied for the post-disc
phase. In order to simulate the dissipative forces that can act
on the planetary system, we will implement tidal dissipation. Of
course, the tidal parameters for these planets are not known (as
we do not yet have a precise understanding of the interior struc-
ture of these bodies or the specific physical mechanisms that
dominate the dissipation), which would pose additional ques-
tions concerning for example the timescales over which this type
of dissipation takes place. However, the specific choice of tidal
dissipation is only one possible example of a process such that
E < 0and £ = 0. We conclude that our specific implementation
of Type-I migration and tidal dissipation after the disc removal
is therefore not restrictive, which makes our results generalisable
to any other equivalent processes. In the light of these consider-
ations, we ask if it is possible to reproduce the observed orbital
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configuration of real exoplanetary systems which reside close to
resonance, assuming that planets are captured into resonance and
undergo dissipative evolution after the disc phase. In other words
we ask if the aforementioned physical processes are compatible
with the distribution of near-resonant period ratios that emerges
from available data.

In order to answer this question, we examined the NASA
Exoplanet Archive? and selected confirmed three-planet systems
for which both planet pairs lie close to a first order mean motion
resonance, in particular the 2:1 and 3:2 resonances, as these seem
to be the most common in the Kepler data. Our aim is to analyse
these systems’ orbital parameters and to evaluate quantitatively
how close they are to a multi-resonant chain, which would be
indicative of a dynamical history characterised by the physical
processes described above.

Evidence suggesting that planets around Trappist-1 and
Kepler-223 truly reside in a resonant configuration has recently
been marshalled from the observed libration of the three-body
Laplace angles. To this end, recall that if two neighbouring pairs
of planets in a multi-planet systems are in the k0":(k@ — 1)
and k©©":(k°"9 — 1) resonances respectively (so that the resonant
angles kM, — (k™ — 1)A; — @, and k"9 A3 — (K — 1)1, — @
are librating), then the Laplance angle ¢; = (K™ — 1)4; — (k%™ +
k©W — 1)2, + k©" 23 will be automatically librating as well. The
advantage of examining this three-body angle over the two-body
resonant angles is that the latter contain the longitudes of the
pericenters @, whose precession rates are poorly constrained by
the data, while the former only includes the mean longitudes
A whose derivatives in time are directly deduced by the transit
observations. However, solutions for which the resonant angles
were originally in libration around a resonant equilibrium point
can become circulating when the eccentricity of the equilibrium
point becomes small enough under the effect of tidal damp-
ing (Delisle et al. 2015), and, similarly, even a small distance
from the equilibrium point could be responsible for breaking
the libration of the three-body Laplace angle when the equi-
librium eccentricity becomes small enough. Therefore, even if
such circulations of the angles were observed, this would not be
in disagreement with the envisioned scenario of resonant cap-
ture and subsequent dissipative evolution. In other words, the
libration of the Laplace angle is a sufficient, but not neces-
sary condition for past resonant capture in a chain of first-order
resonances.

We therefore perform here a different analysis of the
observed data, where we do not attempt to verify that a given sys-
tem resides formally in resonance at the present day, but instead
we evaluate the distance of a system from the considered res-
onance chain and the probability that this proximity is due to
mere chance. In order to do this, we look for resonant solu-
tions that provide the closest match to the observed planetary
orbital configurations, that is the semi-major axis ratios. It is
worth anticipating here the following important point. As it will
be clear later (see Sect. 3.2), in the case of only two resonant
planets residing wide of resonance it is always possible to find
a resonant configuration which matches the observed data. This
is because the eccentricities of these planets are at the present
day not well constrained observationally, making the total orbital
momentum of the system £ a free parameter: it is therefore
always possible to find a value of L that reproduces the observed
a»/a; with resonance-locked orbits. However, this is not the case
for systems of three planets, since we still have only one free
parameter £ (whose value is linked to the initial captured state,

2 https://exoplanetarchive.ipac.caltech.edu

not constrained observationally) but two observables, that is the
two pairs’ semi-major axis ratios.

As detailed below, we carried out our study of finding orbital
configurations that match the observed data using both an ana-
lytical and a numerical approach. The semi-major axes of the
planets may be inferred from the orbital periods once the stellar
mass is known, however this quantity is not yet well constrained
in all cases. Nonetheless, all we will be interested in will be the
semi-major axes ratios a,/a; and az/a,, which can be obtained
without any knowledge of the mass of the star directly from the
period ratios and using Kepler’s third law. This is tantamount
to renormalising all separations by some arbitrary length, which
does not affect the underlying physics since the dynamics only
depends on the ratios of the semi-major axes and not on their
individual values (only the timescale of the evolution does).

For the purposes of this study, we can limit ourselves to an
analysis to first order in the planetary eccentricities. Indeed, the
eccentricities that are expected for planets that have been cap-
tured into mean motion resonance by slow convergent migration
in a disc are of order +t./t, ~ h, where 7, and 7, are the
timescales of migration and eccentricity damping respectively,
and h = H/r ~ 0.05 is the aspect ratio of the disc (Goldreich &
Schlichting 2014, Pichierri et al. 2018). Since discs with high
aspect ratios are not expected, the limit of small eccentricity is
justified, and even more so in the phase of dissipative tidal evo-
lution, which further damps the eccentricities. Moreover, given
that these are transiting planets, and that during the disc phase
any mutual inclination of the planets would be damped out, we
assume coplanar orbits for simplicity. Another useful piece of
information which is available to us is the radii of the planets.
This could in principle be used to infer the planetary masses (e.g.
Wu & Lithwick 2013). However the radius—mass relationship in
Kepler planets is marked by extreme scatter (Weiss et al. 2013),
and we therefore choose to keep the planetary masses as a free
parameter. More specifically, we are only interested in the mass
ratios m /my and m,/mj3, since, as we will show, they are the
only dynamically significant quantities that can affect the values
of the semi-major axis ratios (see also Appendix A).

The remainder of this paper is organised as follows. In Sect. 2
we obtain an analytical model for three planets in a chain of first
order mean motion resonances, valid in the limit of small eccen-
tricities. With this analytical model, we find the stable resonant
configurations and map them in terms of the orbital elements.
Finally we obtain an analytical confirmation of resonant repul-
sion for three-planets systems undergoing dissipation. In Sect. 3
we detail our study, employing both analytical and numerical
methods. We select systems of three planets near mean motion
resonances, focusing on the 2:1 and 3:2 resonances, and we anal-
yse their orbital configuration using the available data in order
to evaluate if they are consistent with the process of resonant
capture and subsequent dissipative evolution. We present our
results in Sect. 4 and we finally conclude by discussing their
significance in Sect. 5.

2. Planetary Hamiltonian

The Hamiltonian of two resonant planets in the limit of low
eccentricities has been studied extensively in the literature (e.g.
Batygin & Morbidelli 2013b, and references therein). Collec-
tively these studies have pointed out that even if both planets
are massive and to first order in eccentricity it is possible to
reduce the problem to an Hamiltonian that is analogous to the
well-known Hamiltonian of the restricted, circular three-body
problem of a massless particle in resonance with a massive
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unperturbed body. In particular, such a Hamiltonian is integrable
and is equivalent to the so-called second fundamental model for
resonance (Henrard & Lamaitre 1983). This is, however, not the
case for three planets. Nonetheless, it is useful to extend an ana-
lytical description of the resonant dynamics at low amplitude of
libration of the resonant angles in the case of three planets orbit-
ing a star. In this section, we introduce the Hamiltonian of the
system, derive curves representing the loci of its stable equilib-
rium points, and show how these can provide a description of a
system along the dissipative evolution. We will apply this model
to real Kepler system in Sect. 3.2.

Consider three planets of masses m;, m, and mj, orbiting
around a star of mass M, in a canonical heliocentric reference
frame (Poincare 1892). Indices 1, 2 and 3 will refer to the inner,
middle and outer planet, respectively. As usual, we consider the
planetary Hamiltonian, which we write as

H = erpl + 7—{pertv (l)
where the keplerian part is given by
gM*ml QM*mz QM*m3
=- - - 2
Hiep 2a, 2a; 2a; @)

and describes the (integrable) motion of the three planets due
to their interaction with the star, to which the small perturba-
tion Hper is added, which includes all the mutual interactions
between the planets. We now assume that the inner pair of
planets is close to a k™: (k™ — 1) mean motion resonance, and
that the outer pair of planets is close to a k°"":(k°"" — 1) mean
motion resonance, where k™, k°"* > 1 are two positive integers.
In other words, we assume the resonance conditions nj/n, =
KM /(K™ — 1), ny/nsy =~ k°U/(k°" — 1), where for each planet n =
VG(M, + m)a=3 is the mean motion. Since we are interested in
the resonant interaction between the planets only, we will aver-
age the Hamiltonian over the fast evolving angles so that only
combinations of the resonant angles k"4, — (k™ — 1)4; — @y,
kin/lz - (kin - 1)/11 — Wy, kout/lg, - (koul - 1)/12 — Wy, and kom/lg, -
(k°" — 1)1, — w3 remain in the Hamiltonian, where A is the mean
longitude of a planet, and @ is its longitude of the periastron.

The resonant perturbing Hamiltonian expanded to first order
in the eccentricities reads

Hyes = — g";—lzmz (fis™er cos (K" = (K™ = DAy - @)
+ fisMeycos (K" = (K™ = DAy - @)
_ g”;_i”” (FLe, cos (K5 = (K™ — 1)A; - @)
+ fia™es cos (K" — (K" = DAy - @3)) 3)

where the orbital elements are constructed from heliocentric
positions and barycentric velocities (Poincare 1892). The coef-
ficients fi. are typically of order unity, and it is straightforward
to determine the strength of each resonant harmonic, and incor-
porate direct and indirect terms. They depend (weakly) on the
semi-major axis ratios, and their expressions may be found in
Murray & Dermott (2000). We therefore write the Hamiltonian
after the averaging procedure as

H = (]-{kepl + Hres + O(EZa 12), €]

and then drop the higher order terms. We note that terms that
describe the mutual influence of the innermost and outermost
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planet are not included in Hes as this is a higher order effect.
Note also that by dropping the higher order terms the problem
is reduced to a planar one. In order to maintain the canonical
nature of the equations of motion, we introduce for each planet
the modified Delaunay action-angle variables (A, T, 4,y) (omit-
ting the subscripts 1,2,3 for simplicity), which are given in terms
of the orbital elements by

A =u~NGWM,. +m)a=~m~\GM.a, A1={+wm,
[=A0 - V1-e2) = Aé*/2, y = -, (5)

where u = M.m/(M, + m) is the reduced mass, and £ = E —
e sin E is the mean anomaly (E being the eccentric anomaly). In
these variables, the Keplerian part Hi.p of the Hamiltonian (1)
takes the form

3 2 3 3 3 2
G*(M, + m;)"u m; (GM,
He ~ — — R 6
kepl = ; 2A? ; 2 ( A ©
while the resonant Hamiltonian writes
QZM*mlmg
7'{res = _T

[2T,
(fr(elsm) A ——cos (k"1 — (K" — 1A, + )
2T . .
LG T cos (R = (K" = 1Ay + 72))
2

§2M*m2mg
- 2
A3

2T
X ( Flow 222 o8 (A3 — (K = 1) + 72)
Ay
2r
ow) /A—3 cos (K" A3 — (k™ = 1), + )/3)], @)
3

we note that in going from Egs. (3) to (7) we have made use of
the approximation e ~ v2I'/A, which holds at first order in e.

This Hamiltonian is clearly not integrable. However, one can
perform a series of changes of variables that allow us to reduce
by two the number of degrees of freedom. The first canonical
transformation is

kin 1 kin -1 kout -1
K=A+ n Ay + ( kir?]((out )A3, kK=,
1 kout — 1 : ,
em = T — Ao+ e — A, o = k"2, — (K™ = DAy,
1
0¥ = o A 0% = k"3 — (k" = DAy (®)

it is straightforward to check using the Poisson bracket criterion
(Morbidelli 2002) that it is indeed canonical. Now, the new
angle « does not appear explicitly in the Hamiltonian, which
makes K a constant of motion. The significance of K has
already been discussed for two planets (e.g. Michtchenko et al.
2008, Batygin & Morbidelli 2013b), and it has to do with the
location of exact resonance. As we have already mentioned,
neighbouring planets can still be in resonance while their
semi-major axis ratios do not satisfy exactly the resonant
condition a;/a;y; = ((k — 1)/k)*?, therefore the observed a; opbs
do not alone reveal how close the planets are to resonance, nor
do they represent the nominal g; that do satisfy it. However by
calculating from a; o5 the value of the constant of motion K,
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and imposing in the formula

K /.11 M*+m1 aj +kin—1ﬂ2 M. + my ap
A3 uz N M, +ms a; kin us N M. +ms3as
(kin _ 1)(kout _ 1)
+ ) 9
Jin fout ©)

the condition of exact resonance, a;/ai; = ((k — 1)/k)*3,
for all pairs i = 1,2, we derive the nominal value of As.
From this, one easily obtains a3 from a3 = (A3 /m3)2/(GM.,),
and then recursively @, = ((k° — 1)/k°*)?3a;, and finally
ay = (k™ = 1)/k™M*3a,

It is worth briefly recalling here why even in resonance the
planets’ semi-major axes do not coincide exactly with their nom-
inal values. As an example, for the inner planet, the condition for
resonance is that the resonant angle k™A, — (k"™ — 1)) — @ is
librating, 0 ~ k"2, — (K" — 1)1, — @y = k"ny — (k™™ — D)ny — @y,
which together with the condition of exact nominal resonance
k"ny — (K™ — 1)n; = 0 would imply @; ~ 0; however from the
Hamiltonian (Eq. (7)) we have @ = —y; o FII/Z ~ 1/ey which
grows as e; \, 0, meaning that at low eccentricities @; + 0,
which in turn forces k"1, — (K" — DA, = k™ny — (K" — Dy » 0
in order to maintain the libration of the resonant angle. The reso-
nant equilibrium points will therefore correspond to semi-major
axes a; which may well deviate farther and farther from a; as
e; approaches 0. We can however already greatly simplify the
calculations given that we will only consider deviations of the
semi-major axis ratios from the nominal ones of no more than
5% (moreover, very small values of the eccentricities are obser-
vationally disfavoured for Kepler systems, Hadden & Lithwick
2017). In this limit, we can expand the Keplerian part to sec-
ond order in 6A; = A; — A;, where A; = p1y VG(M, + m;)a, is the
nominal resonant value of A;, and write

3 2 2 %
G (M. + mz)
Wkepl = Z

i=1

1 1 1

X (ﬁ - 2E6A,- + 3E5A? + 0(5A§)), (10
1 A L

which, inserting the definition of §A; and dropping the unim-

portant constant term and the higher order terms, reduces
to:

3

3.
Hiept = (4ﬁiA,- - EhlA%),

i=1

where i; = VG(M, + m;)/a’ is the nominal mean motion and
hi = mi/A; = 1/(ua 2) can be interpreted as the inverse of the

moment of inertia of a circular orbit around the star. As we
will see below, for the purposes of our study, considering the
expanded Keplerian Hamiltonian up to order O(6A?) does not
introduce any significant inaccuracy in our calculations. Con-
cerning the resonant Hamiltonian (Eq. (7)), we can evaluate it at
the nominal values A = A as it is already of order O(e).

Finally, one last canonical change of variable is made:

an

=01 +0@ -+, +13), ¢ =6V,
\P“) [+, +T5 -0, WV =60+,
¥ = @), y? =6 4
‘P(zl) =-T,-T3+02, 5y"V =y -,
Wy = T, 5y =72~y (12)

Again, we see that the new angle 8 does not appear in the
Hamiltonian, making Q another constant of motion of the system
(we note that here Q does not denote the longitude of the node
which does not appear in our model, since the problem is planar).
We are therefore left with a four-degree-of-freedom Hamiltonian
which depends parametrically on the constants of motion %, Q.
We already mentioned the meaning of K; for Q, one can easily
show that K + Q = (A; —T'1) + (Ax —T2) + (A3 —I'3) = L, the
total angular momentum of the system, which is to be expected
knowing that it is a conserved quantity.

2.1. Resonant equilibrium points

Let us briefly summarise our work so far. We have obtained
a 4-degrees-of-freedom Hamiltonian 9 which is a func-

tion of the actions (‘I’(ll), ‘Pﬁz), ‘I’;l), ‘I’(zz)) and the angles
W'",y?, 6y, 6y?), and depends parametrically on the values
of K and Q (which are linked to the orbital elements as expressed
in Egs. (5) and (12)); the Hamiltonian in these variables
reads

7:{ = erp] + 7-{1‘657

(]_{kepl = 7_{kepl (LP(I), lP(IZ); K, Q) s

Heog = Heos ( D \P(IZ)’ (1) (2) l/J(l) lﬂ(lz), 5,},(1)’ (57(2);7(’ Q) ,
13)

where the explicit dependence of each term can be obtained by

direct substitution. We now consider the stable equilibria of this

system. We look for equilibrium points of this Hamiltonian by
simultaneously solving the set of equations

OH OH OH OH

oD T g™ T g T gy T >
oH OH OH oH

=0 —5=0 —5=0—5=0 (14)
| o oy oy

We note that by the functional form of the Hamiltonian, any
combination of values in {0, 7} for the angles immediately sat-
isfies the last line. These are known as the symmetric equilibria.
Asymmetric equilibria are possible (e.g. Beaugé et al. 2006), but
they do not play a role at the low eccentricities at which we are
limiting ourselves here.

Plugging in specific values for the angles in {0, 7} reduces the
problem of solving the four equations that appear in the first line
to find the stable equilibria of the system. We note that although
the Hamiltonian depends on both Q and K, the latter assumes
a natural value for any specific problem at hand (that is, any
values of my, my, mz and of k™, k°"") by rescaling the units so
that for example a; = 1. To trace out the loci of the resonant
equilibria, we then simply change the value of Q (which corre-
sponds to changing the angular momentum £, at constant K)
and solve Eq. (14) to find (‘I’(llgq ‘P(lzzq ‘P(zliq ‘P(zzgq) which are
then translated into orbital elements working backwards through
the canonical transformations.

We show in Fig. 2 one example of equilibrium curves for
three equal-mass planets down to eccentricities of order 1073,
where we also show that the expanded Keplerian Hamiltonian
provides an accurate description of the system. These curves are
then matched against the result of full N-body numerical simula-
tions of a system with the same physical parameters which starts
deep in resonance and evolves dissipatively so to slowly follow
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Fig. 2. Equilibrium curves showing the loci of the stable resonant equi-
librium points calculated as explained in the text, in the case of a 3:2 —
3:2 mean motion resonance chain, with m; = my = m3 = 107*M,. The
full curves are calculated using the expanded Keplerian Hamiltonian
(Eq. (11)), while the dashed curves are calculated using the unexpanded
Keplerian Hamiltonian (Eq. (6)), showing very little difference down to
very small eccentricities and for reasonable values of the nearly exactly
resonant semi-major axis ratio. The location of the nominal resonant
semi-major axis ratio (3/2)*3 is shown by a vertical orange line. We
also superimpose the numerically computed evolution of a three-planet
system deep in the 3:2 mean motion resonance (for both pairs) and
undergoing dissipative evolution depicted with transparent lines: the
system follows the locations of the equilibrium points, which are close
to the curves calculated analytically.

the resonant equilibrium points (transparent lines)’. These
N-body integrations with the addition of dissipative effects will
be detailed below in Sect. 3.3.

2.2. Resonant repulsion for three-planets systems

The equilibrium curves in the a;;1/a; vs. e; plane show that the
resonant repulsion during energy dissipation is expected also
for three-planets systems. For systems of two planets, it is well
known that for first order resonances the resonant equilibria
always reside wide of the exact resonant ratio of the semi-
major axes. That is, because the resonant condition requires
kAy — (k — 1)A; — @12 ~ 0 and since the perihelion precession
is always retrograde, @;, < 0, one necessarily has kA, — (k —
DA, <0, that is ax/a; > (k/(k — 1))*/3. More concretely, at low
enough eccentricities and at semi-major axis ratios close to the
nominal ones, one finds directly using the resonant Hamilto-
nian expanded to first order in e that @ = « fr(els)nl(mz /M*)el‘l,
wy = — fr(ezs)ng(ml /M.)e; ! with fr(els) <0, fr(ezs) > (: this means that
the lower are the eccentricities, the wider are the equilibria from
the exact commensurability. At higher eccentricities the secular
terms, of O(e?), become more important, and they contribute a
positive contribution (that is constant in e) in @; however, one
still finds @r; » < O at higher eccentricities as well (e.g. Pichierri
et al. 2018).

For systems with three planets, since we used a first order
expansion in e in the analytical model and therefore we are not
including the mutual interaction between the inner planet and the
outer planet, the perihelion precession will still be retrograde and
it will remain true that for each pair of planets the resonant equi-
libria lie wide of the exact nominal resonance, and that, in the
limit of small enough eccentricities, the separations grow with
diminishing eccentricities. This is indeed what we see in Fig. 2,

3 We note that even away from nominal resonance all four resonant

angles can continue to librate when the system is sufficiently close to
the resonant equilibrium point, unlike what has been erroneously stated
in Sect. 4 of Batygin & Morbidelli (2013a).
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where the analytically computed resonant equilibria agree very
well with our numerical simulations*.

Consider now a resonant three-planet system that is close
to some resonant equilibrium point and is subjected to (tidal)
dissipation. Assuming that the dissipative evolution is slow com-
pared to that of the resonant variables, which has a characteristic
timescale given by the libration period at vanishing amplitude
of libration, the system will remain bound to the equilibrium
curves. Since the eccentricities are damped by the dissipation,
we conclude that the semi-major axes are expected to diverge.
We also conclude that systems of three planets that are close
to a given first-order mean motion resonance but for which one
or both pairs is narrow of the resonance can only be explained
by a resonant configuration if the amplitude of libration around
the resonant equilibrium point is large, and temporarily takes the
planets to period ratios that are lower than the exact resonant
period ratios.

We finally note here a property of these curves that will
be used later. The Hamiltonian (Eq. (13)) can be rescaled by a
parameter which encapsulates all of the information regarding
how the dynamics scales with mass ratios and physical sizes of
the orbits. This is analogous to the rescaling found in Batygin &
Morbidelli (2013b) for the 2-planets case, and only works when
using an expanded Hamiltonian and for semi-major axes close
to the nominal resonant ones, which are our working assump-
tions anyway. Therefore, after rescaling all planetary masses by
a certain factor 7, the corresponding loci of the resonant equilib-
ria are also simply rescaled, and can be immediately calculated.
More specifically, one can easily see that for given semi-major
axis ratios, the values of the eccentricities that correspond to
the resonant equilibrium point are just rescaled by 7, since
the eccentricities and the planetary masses appear as a prod-
uct in the perturbing Hamiltonian. This can be easily understood
using the previous formula @ o« (mpl/M*)e‘l, and noticing that
fixing the semi-major axis ratio ultimately fixes @ by the res-
onance condition; therefore, rescaling the planetary masses, at
fixed @, = @, = w3 (i.e. at constant semi-major axis ratios),
the eccentricities are simply rescaled by the same factor. This
implies that for a given equilibrium configuration of the semi-
major axis ratio aseq/aj eq, the corresponding equilibrium of the
ratio azeq/azeq Will be independent of 7, that is independent
of the absolute value of the planetary masses. Only the ratios
my /my and my/m3 are significant, meaning that if one changes
one of these ratios, the equilibrium in a3 ¢q/azq corresponding
to the same a; ¢q/aiq Will have changed (see Appendix A for an
explicit presentation of this rescaling procedure).

3. A scenario for dissipative evolution of
three-planet systems

In this section, we select near-resonant systems of 3 plan-
ets from the NASA Exoplanet Archive catalogue, and discuss
whether or not their observed orbital configuration is compatible
with the dynamical evolution driven by the following physical
processes. As we already mentioned, planets are expected to
dynamically interact with the protoplanetary disc in which they
formed. This has two effects: a damping of the eccentricities (and

4 At higher eccentricities the main term which might shift the equi-

libria in a,/a;, az/a, to the left of exact resonance is the second order
(secular) term which describes the interaction between the inner planet
and outer planet; however, we checked that adding this term to the
Hamiltonian, even at high eccentricities and for a very massive outer
planet the picture does not change.
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inclinations), and an exchange in angular momentum between
the planets and the disc which causes the planets’ semi-major
axes to change (planetary migration). Planets captured in mean
motion resonance are usually attributed to inward migration (that
is, the planet looses orbital angular momentum to the disc), and
we will consider this case in this paper, but these results are
general to any form of convergent evolution. In our implemen-
tation, when the inner planet reaches the inner edge of the disc,
migration is stopped, and the second incoming planet will cross
a commensurability with the first; finally, the third planet will
cross a commensurability with the second. We note that the
timescale over which the eccentricity is damped is usually of
order ~100 times shorter than that over which the semi major
axis changes. Planets are therefore expected to approach these
commensurabilities with vanishingly low eccentricity. As we can
see from Fig. 2, however, this configuration with semi-major axis
ratio wide of resonance and low eccentricity is very close to the
resonant equilibrium points. The planets keep approaching each
other and their eccentricities keep increasing due to the curvature
of the locus of the equilibrium points in the (a;./a;, ¢;) diagram,
until an equilibrium is reached when the damping of e balances
such resonant eccentricity pumping. This is why planets are
expected to be (close to) a resonant equilibrium point in the first
place, and a chain of resonances can be formed. The disc is then
slowly depleted and the planets maintain their configuration.

Following the depletion of the gas, dissipation is introduced
which removes orbital energy at constant angular momentum;
this is done here implementing tidal dissipation but again the
method is general. During this phase of dissipative evolution, the
planets will follow again the equilibrium curves of the resonant
Hamiltonian for changing €, this time decreasing their eccen-
tricities and hence increasing the semi major axis ratios a;;1/a;
for each planet—planet pair. We note that € changes because K
changes (since do the semi-major axes as a consequence of the
dissipation of energy) and £ has to stay constant for this kind of
dissipation.

3.1. Choice of systems

Recall that the only orbital parameters that are well constrained
by transit data are the orbital periods, which allow us to obtain
the semi-major axis ratios even without knowing the mass of the
star. The orbital periods listed in the NASA Exoplanet Archive
catalogue are, for the cases considered below, obtained by fase
folding the observed signal. Since we will be considering short-
period planets this is equivalent to obtaining the proper value of
the periods, so that we can directly compare the corresponding
observed semi-major axis ratios with the ones coming from our
averaged model of resonance®. The masses of the planets could
be obtained starting from the estimates for the planetary radii,
and making use of a scaling relation such as the one found in
Wu & Lithwick (2013), mp = 3mg(Rp1/Re), where mp, Ry are
the mass and radius of the exoplanet, and Rg, mg those of the
Earth. However this is only a statistical law and the uncertainties
on the mean densities usually preclude accurate estimates for the
masses, which are indeed not yet known. We will therefore use
the masses as free parameters of our study. In fact, as we already
saw, the only significant quantities for our study are the mass
ratios between the planet; this follows from the discussion at the

3 We should remark however that even the periods are not known with

arbitrary precision, meaning that there might be small discrepancies
in the values that are used in different works. In this paper, we will
use the ones listed in the NASA Exoplanet Archive catalogue without
considering error bars. This is enough for the scope of our analysis.

1 of pairs

30
20

10

A

-0.05

0.00 0.05 0.10

Fig. 3. Distribution of the (signed) normalised distance from first order
mean motion resonances A = ’%] i—f — 1 with k = 2,3 in all exoplanetary
systems (yellow) and for three-planet systems (purple). We note a clear
peak to the right of the value A = 0 (corresponding to the exact nominal
resonance, indicated by a vertical orange line), which is most prominent
for 0 < A < 0.05. Out of the 358 pairs plotted here, there are 123 total
pairs in this configuration. For the three-planets systems only, 48 pairs
have 0 < A < 0.05, out of the 121 shown in the purple histogram.

end of Sect. 2.2. In practice, we will choose a total planetary
mass my = m; + my + ms by using for each system the mean
planetary radius (R; + R, + R3)/3, the aforementioned scaling
relationship from Wu & Lithwick (2013) to obtain an average
planetary mass mipjave, and setting myo = 3mpiavg. Again, this
is simply a choice that we are forced to make in order to run
N-body simulations, but it does not in any way change our result,
which is therefore not sensitive to the uncertainties on the radii
(or to the lack of their knowledge, as will be the case for YZ
Ceti). Note however that since individual Kepler systems seem
to show a homogeneity in planetary radii and masses (Weiss
et al. 2018; Millholland et al. 2017), this choice likely constitutes
a good approximation to the real architecture of these systems.

Given a pair of neighbouring planets with periods P; and
P, respectively, which are close to a given first order resonance,
P/P, =~ (k — 1)/k, one can define (see for example Lithwick
et al. 2012; Hadden & Lithwick 2014)

k—-1P
Aoty 1= —— —

- 1
P p b (15)

called the normalised distance from (exact) resonance. When
A > 0 the planets reside wide of the k : k — 1 resonance, while
when A < 0 the planets are narrow of the resonance.

We will be selecting planetary systems of three planets with
both pairs close to some first order mean motion resonance
such that |A| < 0.05 holds for both pairs, with k = 2,3 as they
appear to be the most common resonances. We recall that the
normalised width of a resonance is of order ~ (m/M,)*? (Deck
et al. 2013; Batygin 2015), where the average planetary mass for
Kepler systems is of order m ~ 3 X 1073 M., and moreover most
planets in each system appear to be quite homogeneous in mass
(Weiss et al. 2018; Millholland et al. 2017). This gives a typical
resonance width of order A ~ 1073 in normalised units, meaning
that in selecting systems with 0 < A < 0.05 we are generously
including planetary pairs with separation 50 times larger than
the typical resonant width. Moreover, the available data shows
that for systems close to mean motion resonance, the distribution
of A favours values between 0 and <0.05 (Hadden & Lithwick
(2017), see also Fig. 3). Additionally, we will require that A > 0,
which is justified by our results in the previous section.

Of all three-planet systems, only 8 satisfy |A| < 0.05 for both
pairs, that is, appear to be close to a multi-resonant chain (they
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Kepler-207 to 72:1 .
YZ Cet
Kepler-326
Kepler-114
Kepler-305

Kepler-53

Kepler-31

Kepler-289

10! 10%

period (days)

Fig. 4. Orrery of the three-planets systems sufficiently close to first
order mean motion resonances k:k — 1 with k = 2, 3, with a normalised
distance to resonance |A| < 0.05 for both pairs. For each system, we
place a circle in correspondence of the period of each planet, and indi-
cate between pairs of planets the first order mean motion resonance in
which they are envisioned to reside (below) and the normalised distance
to that resonance A (above); the sign of A indicates if the pair of planets
are narrow (A < 0) or wide (A > 0) of the resonance. For our analy-
sis, we will only consider systems for which A > 0 for both pairs (the
systems enclosed by a box). The size of the circle is an indication of
the estimated radius of the planet (the small dot in the top right cor-
ner demonstrates the size of Earth). For YZ Ceti this information is not
available, but this does not pose a problem for our study.

are Kepler-31, Kepler-53, Kepler-114, Kepler-207, Kepler-289,
Kepler-305, Kepler-326, YZ Ceti). The architecture of these sys-
tems is shown in Fig. 4; of these, only 3 satisfy A > 0 for
both pairs. These are Kepler-31, Kepler-305 and YZ Ceti. For
these systems, we consider whether or not their observed orbital
configuration can be consistent with the scenario envisioned
above.

3.2. Analytical maps

With our analytical model of resonance at hand, we can construct
analytical maps of resonant equilibrium points for different reso-
nant chains and different planetary mass ratios. For the purposes
of the current study, we proceed as follows. For an arbitrary sys-
tem, we assume to have observations for the orbital period ratios
and obtain the values of k™ and k°“Y. We then pick both mass
ratios my/my and m3/my and construct the equilibrium curves
as explained in Sect. 2.1 (in practice, we work with the afore-
mentioned Hamiltonian rescaled by the common planetary mass
factor 71, see Appendix A). Then, we find the resonant equilib-
rium point (i.e. the value of L) that corresponds to a value of
as/a; equal to the observed semi-major axis ratio, and therefore
put (as/a1)leq = (a3/a1)lops- The determined value of L fixes the
eccentricities of all three planets, since they are all linked by the
equilibrium curves.

Recall that we only have one free parameter to select the cho-
sen equilibrium configuration: the angular momentum; however,
we have two observables that we want to match, which are both
semi-major axis ratios a>/a; and as/a,. This is unlike the case
of only two resonant planets, where one has one free parame-
ter (again the angular momentum £) and only one observable
(the single a,/a ratio): in this case, it would always be possible
to find a suiting value of £ which gives a resonant equilibrium
configuration such that the semi-major axis ratio is equal to the
observed one (provided that the latter is wide of the nominal
value (k/(k—1))*/?). In the case of three planets, choosing £ such
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that (a3/a1)leq = (az/a1)loys automatically fixes the equilibrium
values of both semi-major axis ratios a,/a; and as/a,. Consid-
ering for example the corresponding equilibrium (az/az)leq, We
obtain the weighted difference

((az/az)leq — (a3/az2)lops)

olas/az) := (az/az)lops

(16)

between (a3 /az)l.q and the observed value (a3/az)lobs- The same
can be done for a,/a;, which gives a similar (absolute) result,
|6(az/ay)| = 16(as/ay)|. Maintaining this procedure, we loop over
different planetary mass ratios.

We applied this procedure to the three systems selected
above, starting with Kepler-305, which resides close to a 3:2—
2:1 mean motion resonance chain. First of all, to better represent
what these analytical maps intend to show, we draw in Fig. 5
equilibrium curves (equivalent to those shown in Fig. 2) which
describe the locations of the resonant equilibria for this reso-
nant chain and for one specific choice of mass ratios m;/m, =
my/m3 = 1. The observed values of the semi-major axis ratios
are indicated by dashed vertical lines; then, we indicate with
a red dot the location of the specific equilibrium point that
is selected when we impose (a3/al)|eq = (az/ap)lyys; finally,
we obtain 6(asz/a,) as defined in Eq. (16) (and similarly for
0(az/ay)). As explained above, imposing (az/an)leq = (@3/anlops
automatically fixes all equilibrium eccentricities e eq, €2.eq» €3,
and we can store their maximum max{ej eq, €29, €3,¢q} in to bet-
ter describe the orbital configuration at the selected equilibrium
point. We choose to consider the quantity max e.q rescaled by a
common planetary mass factor 7z in order to obtain results that
are independent of the planet-to-star mass ratio, since again the
latter quantity does not effect equilibrium semi-major axis ratio
configurations, and therefore does not affect 6(a3/a,). Panels a
and b in Fig. 6 are the result of this procedure spanning different
planetary mass ratios, showing maps of 6(a>/a;) and max e/
using the observed semi-major axis ratios of Kepler-305 (the
bottom panels ¢ and d show the results of numerical simulations
which will be detailed in Sect. 3.3, and are only intended to val-
idate the analytical results). We show analogous results for the
system YZ Cet, residing close to a 3:2 — 3:2 chain, in Fig. 7, and
for For Kepler-31, a chain (close to the) 2:1 — 2:1 mean motion
resonances, in Fig. 8.

3.3. Numerical simulations

In order to check the validity of our analytical calculations, we
turned to numerical simulations by performing the following
study. We simulated the process of capture into a chain of first-
order mean motion resonances by placing the planets relatively
wide of the desired resonances, according to the specific val-
ues of kK™ and k° of each case, and simulating the effects of
the protoplanetary discs by adding fictitious forces which mimic
the interaction with the disc (Cresswell & Nelson 2006, 2008)
to the N-body integrator swift_symba. To ensure convergent
migration for all planetary mass ratios, we stopped the migration
of the inner planet by adding at the desired location a so-called
planetary trap, which reproduces the effect of the inner edge
of the disc and describes a disc cavity around a star (Masset
et al. 2006, Pichierri et al. 2018). As we mentioned above, the
mass ratios were kept as free parameters. Since again we are
interested in mass ratios of order unity, in our simulations we
limited ourselves to m;/m, and m,/ms; between ~0.2 and ~5,
and repeated the same set of simulations.

Recall that the timescale for planetary migration depends on
the mass of the planet, meaning that changing the mass ratios
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Fig. 5. Locations of the resonant equilibrium points in the a;.1/a; vs. e;/ii planes, i = 1,2, for three equal-mass planets in a 3:2 — 2:1 mean motion
resonance chain, close to which Kepler-305 resides. Orange vertical lines show the exact nominal commensurability, while dashed vertical lines
show the observed a,/a; and as/a; in the case of Kepler-305. As explained in the text, we select one equilibrium configuration (indicated by the
red dot in both panels) by requiring that (a3/a1)leq = (a3/@1)los, Which automatically fixes all orbital elements a,/ai, as/as, e1, €2 and e3 along the
equilibrium curves.
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Fig. 6. Top row: analytical maps constructed for Kepler-305 as explained in Sect. 3.2. Panel a: we plot the quantity &(a3/a,), which represents
how close the system is now to some resonant equilibrium point, for different mass ratios m, /m, and m,/mj5 (each point in this plot is constructed
by repeating the procedure described in Fig. 5). We notice that 6(as/a,) changes very little with the mass ratios, and is of the order of ~0.002.
Comparing with Fig. 9, we see that this can be the case by pure chance only in ~15% of randomly generated systems close to the 3:2-2:1 mean
motion resonance chain. Panel b: we show a map of the quantity max e.q// representing the equilibrium orbital configuration that is selected at
each fixed value of n1;/m, and m, /mj3 by imposing (as/ai)l., = (a3/a1)|os- Bottom row: numerical maps constructed for Kepler-305 as explained in
Sect. 3.3. We show numerical maps of 8(a3/a,) in panel ¢ and max e.q /i in panel d, analogous to the analytical plots above (over a slightly smaller
range of mass ratios for simplicity). These are intended to validate the analytical maps, and show very good agreement between corresponding
panels.
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Fig. 7. Same as in Fig. 6, but for the system YZ Cet, residing close to a 3:2-3:2 chain. The value of 6(a3/a;) ~ 0.01 across all planetary mass ratios
can be matched against the corresponding curve in Fig. 9, where we find that ~80% of randomly generated systems lie this close to the 3:2-3:2

chain.
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Fig. 8. Same as in Fig. 6, but for the system Kepler-31. Only analytical maps are shown in this case since in some simulations capture into resonance
was unsuccessful due to overstability of the captured state for different planetary mass ratios. As explained in the text, this issue is model-dependent
and is not within the scope of our analysis. Moreover, in the simulations where capture was successful, the results agree well with the analytical
calculations, showing &(a3/a,) ~ 0.003. Comparing with Fig. 9 we see that there is a ~20% probability that Kepler-31 lies this close to the 2:1 —
2:1 chain by pure chance.
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will change the relative speeds at which each planet’s semi-major
axis decreases, which is practically inconvenient. Therefore, we
used a fictitious 7, which is kept equal for all planets and constant
along the different simulations of resonant capture. This has the
sole effect of making it easier to automate the simulations, and
does not affect our results. We need only to make sure that at the
end of the disc-migration phase the semi-major axis ratios are
smaller than the observed ones, since the subsequent evolution
dominated by tidal dissipation will only cause the semi-major
axis ratios to expand. We note that this is always possible, since
one can obtain different final eccentricities at the captured state
by changing the ratio of the eccentricity damping 7, and the
migration rate 7,, and thus obtain different corresponding equi-
librium values of the semi-major axis ratios; the latter approach
the exact commensurabilities as the eccentricities grow (Fig. 2),
and since for the systems that we are studying both pairs reside
wide enough of the nominal resonance, the final eccentricities
need not be too high, of order a few 1072 for a typical planetary
mass of order 10 M...

After the desired resonant state is obtained, we slowly
depleted the gas. Finally, we added the effects of tidal dissipa-
tion (following Mardling & Lin 2002), using arbitrary quality
factors for the planets but large enough to ensure that the dissi-
pative evolution be slow compared to the resonant evolution of
the two planets’ pairs. This allows us to perform efficient integra-
tions without breaking the adiabatic approximation which keeps
the system close to the resonant equilibrium points. We note that
we have little to no information on the internal structures of exo-
planets, so we would not be able to confidently assign realistic
eccentricity damping timescales anyway. Moreover, as we have
already mentioned, tides are only one example of dissipation
(that is, loss of orbital energy E) at constant angular momentum
L, so that these results are in fact generalisable to any dissipative
process such that E < 0 and £ = 0. Therefore, a resonant system
undergoing any such process is expected to follow the loci of the
resonant equilibria, and the divergence of the semi-major axes
is obtained as a general result. We now explain how we obtain
maps similar to those drawn in the previous section from these
numerical simulations.

Consider a choice of the mass ratios, and a simulation of the
dissipative evolution of two pairs of resonant planets. The semi-
major axis ratios as/a; and as/, will increase in time. When,
for two consecutive outputs of the simulation, the ratio asz/a;
crosses the observed one (as/aj)lye, We store the correspond-
ing value of a3/a, from the simulation (an average of it at the
two consecutive outputs). Since the system might be librating
around the equilibrium points with some amplitude, and there
are additional short period terms, this will happen many times for
a single simulation, and we obtain a list of a3/a, values. Then,
we report the average of this list, and again compare this quan-
tity with the observed (a3/as)|,, (since they are obtained from
the mean period extracted from the data) by computing the rela-
tive difference as in Eq. (16). We then loop over different choices
of planetary mass ratios and obtain a map that can be compared
with the analytical maps of the previous section. A similar pro-
cedure can be applied to a,/a; (which gives again similar values
to that of az/a, as we mentioned in Sect. 3.2), as well as the
quantity max e/7.

This analysis has been performed for the three selected sys-
tems. For Kepler-305 and YZ Cet, we show the resulting plots
on the bottom panels ¢ and d of Figs. 6 and 7 respectively, and
notice very good agreement with the analytical results. The noise
that is observed in the panels c relative to the quantity &(as/az)
is due to the fact that the numerically simulated systems are

undergoing fast oscillation while they cross the observed value
(a3/ay)lops» but the typical value of 6(a3/a,) is similar to the one
found analytically.

The case of Kepler-31, which resides close to a 2:1-2:1 mean
motion resonant chain, is a bit different, since the 2:1 reso-
nance capture might be only temporary if the librations around
equilibrium are overstable (Goldreich & Schlichting 2014). This
behaviour has been already investigated thoroughly in the case of
two planets (Delisle et al. 2015, Deck & Batygin 2015), however
it has been shown to be dependent on the specific implemen-
tation of the disc-planet forces, and to disappear in some cases
(Xu et al. 2018). In this work we do not intend to expand on
these matters, since the formulas that mimic the planet-disc inter-
actions represent only approximate implementations of the real
forces that are felt by the planets from the disc, which themselves
remain observationally unconstrained. We therefore take a prac-
tical approach, and note that in the numerical simulations where
resonant capture was successful (typically for m/my, my/ms >
1) the numerical results agree very well with the analytical ones;
moreover we still observe that the theoretical value of 6(az/az)
varies extremely little with m;/m, and m,/m3 (Fig. 8), so the
latter simulations can be considered as enough support for the
analytical calculations.

4. Results

4.1. Probabilistic measure of a resonant configuration in
Kepler-305, YZ Cet and Kepler-31

Using the maps of 8(a3/a,) shown in Figs. 6-8 for the three
selected systems Kepler-305, YZ Cet and Kepler-31, we draw
the following conclusions. First of all, one might expect that
the quantity 6(as/a») should change with the different choices
of mass ratios, thus allowing one to make a prediction on their
(so far unknown) values of m, /m, and m,/m3 under the assump-
tion that these systems are indeed in resonance and evolving
dissipatively. Follow-up monitoring of these systems could then
produce new observations from which to obtain the real masses
of the planets, and so validate or disprove the hypothesis. How-
ever, in practice we find that these analytical maps show very
little dependence on m;/my and m,/m3 spanning reasonable
values. Note also that for all three systems 6(a3/a,) is small,
but never vanishing, which would represent an analytically com-
puted equilibrium configuration such that 6(asz/a;) = 0, that
is, a resonant equilibrium point which satisfies (as/az)lq =
(as/a2)lops and (az/ar)leq = (a2/ai)lops- But even if this hap-
pened to be the case, the level curve 6(az/az) = 0 would still span
a broad range of mass ratios: given moreover the uncertainty in
the observed period ratios of exoplanetary systems, this would
make any determination of m, /m; or m3/m, using observed data,
in general, inconclusive.

Secondly, we note that we do obtain in all three cases
small values for 6(a3/a;), meaning that these systems are indeed
close to some equilibrium point of the Hamiltonian (Eq. (13))
and therefore could potentially reside in a multi-resonant chain.
However, these values by themselves do not contain any mean-
ingful information. The quantity 6(a3/a,) should indeed be
calibrated if we intend to use it as a measure of the probabil-
ity that the actual system (with its real unknown eccentricities)
is in resonance, which in turn would yield a measure of how
consistent the orbital architecture of such a system is with the
envisioned scenario described above. To this end, for various
resonant chains we randomly generate period ratios of fictional
systems such that 0 < A < 0.05 for each pair, and extract the
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Fig. 9. Cumulative distribution functions for |6(a3/as)| for randomly
generated systems close to chains of any possible combinations of the
2:1 and 3:2 mean motion resonances. We indicate the chains that repre-
sent selected systems from Fig. 4; for each of them, a point indicates
the observed 6(as/a»). From this, we obtain on the vertical axis the
probability that these systems could have this value of 6(a3/a,) by pure
chance.

corresponding (a3 /a,) (calculated for the choice of mass ratios
my/my = my/ms = 1 for simplicity, since as we saw above the
0(az/a>) value depends extremely weakly on the mass ratios).
From the cumulative distribution of |5(a3/a,)| that arises from
this procedure we can obtain the probability that any given
system has a given (small) 6(a3/a,) purely by chance.

Since we are interested mainly in the 2:1 and 3:2 mean
motion resonances, we show in Fig. 9 these cumulative distri-
butions for systems close to any possible combinations of these
resonances. The results show that the proximity of YZ Cet to
the 3:2-3:2 resonance is not statistically significant, since in
~80% of randomly generate systems close to the 3:2-3:2 chain
we obtain an equivalent or smaller value of 6(a3/as). Instead,
Kepler-305 and Kepler-31 are likely to be in resonance at the 1o
level (i.e. the probability that their value of d(a3/as) is smaller
than the determined value by chance is less than 32%): for
Kepler-305 there is a ~15% chance that this particular system
lies this close to resonance by chance, while for Kepler-31 the
probability is ~20%.

We should remark that these specific values for the probabil-
ities that each system is this close to exact resonance by chance
are calibrated by the choice 0 < A < 0.05 for both pairs of plan-
ets, which is used in generating the fictional systems. This value
is however not arbitrary. For, it must be consistent with the choice
made in Sect. 3.1, which produced only these three systems with
both the inner and outer planet pair this close to first order mean
motion resonance: there, the choice |A| < max A = 0.05 was dic-
tated by the observation of the location of the peak wide of
nominal resonance (Hadden & Lithwick 2017 and our Fig. 3),
so restricting the interval in A values with smaller max A might
have resulted in excluding potential systems. On the other hand,
increasing max A in the generation of the fictional systems would
have the only effect to decrease the calculated probabilities.
Therefore, we conclude that our choice of max A = 0.05 is not
arbitrary, and gives a reasonable upper bound to the probabilities
that each system finds itself so close to exact resonance by pure
chance.

For completeness, we report the observed variation of the
three-body Laplace angle ¢ in these systems, since its libration
can be in principle a sufficient condition to conclude that they
are indeed resonant. For Kepler-305 we checked that the Laplace
angle o = 21, — 41, + 25 satisfies ¢ ~ 0.5° days™' given the
observed transits periods; for Kepler-31, ¢, = A} — 34, + 213 sat-
isfies ¢, =~ 0.1° days*l; finally for YZ Cet, ¢, = 24; — 54, + 313
satisfies ¢ ~ 9.4° days™!. As we argued in the Introduction, in
case of libration of the resonant angles around the equilibrium
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point (and hence libration of the Laplace angle) the average of
the (a, e) oscillation falls on the equilibrium point, while in case
of circulation, the average falls off the equilibrium point curve.
Consequently, the circulation of the Laplace angle implies that
the libration amplitude is larger than the distance of the equi-
librium point from the axis e = 0, and that §(a3/a,) cannot
be zero. However, this does not mean that the system did not
reach that point via divergent migration: being the (a, ¢) equi-
librium so close to to e = 0, even a minute perturbation can
induce circulation of the Laplace angle. Hence the libration of
the Laplace angle is a sufficient but not necessary condition to
conclude that a system’s dynamical history has been shaped by
resonant capture and subsequent resonant repulsion driven by
dissipation.

4.2. The 5:4 — 4:3 resonant chain on Kepler-60 and other
near-resonant systems with k > 3

While in this work we have concentrated on the 2:1 and 3:2
mean motion commensurabilities, it is worthwhile to point out
that more compact resonant chains are possible, and Kepler-60
represents a notable example. This system hosts three planets
with mean observed periods of ~5.49, ~8.29 and ~16.74 days
respectively. Their masses have been constrained via TTV to
be ~4 M for all planets (Jontof-Hutter et al. 2016). The mean
motions of the planets satisfy 41; — 81, + 413 ~ —0.02° days ™,
hinting at a resonant configuration. Indeed, GoZdziewski et al.
(2016) found that the TTV signal for these planets is consis-
tent with a true three-body Laplace-like resonance as well as
a chain of 5:4-4:3 two-body mean motion resonances. Using
the system’s parameters we can find a resonant equilibrium con-
figuration as in Sect. 3.2, by imposing as/a; to be equal to
the observed (as/ay)|ys. This gives 6(az/az) of order 4 x 1073,
Using an analogous argument to that of Fig. 9, we find that
there is only a 0.25% probability that Kepler-60 lies this close
to a 5:4-4:3 resonant chain by pure chance. The eccentricities
that we find at the selected resonant equilibrium point are of
order e; ~ 0.02, e; ~ 0.03, e3 ~ 0.01 for the observed planetary
masses. These numbers are quite close to the ones consistent for
the two-body mean motion resonance chain solution found in
Gozdziewski et al. (2016). Note in passing that their solution is
for non-vanishing libration amplitude of the four resonant angles
(however their mean values are the same found here for a stable
resonant equilibrium).

For completeness, we cite other near-resonant systems of
three planets with & > 3 that are found in the catalogue. The
only ones which satisfy our criterion |A| < 0.05 for both pairs are
K2-239 (close to a 3:2-4:3 chain), Kepler-289 (close to a 2:1—
2:1 chain), Kepler-226 (close to a 4:3-3:2 chain) and Kepler-431
(close to a 5:4—4:3). Of these, only the latter two satisfy A > 0
for both pairs.

5. Conclusions

In this work, we have generalised the formalism of dissipa-
tive divergence of resonant orbits to multi-resonant chains. The
analytical study performed in Sect. 2 allows us to predict the
orbital configurations of systems of planets deep in a chain of
first order mean motion resonances, and therefore, even though
at a lesser degree of precision, of systems that are in resonance
with a finite amplitude of libration. Then, we showed in Sect. 2.2
that under the effect of slow dissipation a nearly-resonant sys-
tem is expected to follow the loci of the equilibrium points of
the resonant Hamiltonian (Eq. (13)) maintaining the amplitude
of libration in an adiabatic manner. Therefore, if the orbital
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architecture of a system is found near one of these equilibrium
points, it is strongly suggestive that the envisioned scenario of
slow convergent orbital migration leading to capture into res-
onance and subsequent orbital divergence due to dissipative
evolution really occurred for the system. In the light of the results
presented above, we can draw the following conclusions.

On the one hand, we must face the fact that the orbital archi-
tecture of a significant fraction of the systems of three planets
is actually not consistent with these physical mechanisms. More
precisely, the majority of the systems are not close to resonance,
implying that either they never captured in resonance in the first
place, or they escaped from resonance due to a violent insta-
bility (Izidoro et al. 2017) losing any memory of their resonant
dynamical past. To ponder these two possibilities, consider first
of all that some form of orbital transport is expected to take
place: for example, the majority of planets with R, 2 1.6Rg
have H/He gaseous atmospheres that cannot be explained by
production of volatiles after the formation of the planet (Rogers
2015), implying that these planets formed while the protoplane-
tary disc was still present. The associated planet—disc interaction
would then force the planets’ orbital elements to change, in other
words, force the planets to migrate. However, orbital migration
may not be convergent (Migaszewski 2015, 2016), that is, not
leading to resonant capture. Moreover, some mechanisms have
been proposed to inhibit the capture even in the case of conver-
gent migration, such as turbulence in the disc or e-dependent
migration rates. Nevertheless, these processes alone do not ade-
quately explain the lack of resonance in the exoplanet sample
(e.g. Batygin & Adams 2017; Deck & Batygin 2015; Xu et al.
2018). For these reasons, it is more likely that capture into mean
motion resonance is a common outcome of the early epochs of
disc-planet interaction, but the subsequent evolution after the
disc removal is subject to instabilities which break the compact
configuration. This approach seems to be able to reproduce the
observed distribution of period ratios if these instabilities are
extremely common (Izidoro et al. 2017). The primary mecha-
nism through which planets are ejected from resonance, howeyver,
remains elusive, and a topic of active research.

On the other hand, systems with orbital properties that are
compatible with a (near) resonant state do exist in the exoplanet
census. These include the already known examples mentioned
above of Trappist-1, Kepler-223, GJ867 and Kepler-60, and,
potentially, some of the systems analysed in this paper. That
is, while it is difficult to prove definitively that a given sys-
tem is now in resonance in a formal sense (the resonant angles
are in libration), in this work we have developed a method to
quantitatively test the consistency of a given orbital architecture
with a dynamical history characterised by resonant capture and
subsequent dissipative evolution. This is achieved through the
calculation of the quantity 6(as/a;) defined in Eq. (16), which
is obtained directly from the observed semi-major axis ratios
and, as we have shown, depends very weakly on the mass ratios
between the planets, making the observational uncertainties on
the latter quantities irrelevant. Then, using the approach illus-
trated in Fig. 9, this “indicator” can be turned into a quantitative
probability that the system is related to the considered resonant
chain. In this sense, we have found that there is a ~15, ~20 and
~80% probability that Kepler-305, Kepler-31 and YZ Cet respec-
tively find themselves this close to resonance merely by chance.
Multiplying these probabilities we find that there is only a ~2%
probability that all three of these systems lie close to resonance
just by chance. This suggests strongly that at least some of them
should have had a resonant dynamical history. Although the
sample is clearly too small to make any meaningful inference, the

probabilities of resonant association that we have found indicate
that between 1/3 and 2/3 of the systems with 0 < A < 0.05 show
memory of the processes of resonant capture; this is consistent
with the histogram of Fig. 3, where the peak wide of the reso-
nance is about 2 times higher than the underlying random-like
flat distribution.

The architecture of many planetary systems observed by
transit is not well constrained by observations. Opportunities
for more extensive characterisation will come from missions
such as the Transiting Exoplanet Survey Satellite (TESS) or the
PLAnetary Transits and Oscillations of stars (PLATO), which
are designed to target bright stars to allow for follow-up via fur-
ther ground-based and space-based observations (with methods
such as radial velocity). This will allow for a better quantification
of planetary masses, radii, ages of the systems and eccentricities.
In the light of this augmented perception that we can expect to
acquire, our study outlines the groundwork for further dynam-
ical characterisation of the physical processes that shaped the
present-day architectures of extrasolar planetary systems.
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Appendix A: Reduced Hamiltonian to a common
planetary mass factor

In the course of the paper we make implicit use of a reduced
Hamiltonian which incorporates the planetary masses through
a common planet-to-star mass factor 7. In this appendix, we
detail the construction of this Hamiltonian and its use in the
paper.

Consider three planets, whose physical parameters are
labelled 1, 2, and 3 for the inner, middle and outer planet respec-
tively, orbiting around a star of mass M, on the same plane.
Suppose that the planets are (close to) a chain of mean-motion
resonance, with nominal semi-major axes a and that the devia-
tions of the semi-major axes from the nominal values are small,
and assume that the eccentricities are small enough, so that an
analysis to first order in e is valid. These are the working assump-
tions throughout Sect. 2. Having fixed the planet—planet mass
ratios mj/my = B; and my/m3 = B>, we introduce the average
planet—star mass ratio

my + my +ms _ ml(l +B1_1 +ﬁ]_1ﬁ£1)

Al
3M, 3M, @b

m=

Inverting this expression we easily get all planetary masses
in terms of 77,

_ _ 3BipaM,
m =cmi= ——————jn
1+82+BiB2
~ 3,31M*
my = cofit i= —————
1+B2+ 6152
3M,
ms = caft 1= — o (A2)
1 +ﬂ2 +,81ﬁ2

with coefficients ¢ depending on M., 5| and 3, only.

We introduce the modified Delaunay action-angle variables
(A, T, A,y) as in Eq. (5), but we rescale the actions by the com-
mon mass factor 7: this gives the following definition for the
A’s (we maintain the same notation as the non-rescaled actions
for simplicity)

__3piBaM. -
Ay = s Bt B VGM.a; = c; \JGM.a,,
__ 3BiM. _
M= 1 gy YO0z = 2 NGM.
3M.,
e G = e NG (a3)
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and the same formal definition of T’ = Ae?/2 at lowest order
in e. We now introduce the Hamiltonian for the problem, that is
the sum of the Keplerian Hamiltonian (Eq. (6)) and the resonant
interaction Hamiltonian (Eq. (7)) to first order in e. However,
since we have rescaled the actions by 7, in order for the Hamilton
equations to be conserved we must also rescale the Hamiltonian
itself by m. As in Sect. 2, since we are not considering large
deviations in the semi-major axes from their nominal values, and
since the resonant Hamiltonian is already of order O(e), we eval-
uate the resonant Hamiltonian on the nominal values A defined
from a using Eq. (A.3). It is then easy to see that the rescaled
Keplerian Hamiltonian takes the form

3

¢ (GM.\’
Wkeplz_zg( A ) P

i=1

(A4)

and is therefore independent of 72, while the rescaled resonant
part will have a multiplicative coefficient 77:

G*M.cic3
A

(]‘{res = ﬁl[

. or . .
X ( e(Lin) A—l cos (K", — (K™ — DAy + 1)
1

) or . .
o /—Az cos (K", — (K" = 1)1, + 72)] +
2

QZM*czcg
-—
A3

/2r
X ( (low) 222 0os (kA5 — (K = 1)y + 72)
Ay
{2r
(2.0ut) A—3 cos (kA3 — (k" — 1A, + y3)]
3

From here, the sequence of changes of variables detailed in
Sect. 2 can be performed using the same formal definitions for
the new rescaled variables.

Already from the Hamiltonian written in terms of the
rescaled variables A and T’ o ¢*> one can see the following.
Assuming a fixed equilibrium value of the semi-major axes (that
is, of the A’s), a change in the planet-star mass factor m will
have the only effect to rescale the equilibrium values of all
VL o« e by the same quantity. In this configuration, the equilib-
ria of the semi-major axis ratios (a2/aj)eq and (az/as)eq remain
independent of 7.

. (AS)
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