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Preface

In the last 20 years, Celestial Mechanics has achieved spectacular results on the
structure and evolution of our Solar System. The discovery of the chaotic dy-
namics of the planets, the identification of the main transport routes by which
asteroids escape from the main belt and reach Earth-threatening orbits, and
the understanding of the dynamical mechanisms at the origin of the internal
heating of the Galilean satellites, are just a few examples of the results that
have made Celestial Mechanics a respectable branch of Solar System science.
As a consequence, worldwide congresses on planetology, such as the annual
meetings of the Division for Planetary Sciences of the American Astronomical
Society or those of the Asteroids Comets & Meteoroids series, always schedule
long and well-attended sessions on dynamics.

This is what I call Modern Celestial Mechanics, although one should not
forget that other facets of Celestial Mechanics, concentrated more on the rigor-
ous mathematical study of toy models rather than on the realistic description
of Solar System evolution, have also recently achieved innovative results.

Several books have been published on Celestial Mechanics, but none of
them describe the recent results on Solar System dynamics, with a solid the-
oretical basis. They are either focused on the general theory of dynamical
systems or limited to the fundamentals of Celestial Mechanics. The present
book should fill this gap, in the hope of helping advanced students and young
researchers, who are nowadays compelled to find their way through a vast
literature of scientific papers without the aid of a guide book presenting the
state of the art in a unified form. The goal is to take the reader to a point
where he can start developing his own original contribution.

Modern Celestial Mechanics is intimately related to the theory of Hamil-
tonian systems. Most analytic studies make an essential use of Hamiltonian
perturbation techniques; but also the correct interpretation of the results of
numerical simulations often requires a good theoretical knowledge of Hamil-
tonian dynamics. Because Hamiltonian theory does not enter in the usual
cultural baggage of people approaching Celestial Mechanics from the astro-
nomical side, the first part of this book revisits its fundamental concepts.
Without the pretence of being exhaustive, the first six chapters present what
one should know of Hamiltonian theory to work at ease in Celestial Mechanics.
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ii PREFACE

Details and technical mathematical proofs are skipped, while only the guiding
ideas are given, with specific references for those who would like to enter deeper
into the subject. After the first chapter on the basic concepts of Celestial and
Hamiltonian Mechanics, Chapter 2 explains Hamiltonian perturbation theory
based on Lie series. Chapters 3 and 4 illustrate the properties of invariant tori
and resonances, respectively. Particular care is paid in Chapter 5 to discussing
the numerical tools that are useful for the detection of chaos. Chapter 6 dis-
cusses the possible dynamical structures of Hamiltonian systems that result
from the interaction of its resonances, and details how these structures can be
identified with numerical explorations.

The second part of the book is devoted to the subject of Celestial Mechan-
ics itself. This part is more technical, although care is taken to concentrate
on the procedures and on the ideas, and not on the most technical details.
Thus, the book should also be pleasant for reading experts in Hamiltonian
theory, who are curious to know what is done in Modern Celestial Mechanics.
In particular, this book does not go into detail on the techniques for prac-
tical computations (series expansion or close evaluation of the perturbation
functions, numerical calculation of the action integrals, etc.). In fact, prac-
tical techniques evolve very fast, in parallel with the evolution of computer
power, while the ideas and the conceptual approaches stay valid for a much
longer time. Chapters 7 and 8 are respectively devoted to the secular motion
of planets and of small bodies. The chaotic dynamics of the terrestrial plan-
ets, the theories for the computation of an asteroid’s proper elements and the
dynamics of secular resonances are among the issues treated in these chapters.
Chapters 9-12, conversely, are devoted to the difficult subject of mean motion
resonances. In particular, Chapter 9 outlines the structure of mean motion
resonances, first in the framework of the simple planar restricted three-body
problem, and then in more realistic models. Chapter 10 is on three-body
resonances, whose importance has been recently understood both for small
body dynamics and for planetary dynamics. Chapter 11 discusses the secular
dynamics inside mean motion resonances, which in my opinion is one of the
most complicated topics of Celestial Mechanics. Finally Chapter 12 investi-
gates the global dynamical structure of the regions of the Solar System that
are densely inhabited by small bodies, and discusses the fashionable subject
of slow chaotic diffusion.

As one can see, the book is strongly focused on the dynamics of planets
and of small bodies. This is mainly due to the limitation of my knowledge.
Important problems related to the dynamics of natural satellites and of plan-
etary rings (see the Introduction for an overview) are therefore not discussed.
However, most of the concepts developed here apply also to satellite and ring
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dynamics, so that I hope that this book can serve as an introduction also for
people interested in these fields. Moreover, I have decided to exclude from
this book the dynamics of bodies that have close encounters with the planets,
because it does not fall into the category of quasi-integrable dynamics, and its
relationship with the rest of the book would be very weak. In fact, the study
of planet crossing dynamics is essentially numeric, the possibilities of analytic
and semi-analytic theories being very limited.

The completion of this book would not have been possible without the
encouragement of several colleagues, first of all M. Festou and C. Froeschlé.
I’m in debt to the main revisors – M. Guzzo, D. Nesvorny and F. Thomas – for
their constructive criticism, and to the reviewers – A. Giorgilli, V. Gurzadyan,
J. Henrard and J. Laskar – for their appreciation and suggestions. At least
seven readers had the courage to go through every line of this book!

I also wish to thank A. Cellino, S. Ferraz-Mello, J. Henrard, M. Holman,
Z. Knežević, J. Laskar, E. Lega, A. Lemaitre, C. Murray, N. Murray and
D. Nesvorný for providing the original printouts of their figures.

I dedicate this book to the memory of my friends and colleagues Paolo
Farinella, Fabio Migliorini, and Michèle Moons. Life did not give them a
second chance, and I’m missing their affection and their advice.

La Turbie (France), June 1, 2000.
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Introduction

OBJECTS OF THE SOLAR

SYSTEM, PROBLEMS OF

CELESTIAL MECHANICS

This chapter presents a general overview of the Solar System for nonexpert
readers. The goal is to show that almost every object in the Solar System
raises dynamical problems, which makes Celestial Mechanics a fundamental
branch of Solar System science. Some of these problems will be treated in
detail in the following chapters of the book.

The first attempts to predict the motion of the planets in the sky date back
to the dawn of civilization. However, what is now properly called Celestial Me-
chanics was born with Newton’s announcement (1687) of the law of universal
gravitation. Since then, the computation of precise ephemerides has become
essentially a mathematical challange. Lagrange and Laplace particularly dis-
tinguished themselves in this search at the end of the XVIIIth century. To
obtain increasing accuracy, they designed the first step of the theory of secular
motion of planetary orbits, and the latter also understood the importance of
a quasi-resonance between the orbital periods of Jupiter and Saturn. At that
time, every apparent anomaly in planetary motion seemed to be accountable
by a sufficiently accurate theory based on Newtonian gravitation. This success
forged Laplace’s absolute faith in determinism, which then characterized the
whole science of the XIXth century. The search for increasingly accurate ana-
lytic ephemerides has been continuing through the centuries up to the present
time. But two centuries later than Laplace’s work – after the discovery of a
new phenomenon called chaos, the introduction of the first numerical methods
for its detection and the construction of powerful computers – it was pointed
out that the motion of the planets is in fact chaotic. Since then, a major goal
of Celestial Mechanics has been to understand the reasons for this chaotic mo-
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2 INTRODUCTION

Figure 1: Top: the relative sizes of the orbits of the nine planets (the orbits
of Mercury, Venus and Earth are not labeled). Bottom: the nine planets with
approximately correct relative sizes. (From NSSDC Photo Gallery.)

tion, and its consequences for the long-term evolution of the planetary system.
The possible correlation between the chaotic changes of planetary orbits and
the history of the climate of the terrestrial planets is still under investigation.

If the planets present very interesting dynamical behavior, even more in-
teresting is the dynamics of the asteroids. Because of their large number,
for each dynamical phenomenon, even the most pathological one, it is almost
always possible to find an asteroid that exhibits it. The asteroids are small
rocky or icy bodies; the biggest one, Ceres, is 900 km in diameter. Most of
them are in the region between Mars and Jupiter, called the main belt, on
orbits that do not intersect those of the planets.

If we represent the distribution of the asteroids using the semimajor axis,
eccentricity and inclination, which characterize their elliptical orbits (see
Chapter 1 for a precise definition of these orbital elements) some puzzling
features immediately appear evident (Fig. 2). First of all, at some precise
values of the semimajor axis (2.5, 2.8, 3.3 astronomical units (AU); the mean
heliocentric distance of the Earth is 1 AU) there are well-defined gaps in the
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Figure 2: The orbital distribution of the first 10,000 asteroids in the space of
osculating semimajor axis (a), eccentricity (e) and inclination (i).

asteroid distribution. These features are named Kirkwood gaps, from the name
of the astronomer who first noticed them in 1866. The location of these gaps
coincides with the location of the main mean motion resonances with Jupiter,
which occur when the orbital period of the asteroid and of the planet are in
integer ratio. However, understanding why asteroids dislike these Jovian res-
onances has been an open problem for more than a century. For some reason,
the association between mean motion resonances and distribution gaps is not
a general rule, because the concentration of the asteroids with semimajor axis
close to 4 AU coincides with the location of the 3/2 resonance with Jupiter.
Only recently has quite a complete solution for the problem of the origin of
the Kirkwood gaps been provided.

However the Kirkwood gaps are not the only gaps in the asteroid distri-
bution. For instance, the left plot of Fig. 2 shows another gap with a curved
shape, approximately going from a = 2 AU, i = 0◦ to a = 2.5 AU, i = 18◦.
This gap is associated with a resonance of a new type, called secular resonance.
Secular resonance occurs when an integer combination of the precession rates
of the asteroid’s orbit is equal to an integer combination of the precession rates
of the planetary orbits. Another secular resonance has been recently found to
be responsible for the absence of asteroids between the two well-defined groups
that are visible in Fig. 2 at i ∼20-28 degrees, a ∼ 1.9 AU and a ∼ 2.3 AU,
respectively.

Figure 2 also shows some evident groupings of asteroids. It is tempting
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to conjecture that the bodies in these groupings are genetically related (e.g.
formed by the break-up of a unique parent body). However, a simple Celestial
Mechanics computation shows that the semimajor axis, eccentricity and incli-
nation oscillate with time, due to planetary perturbations. Thus, the visible
groupings could in principle be just apparent features. On the other hand,
there might exist genetically related groups of asteroids which are not visible
in Fig. 2 because of these oscillations. A task of modern Celestial Mechanics
is therefore to compute quantities that are quasi-invariant with time, called
proper elements, which can be used to select all groups of asteroids (called
families) that are statistically significant.

The asteroids with semimajor axis close to 5.2 AU are the so-called Greeks
and Trojans. They have the same orbital period as Jupiter, and are approxi-
mately 60 degrees ahead and behind the planet, respectively. Lagrange showed
that their orbital configuration is stable to a first approximation. However,
accounting for the asteroids’ large inclinations, Jupiter’s eccentricity and the
presence of the other planets, the stability of the Greeks and Trojans is far from
trivial. A puzzling feature is that the other giant planets do not have Greek
or Trojan asteroids, which might be a consequence of the quasi-resonances
existing among these planets. Among the terrestrial planets, only Mars has
two Trojan asteroids.

Several asteroids exist on orbits that undergo close encounters with the ter-
restrial planets. According to their current eccentricity and semimajor axis,
they are named Apollos, Amors, Atens and Mars-crossers (Fig. 3). The first
three classes constitute what is usually called the near-Earth asteroid popula-
tion (NEAs).

Numerical integration shows that the typical lifetime of NEAs is 10 My.
NEAs are eliminated by collision with the Sun, ejection from the Solar System,
or collision with the planets. Understanding how this happens is another
task of modern Celestial Mechanics that requires modeling the location and
the strength of resonances as well as the effects of close encounters with the
planets. The short lifetime of NEAs implies that this population is certainly
not primordial, but it must be kept in a sort of steady state by a flux of
asteroids that leave the main belt and start to cross the planetary orbits. It
is intuitive that the origin of NEAs is related to the gaps in the main belt
asteroid distribution. The collisions and the fragmentation of asteroids, as
well as weak nonconservative forces, continuously emplace new bodies into the
gaps; the rapid action of the main secular and mean motion resonances keeps
the gaps clear, forcing the bodies to leave the main belt and to reach NEA-like
orbits. However, the concentration of Mars-crossing asteroids between 2.1 and
2.5 AU suggests that many bodies escape also from the portion of the main
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Figure 3: The orbital distribution of the known Apollos, Amors, Atens and
Mars-crossing asteroids. The solid and dash curves mark the boundaries of
these populations, while the short dash lines mark the location of some of the
most important resonances. The arrows suggest that asteroids in the inner and
the central part of the main asteroid belt might migrate in eccentricity, thus
becoming Mars-crossers. The origin of near-Earth and Mars-crossing asteroids
relies on the properties of resonant dynamics in the main belt.

belt that is located in the same semimajor axis range, although the latter is
not characterized by any evident gap. It has been recently shown that this
is due to the action of numerous weak resonances, whose destabilizing effects
manifest themselves on timescales that are long enough to allow their complete
replenishment.

Beyond the orbit of Neptune, there is a second belt of small bodies known
as the Kuiper belt. As June 9, 2000, 279 trans-Neptunian objects have been
discovered. The “planet” Pluto is also in the Kuiper belt. In 1999 it was
intensely debated whether Pluto should still be considered as a planet, or
should it be declassed to the status of a small object of the Solar System. The
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Figure 4: The orbital distribution of the Kuiper belt objects that have been
observed during at least two oppositions. Data are taken from the Minor
Planet Center list on June 9, 2000.

International Astronomical Union has decided to conserve Pluto’s historical
status, although many scientists agree that, for its orbit (much more eccentric
and inclined than those of all other planets) and for its size (only 2340 km in
diameter, 2/3 the size of the Moon), Pluto should be better regarded as the
biggest object that has been discovered so far in the Kuiper belt.

Our knowledge of the orbital distribution of Kuiper belt bodies is still
very limited because, since Pluto’s discovery, the first object was found in
1992, and several years of observations are required in order to achieve a good
determination of the orbital parameters. Figure 4 is the analog of Fig. 2, for the
Kuiper belt objects that have been observed during at least two oppositions.

Despite the small total number of these objects (94), a few features in
their orbital distribution recall the characteristics of the main asteroid belt.
The concentration of bodies at 39.5 AU – among which Pluto is also located –
is associated with the 2/3 mean motion resonance with Neptune. Moreover,
a “gap” is visible in the 40-42 AU region, due to the presence of secular
resonances. The outer bound of the Kuiper belt is not known. Strong biases
act against the discovery of the farthest bodies, so that our knowledge is
limited to the inner part of the Kuiper belt. One of the goals of Celestial
Mechanics is to anticipate the discovery of Kuiper belt objects, and predict
their orbital distribution on a theoretical basis.

If the asteroid belt is responsible for sustaining the NEA population, the
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Figure 5: Orbital distribution and classification of comets. By convention,
long-period comets are those with orbital period exceeding 200 years. The
comets that have a shorter period are subdivided into the Jupiter family and
Halley type groups, according to the relative speed by which they encounter
Jupiter’s orbit.

Kuiper belt is believed to be responsible for sustaining the population of the
so-called Jupiter-family comets. These are low-inclined, short-period comets
(Fig. 5), whose dynamics is dominated by encounters with Jupiter. In recent
years, several studies have been devoted to the mechanisms by which Kuiper
belt bodies start to encounter Neptune and are subsequently transported to
the inner Solar System, where they are observed and categorized as Jupiter-
family comets.

The long-period comets and the so-called Halley-type comets, by their
isotropic distribution in inclination (Fig. 5), are not believed to come from
a disk reservoir like the Kuiper belt, but rather form a quasi-spherical reser-
voir, called the Oort cloud. The surplus of comets with semimajor axis of
order 10, 000 AU suggests that this reservoir is at the frontier of the Solar Sys-
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Figure 6: Left: global view of Saturn’s rings, showing the Cassini and Encke
divisions, respectively closer and further from the planet. Right: a detail of
the complex structure of the F-ring of Saturn. (From NSSDC Photo Gallery.)

tem. It is generally believed that the Oort cloud was formed by planetesimals
originally in the giant-planet region, that were scattered by close encounters
with the planets onto very elliptic orbits, with semimajor axis ∼10,000 AU. At
such a distance from the Sun, the gravitational potential of the entire galaxy
becomes a strong perturbation of the central potential of the Sun. The study
of the dynamical effect of this Galactic tide is crucial to understand the for-
mation of the Oort cloud, and the sporadic re-injection of comets into the
inner Solar System. Models taking into account the Galactic tide, the passage
of stars and of giant molecular clouds, aim at determining how many comets
should be stocked in the Oort cloud in order to account for the observed num-
ber of long-period comets. This result in turn allows the estimate of the total
mass of the original planetesimal disk.

The ring systems of Jupiter, Saturn, Uranus and Neptune provide won-
derful natural laboratories in which to study the effects of both interparticle
and external gravitational forces, combined with the effects of physical colli-
sions. The magnificent system of Saturn’s rings (see the left picture in Fig. 6)
shows two wide gaps: the 4500 km wide Cassini division, between the A and
B rings, and the 325 km wide Encke division, within the A ring. These gaps in
the distribution of the ring particles recall the Kirkwood gaps in the asteroid
belt. In fact, they also coincide with the location of mean motion resonances
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with some of the satellites of Saturn, or to the overlapping of a system of
resonances. For instance, the Cassini division is determined by the 2/1 reso-
nance with Mimas, while the outer edge of the A ring is produced by the 7/6
resonance with the co-orbital satellites Janus and Epimetheus.

In addition to the Cassini and the Encke divisions, several other narrower
gaps are visible in close-up images of Saturn’s rings. Most of these divisions
have been understood to be associated with resonances with satellites, some-
times involving the ratios of large integer numbers, as in the case of the 32/31
resonance with Prometheus, at the location of the so-called Keeler gap.

Some of the gaps are not completely empty, but host narrow ringlets,
typically a few km wide. Unlike the main rings, all these ringlets are decidedly
noncircular, raising the problem of the dynamical mechanisms responsible for
their atypical shape. Saturn’s F-ring (see the right picture in Fig. 6), is also a
complex structure made up of two narrow, braided, bright rings along which
“knots” are visible. Scientists speculate that the knots may be clumps of ring
material, or mini-moons. The shape of this ring seems to be dictated by the
presence of the so-called shepherding satellites, orbiting along each of its sides.

Finally, the systems of satellites of the giant planets can be considered as
miniature solar systems, also rich in intriguing dynamical phenomena. Mean
motion resonances are very common, because the tides exerted by the planet
force the satellites’ slow outward migration. Because the relative orbital peri-
ods change with the semimajor axes, the satellites must pass through several
resonant configurations. In some cases, a resonance traps the satellites, so that
their semimajor axes expand in such a way that the ratio between their orbital
periods remains unchanged. Particularly interesting is the so-called Laplace
resonance, which is a triple mean motion resonance, among the Galilean satel-
lites Io, Europa and Ganymede: Io orbits twice around Jupiter for each orbit
of Europa, which in turn orbits twice for each orbit of Ganymede.

The interplay between tidal forces and orbital dynamics also explains why
the eccentricities of many satellites close to the planets are not equal to zero,
despite the rapid tidal damping. The same is true also for the satellites’
inclinations: for instance, the large inclination of the Uranian satellite Miranda
(4◦) is explained by a temporary trapping in the 1/3 resonance with Umbriel,
which occurred in the recent past.

The tides also tend to slow down the spin frequency of the satellites, until
the rotational period becomes synchronous with the orbital period. In this
case, the satellite always faces the same side toward its planet, like Earth’s
Moon. However, in some cases the satellite may enter chaotic zones, becom-
ing attitude-unstable and tumbling. This is for instance the case of Saturn’s
satellite Hyperion, one of the first examples of chaotic motion found in our
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Figure 7: The Jovian satellite Io. It is the only Solar System body other than
the Earth showing volcanic activity. The internal heating of the satellite is
sustained by tidal interactions between Io, Europa, Ganymede and Jupiter.
(From NSSDC Photo Gallery.)

Solar System.
The internal heating of several satellites is due to the interplay between

orbital eccentricity and synchronous rotation. The most magnificent example
is that of the Jovian satellite Io, which is the only body of the Solar System,
other than the Earth, exhibiting active volcanism. Several other satellites
show evidence of recent tectonic activity, and Europa could still have a liquid
water ocean under its surface.



Chapter 1

ELEMENTARY CELESTIAL
AND HAMILTONIAN
MECHANICS

1.1 Equations of motion

According to Newton’s theory of gravitation, the equations of motion of an
isolated system of two bodies having spherical symmetry and masses m0 and
m1 are:

d2u0

dt2
=

Gm1

‖u1 − u0‖3
(u1 − u0) ,

d2u1

dt2
=

Gm0

‖u0 − u1‖3
(u0 − u1) , (1.1)

where u0 and u1 denote the position vectors of the two bodies in an iner-
tial reference frame (also called barycentric coordinates if the origin is in the
barycenter of the system), G is the gravitational constant and ‖x‖ denotes the
Euclidean norm of a generic vector x.

Denoting by r = u1 − u0 the relative position of the bodies (r1, r2, r3 are
called heliocentric coordinates if the body at u0 is the Sun), the two vectorial
equations above can be reduced to two separate vectorial equations:

d2r

dt2
= −G(m0 +m1)

‖r‖3
r , (1.2)

that describes the relative motion of the two bodies and

d2s

dt2
= 0 , (1.3)

11
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which shows that the barycenter of the system, with coordinate vector s =
m0u0 +m1u1, keeps its inertial motion.

Equation (1.2) can be solved exactly, the solution depending only on the
initial relative position r(0) and velocity dr

dt (0). A detailed explanation of how
the solution is achieved can be found in Chapter 6 of Danby (1962). The
solution of equation (1.2) was the first great success of Newton’s theory of
gravitation, because of its perfect agreement – for bounded motion – with the
three laws that Kepler empirically deduced from observations of the planet
Mars:

Law 1: Each planet moves, relative to the Sun, in an elliptical orbit, the Sun
being at one of the two foci of the ellipse.

Law 2: The rate of motion in the elliptical orbit is such that the vector
pointing to the position of the planet relative to the Sun spans equal
areas of the orbital plane in equal times.

Law 3: The square of the orbital period T is proportional to the cube of the
semimajor axis a of the orbital ellipse.

Therefore, it is convenient for astronomers to characterize the relative mo-
tion of the two bodies by quantities that describe the geometrical properties of
the orbital ellipse and the instantaneous position on the ellipse. These quan-
tities are usually called orbital elements. Remember that the ellipse describes
the motion of one body relative to another one, usually denoted respectively
as the secondary and the central bodies. The choice of the central body is
arbitrary: the same ellipse describes the motion of both m0 around m1 and of
m1 around m0. Going back to an inertial reference frame using the solution
of (1.3), one easily sees that the bodies describe similar elliptical trajectories
around their common baricenter; the ratio between the sizes of the two ellipses
is inversely proportional to the mass ratio. As a consequence, when the mass
ratio tends to zero, as in the case of a small body and a star, the star’s orbit
shrinks to the baricenter’s position, and the orbit relative to the star becomes
equal to the small body’s orbit in the inertial reference frame. For this rea-
son, although from the mathematical viewpoint the choice is arbitrary, it is
reasonable to choose as the central body the more massive of the two bodies.

1.2 Orbital elements

Let us first define quantities that describe the shape of the orbital ellipse
around the central body and the position of the secondary body on the ellipse.
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Figure 1.1: Keplerian motion: definition of a, e and E.

Then we will introduce quantities describing the orientation of the ellipse in
space.

The shape of the ellipse can be completely determined by two quantities:
the semimajor axis a and semiminor axis b, or, more suitably, the semimajor
axis a and the eccentricity e (Fig. 1.1). The name eccentricity comes from e
being the ratio between the distance of the focus from the center of the ellipse
and the semimajor axis of the ellipse. The eccentricity is therefore an indicator
of how much the orbit differs from a circular one: e = 0 means that the orbit
is circular, while e = 1 means that the orbit is a segment of length 2a, the
central body being at one of the extremes. Among all “elliptical” trajectories,
the latter is the only collisional one, if the physical radii of the bodies are
neglected. A semimajor axis of a = ∞ and e = 1 denote parabolic motion,
while the convention a < 0 and e > 1 is adopted for hyperbolic motion. We
will rarely deal with these kinds of unbounded motion in this book, hence
we will concentrate, hereafter, on the elliptical case. On an elliptical orbit,
the closest point to the central body is called the pericenter (or alternatively
perihelion if the central body is the Sun, or perigee if the central body is the
Earth), and its distance q is equal to a(1 − e); the farthest point is called
the apocenter (respectively aphelion or apogee), and its distance Q is equal to
a(1 + e).

To denote the position of the body on the elliptic orbit it is convenient to
use an orthogonal reference frame q1, q2 with origin at the focus of the ellipse
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occupied by the central body and q1 axis oriented towards the pericenter of
the orbit. Alternatively, polar coordinates r, f can be used. The angle f is
usually called the true anomaly of the body. From Fig. 1.1, with elementary
geometrical relationships one has

q1 = a(cosE − e) , q2 = a
√

1− e2 sinE (1.4)

and

r = a(1− e cosE) , cos f =
cosE − e

1− e cosE
(1.5)

where E is the angle subtended at the center of the ellipse by the projection
of the position of the body on the circle with radius a and tangent to the
ellipse at pericenter and apocenter, as Fig. 1.1 shows. This angle is called the
eccentric anomaly. The position of a body in its orbit can be expressed in
terms of a, e and E only.

From the equations of motion, it is possible to derive (Danby, 1962) the
evolution law of E with respect to time, usually called the Kepler equation:

E − e sinE = n(t− t0) (1.6)

where
n =

√

G(m0 +m1)a
−3/2 (1.7)

is the orbital frequency or mean motion of the body (in agreement with Ke-
pler’s second law), t is the time and t0 is the time of passage at pericenter.

Astronomers like to introduce a new angle

M = n(t− t0) (1.8)

called the mean anomaly, as an orbital element that changes linearly with
time and still denotes the position of the body in its orbit (through equations
(1.6) and (1.5)).

To characterize the orientation of the ellipse in space, with respect to an
arbitrary orthogonal reference frame (x, y, z) centered on the position of the
central body, we have to introduce three additional angles (see Fig. 1.2). The
first one is the inclination i of the orbital plane (the plane which contains the
ellipse) with respect to the (x, y) reference plane. If the orbit has a nonzero
inclination, it intersects the (x, y) plane in two points, called the nodes of the
orbit. Astronomers distinguish between an ascending node, where the body
passes from negative to positive z and a descending node, where the body
plunges towards negative z. The orientation of the orbital plane in space is
then completely determined when the angular position of the ascending node
from the x axis is given. This angle is traditionally called the longitude of node,
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Figure 1.2: Keplerian motion: definition of i, Ω and ω.

and is usually denoted by Ω. The last angle that needs to be introduced is
the one characterizing the orientation of the ellipse in its plane. The argument
of pericenter ω (also called the argument of perihelion if the central body is
the Sun) is defined as the angular position of the pericenter, measured in the
orbital plane relative to the line connecting the central body to the ascending
node.

The orbital elements a, e, i, ω,Ω and M completely define the position and
velocity of the secondary body with respect to the central one. There is a
one-to-one correspondence between x, y, z,dx/dt,dy/dt,dz/dt – components
of r and dr/dt – and the orbital elements. This correspondence is given by
the relationship:

r = Rxqq ,
dr

dt
= Rxq

dq

dt
, (1.9)

where the vectors q and dq/dt have components

[q1, q2, 0] = [a(cosE − e), a
√

1− e2 sinE, 0] (1.10)

and
[

dq1
dt
,
dq2
dt
, 0

]

=

[

− na sinE

1− e cosE
,
na

√
1− e2 cosE

1− e cosE
, 0

]

(1.11)
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respectively, and the rotation matrix Rxq has entries





cosΩ cosω − sinΩ cos i sinω − cosΩ sinω − sinΩ cos i cosω sinΩ sin i
sinΩ cosω + cosΩ cos i sinω − sinΩ sinω + cosΩ cos i cosω − cosΩ sin i

sin i sinω sin i cosω cos i



 .

(1.12)

In the definition of the orbital elements above, note that when the inclina-
tion is zero, ω and M are not defined, because the position of the ascending
node is not determined. Moreover, M is not defined also when the eccentricity
is zero, because the position of the pericenter is not determined. It is conve-
nient, therefore, to introduce the longitude of perihelion ̟ = ω + Ω and the
mean longitude λ = M + ω + Ω. The first angle is well defined when i = 0,
while the second one is well defined when i = 0 and/or e = 0. It is evident
that also the set of orbital elements a, e, i,̟,Ω, λ unequivocally defines the
position and velocity of the body. Note that, setting i = 0, the relations
(1.12) become in a natural way dependent on ̟ only (and not separately on
Ω and ω); similarly, setting e = 0, (1.9) become dependent on λ−Ω (and not
separately on ω and E).

Finally, from (1.2) and using (1.9) it is possible to check that equation
(1.2) preserves “energy”

H =
1

2

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

2

− G(m0 +m1)

‖r‖ = −G(m0 +m1)

2a
(1.13)

and “angular momentum” r×dr/dt, whose norm and projection on the z axis
are respectively:

G =
√

G(m0 +m1)a(1− e2) , (1.14)

H = G cos i . (1.15)

These relations will be important in Section 1.9.1.

1.3 Perturbations of the two-body problem

In a barycentric inertial reference frame, the equations of motion of an isolated
system made of a Sun of mass m0 and of N planets of masses m1,m2, . . . ,mN

are:
d2ui
dt2

= −G
∑

j 6=i

mj
ui − uj

‖ui − uj‖3
, (1.16)
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where i and j range from 0 to N . Introducing the heliocentric positions of the
planets ri = ui − u0 the equations above can be rewritten as

d2ri
dt2

= −G(m0 +mi)

‖ri‖3
ri+

N
∑

j=1,j 6=i

Gmj

(

rj − ri

‖rj − ri‖3
− rj

‖rj‖3

)

, i = 1, . . . , N ,

(1.17)
while the motion of the Sun is given by u0 = −∑N

i=1miri/
∑N
i=0mi. Equations

(1.17) constitute what is usually called the (N + 1)-body problem.
Similarly, the heliocentric equation of motion of a body of negligible mass

under the gravitational forces of the Sun and of N planets in given orbits is

d2r

dt2
= −Gm0

‖r‖3
r+

N
∑

j=1

Gmj

(

rj − r

‖rj − r‖3
− rj

‖rj‖3

)

, (1.18)

where r is the position vector of the small body with respect to the Sun and
rj are the heliocentric positions of the planets of masses mj . Equation (1.18)
constitutes what is usually called the restricted problem (restricted three-body
problem if only one planet is considered).

If the masses of the planets are small compared to that of the Sun, and none
of their mutual distances rj − ri becomes small, equations (1.17) and (1.18)
are evidently close to the equation of the two-body problem (1.2), the term
dependent on the planetary masses mj playing the role of a small perturbation
with respect to the two-body interaction with the Sun. Therefore, the motion
resulting from equations (1.17) and (1.18) will be close to Keplerian motion.
As a consequence, rewriting equations (1.17) and (1.18) in terms of the orbital
elements using the relations (1.9), the equations for a, e, i, ω,Ω have the form
dα/dt = O(mj/m0), where α denotes any of these elements and O(mj/m0)
denotes a function which is as small as the mass of the planets in solar mass
units; the equation for M has the form dM/dt = n + O(mj/m0), where n is
the unperturbed mean motion resulting from the two-body problem. These
equations of motion for the orbital elements are usually called the Lagrange
equations, and show that the orbital elements a, e, i, ω,Ω change slowly with
time, while M deviates slowly from its linear unperturbed motion. For this
reason, it is still convenient to characterize the planets and the small bodies
of the Solar System by their orbital elements knowing that, in general, these
elements will change very little on the timescale of human life (this is indeed
the reason why Kepler discovered the laws of the two-body problem, although
he was observing the motions of real planets). However, it should not be
forgotten that the orbital elements do change with time. Strictly speaking,
they only represent the instantaneous orbit that the body would have if all
perturbations suddenly disappeared. In more mathematical terms, the orbital
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elements at time t represent the Keplerian motion that is tangent to the real
motion that the body has at time t. For this reason they are also known as
osculating elements.1

The Lagrange equations are difficult to handle, and we will have to rewrite
them in a slightly different form – a Hamiltonian form – before being able to
study the motion in detail.

1.4 Hamiltonian systems and the two-body
problem

A system of ordinary differential equations of the type

dr

dt
= F(r) (1.19)

is said to be in Hamiltonian form if r is a 2n-uple and, denoting
by x1, . . . , xn and v1, . . . , vn its 2n components, there exists a function
H(v1, . . . , vn, x1, . . . , xn) such that equations (1.19) can be rewritten as

dvi
dt

= −∂H
∂xi

,
dxi
dt

=
∂H
∂vi

, (1.20)

for i = 1, . . . , n. The function H is called the Hamiltonian of the system
and the variables x1, . . . , xn and v1, . . . , vn are respectively called coordinates
and momenta. For simplicity, we will adopt the vectorial formalism, denoting
by x and v the n-uples x1, . . . , xn and v1, . . . , vn. Moreover, we will denote
hereafter by α̇ the time derivative of a generic variable α. v and x are called
conjugate variables and the (x,v) space is usually called the phase space of
the system. The dimension n of the vectors x and v is called the number of
degrees of freedom.

A large class of ordinary differential equations, and in particular most of
the equations that concern Celestial Mechanics, can be written in Hamiltonian
form. In fact, equations of second order of type

d2r

dt2
= −gradrU(r) (1.21)

can be rewritten in the form (1.20), as is straightforward to check, by setting
xi = ri, vi = ṙi and H = 1/2‖v‖2+U(x). In particular, the relative equations

1This property is not true for the formal osculating elements introduced in Section 1.9.2,
which define an ellipse that transversally intersects the real trajectory.
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of the two-body problem (1.2) are in Hamiltonian form with

H =
v21 + v22 + v23

2
− G(m0 +m1)
√

x21 + x22 + x23

(1.22)

where x1, . . . , x3 are the usual Cartesian coordinates of a reference frame cen-
tered on the central body and vi = ẋi are the speeds.

More generally, the systems that conserve a quantity – say the “energy” –
which in the variables r and ṙ can be written as the sum of a “kinetic energy”
T (r, ṙ) and of a “potential energy” U(r), admit a Hamiltonian form.2 Decom-
posing T = T2 + T1 + T0, where T2, T1 and T0 are respectively the terms of
order 2, 1 and 0 in ṙ, the equations of motion can be written as in (1.20), with

xi = ri , vi =
∂T

∂ṙi
, H = T2 − T0 + U . (1.23)

(see Whittaker (1937), Section 7, for a derivation).
The above recipe is very useful for writing the Hamiltonian of a system

in coordinates such that the equations are not straightforwardly in the form
(1.21), as is the case, for instance, when spherical coordinates are used, or a
rotating reference frame is chosen.

As a first example, consider the two-body problem (1.2), but in the usual
spherical coordinates ̺, ϑ, ϕ. Recalling the relationships with the Cartesian
coordinates r ≡ (x, y, z), which are x = ̺ sinϑ cosϕ, y = ̺ sinϑ sinϕ, z =
̺ cos ϑ, the “potential energy” can be written U(̺) = −G(m0 +m1)/̺, while
the “kinetic energy” is T = 1/2[ ˙̺2 + ̺2ϑ̇2 + ̺2 sin2 ϑϕ̇2]. The Hamiltonian of
the two-body problem in spherical coordinates will then be:

H =
1

2

(

p2̺ +
p2ϑ
̺2

+
p2ϕ

̺2 sin2 ϑ

)

− G(m0 +m1)

̺
(1.24)

with coordinates r, ϑ and ϕ and momenta p̺ = ˙̺, pϑ = ̺2ϑ̇ and pϕ =
̺2 sin2 ϑϕ̇.

As a second example, consider the two-body problem in Cartesian co-
ordinates, rotating with angular speed ω around the z axis. Denoting by
X,Y,Z the Cartesian coordinates in an inertial reference frame, and by
x, y, z the coordinates in the rotating reference frame, using the relationships
X = x cosωt − y sinωt, Y = x sinωt + y cosωt, and Z = z, it is straight-
forward to see that the “kinetic energy” T = 1/2[Ẋ2 + Ẏ 2 + Ż2] becomes

2It is not necessary that the conserved quantity is equal to the real energy of the system.
In the first two examples below, for instance, we consider an “energy” that is the real energy
divided by the mass m1.
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T = 1/2[ẋ2 + ẏ2 + ż2 + ω2(x2 + y2) − 2ω(ẋy − xẏ)]. Then, using the recipe
above, introducing the momenta px = ẋ − ωy, py = ẏ + ωx, pz = ż, the
Hamiltonian of the two-body problem in the rotating frame can be written as

H =
1

2
(p2x + p2y + p2z) + ω(pxy − xpy)−

G(m0 +m1)
√

x2 + y2 + z2
. (1.25)

Finally, still using the same recipe, it is possible to see that the two-body
problem, in the case m1 6= 0, admits also the Hamiltonian

H =
‖ṽ‖2
2µ1

− G(m0 +m1)µ1
‖r‖ (1.26)

in Cartesian coordinates r and conjugate momenta ṽ = µ1ṙ, where µ1 =
m0m1/(m0 +m1) is the reduced mass of the secondary body. In fact, if one
multiplies both sides of equations (1.2) by µ1, the kinetic and potential energies
of the system are

T =
1

2
µ1‖ṙ‖2 , U = −G(m0 +m1)µ1

‖r‖ , (1.27)

from which, defining the momenta ṽ = ∂T/∂ṙ and H = T + U , (1.26) is
obtained.

Of course, the Hamiltonians (1.22) (1.24) (1.25) and (1.26) are completely
equivalent, in the sense that they all lead to the same equations of motion,
although in different variables. These examples stress that the Hamiltonian
of a given system is not unique, but depends on the choice of coordinates and
momenta. Choosing one Hamiltonian rather than the others is just a matter
of convenience.

1.5 Perturbations in Hamiltonian form

The equations (1.18) of the restricted problem can also be easily written in
Hamiltonian form. It is enough to realize that the right-hand side of (1.18) is
of the form −gradrU(r) with

U(r) = −Gm0

‖r‖ − G
N
∑

j=1

mj

(

1

‖∆j‖
− r · sj

‖sj‖3

)

, (1.28)

where sj is the heliocentric position vector of the j-th planet and ∆j = r− sj ;
moreover in the above formula r · sj denotes the scalar product between r and
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sj . The Hamiltonian of the restricted problem is therefore

H =
‖v‖2
2

− Gm0

‖r‖ − G
N
∑

j=1

mj

(

1

‖∆j‖
− r · sj

‖sj‖3

)

, (1.29)

with Cartesian coordinates r1, r2, r3 and momenta v1, v2, v3 such that v = ṙ.
Note that the Hamiltonian (1.29) is of the form H0 + H1, where H0 =

‖v‖2/2 − Gm0/‖r‖ is identical to the Hamiltonian (1.22) of the two-body
problem with m1 = 0, and H1 plays the role of a perturbation, whose size
relative to H0 is proportional to the mass of the planets relative to that of the
Sun. Moreover, in (1.29) the planets are assumed to move in given orbits, so
that the vectors sj are given functions of time. The Hamiltonian (1.29) has
therefore the form H(v, r, t), and is an example of a time-dependent Hamilto-
nian or nonautonomous Hamiltonian, in contrast with the Hamiltonian of the
two body problem that does not depend on time.

Nonautonomous Hamiltonians can always be transformed into autonomous
Hamiltonians by extending the phase space. More precisely, one introduces a
new coordinate τ , a conjugate momentum T , and a new Hamiltonian

H′ = T +H(v, r, τ) . (1.30)

It is trivial to check that the equation for τ is τ̇ = ∂H′/∂T = 1, which
gives the solution τ(t) = t, so that the equations of motion for v and r given
by the Hamiltonian H′ are identical to those given by the Hamiltonian H.
With this trick the new Hamiltonian turns out to be formally independent
of time, so that we will be able to apply the known results on autonomous
Hamiltonian systems. As a matter of fact, when the time dependence has a
complicated form, with several independent frequencies involved as in the case
where several planets are considered, each with its own orbital frequency, it
is convenient to overextend the phase space by introducing a coordinate τj
and a conjugate momentum Tj for each independent frequency νj of the time-
dependent perturbation. The Hamiltonian H(v, r, t) can then be rewritten
as

H′ =
∑

j

νjTj +H(v, r, τ1, . . . , τj) . (1.31)

Again, it is trivial to check that the equations of motion for v and r are
unchanged; the advantage of expression (1.31) with respect to (1.30) is that
the coordinates τj are “angles”, in the sense that the Hamiltonian is periodic
in each of the τj. For instance, in the case of the restricted problem, the angles
τj will be identified with the mean anomalies of the planets. This ensures the
possibility of expanding the Hamiltonian in a Fourier series of τj and applying
the machinery of perturbation techniques, as will be explained in Chapter 2.
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We now come to the Hamiltonian of a planetary system. Equations (1.17)
cannot be written in the form (1.21), so that we have to refer to equa-
tions (1.16) in an inertial reference frame. After multiplying both sides of
(1.16) by mi, it is easy to see that the right-hand side can be written as
−gradriU(r0, . . . , rN ), so that the “energy” of the system is:

H = T + U =
1

2

N
∑

j=0

mj‖u̇j‖2 − G
N
∑

j=1

j−1
∑

i=0

mimj

‖ui − uj‖
. (1.32)

Therefore, as shown in the previous section, H is also the Hamiltonian of the
system, once the momenta ũi = ∂T/∂u̇i = miu̇i are introduced. It would be
tempting to transform (1.32) by introducing ri = ui − u0 and vi = ũi − ũ0

in order to use a heliocentric coordinate system. However, not all possible
changes of coordinates and momenta (including this one) preserve the Hamil-
tonian form of the equations of motion. This leads us to introduce the concept
of canonical transformations.

1.6 Canonical transformations

A time-independent transformation of coordinates and momenta in phase
space is said to be canonical if it preserves the Hamiltonian form of the
equations of motion, whatever the Hamiltonian function. More precisely, a
transformation (v,x) → (v′,x′) is canonical if, ∀H, defining

H′(v′,x′) = H(v(v′,x′),x(v′,x′)) (1.33)

the equations of motion for v′ and x′ become:

v̇′ = −∂H
′

∂x′
, ẋ′ =

∂H′

∂v′
. (1.34)

The class of canonical transformation is a very restrictive class among all
possible transformations on the phase space. Nevertheless, we are compelled
to restrict to canonical transformation if we don’t want to lose the Hamiltonian
form of the equations, which will be so useful to allow a detailed study of the
motion. It is therefore important to have criteria to test whether a given
transformation is canonical. Without trying to give an exhaustive list, we
discuss in the following three criteria that will be used later in this book.

The most useful criterion is that of Poisson brackets. Given conjugate
coordinates and momenta x and v and functions f(v,x) and g(v,x), the
Poisson bracket between f and g is defined as

{f, g} = gradxf · gradvg − gradvf · gradxg =
n
∑

i=1

∂f

∂xi

∂g

∂vi
− ∂f

∂vi

∂g

∂xi
, (1.35)
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where n is the number of degrees of freedom. It can be proven (see Whit-
taker, 1937, Section 32, or Gantmacher, 1975, Section 131) that a transforma-
tion (v,x) → (v′,x′) is canonical if and only if, considering the components
v′1, . . . , v

′
n of v′ and x′1, . . . , x

′
n of x′ as functions of (v,x), one has

{v′i, v′j} = 0 , {x′i, x′j} = 0 , {x′i, v′j} = δi,j , (1.36)

where δi,j is 1 if i = j and 0 otherwise.
This is a very practical and useful criterion to check whether a given trans-

formation is canonical, and we will often use it throughout this book. As a
first example, let’s go back to the Hamiltonian (1.32) to see how heliocen-
tric coordinates could be introduced in a canonical way. Defining the new
coordinates rj = uj − u0 for j = 1, . . . , N (the heliocentric positions of the
planets) and r0 = u0, the problem is to find new momenta vj such that the
transformation (ũj ,uj) → (vj, rj) is canonical. The application of criterion
(1.36) tells us that the good transformation is v0 = ũ0 + ũ1 + · · · + ũN and
vj = ũj for j = 1, . . . , N . With this choice of new canonical coordinates and
momenta, the new Hamiltonian becomes, as it is easy to check by substitution
of the new variables in (1.32)

H =
‖v0‖2
2m0

−
N
∑

j=1

v0 · vj
m0

+
1

2

N
∑

j=1

‖vj‖2
[

1

mj
+

1

m0

]

+
N
∑

j=1

j−1
∑

i=1

vi · vj
m0

−G
N
∑

j=1

j−1
∑

i=1

mimj

‖∆i,j‖
− G

N
∑

j=1

m0mj

‖rj‖
, (1.37)

with ∆i,j = ri − rj . Since the Hamiltonian does not depend on r0, the equa-
tions of motion give v̇0 = 0 (which means that the baricenter of the system
keeps its inertial motion). Without loss of generality we can then assume that
v0 = 0 and drop the terms in v0 from the Hamiltonian. The heliocentric
Hamiltonian of a planetary system then reads

H =
N
∑

j=1

{

‖vj‖2(m0 +mj)

2m0mj
− Gm0mj

‖rj‖

}

+
N
∑

j=1

j−1
∑

i=1

{

vi · vj
m0

− G mimj

‖∆i,j‖

}

.

(1.38)
Note that the Hamiltonian H can be read as the sum of Hamiltonians

Hj
0 =

‖vj‖2
2µj

− G(m0 +mj)µj
‖rj‖

(1.39)

of two-body problems of type (1.26) with reduced masses µj = m0mj/(m0 +
mj), perturbed by terms whose size relative to the two-body problem Hamil-
tonians is proportional to the mass of the planets relative to that of the Sun.
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Rearranging the kinetic terms, (1.38) can be written as

H =
N
∑

j=1

{

‖vj‖2
2mj

− Gm0mj

‖rj‖

}

+
1

2m0

∥

∥

∥

∥

∥

∥

N
∑

j=1

vj

∥

∥

∥

∥

∥

∥

2

− G
N
∑

j=1

j−1
∑

i=1

mimj

‖∆i,j‖
. (1.40)

This formulation of the Hamiltonian (sometimes called democratic heliocen-
tric) is of particular interest for the development of algorithms of symplectic
integration (Koseleff, 1993, 1996; Touma and Wisdom, 1994b; Duncan et al.,
1998; Chambers, 1999).

After this digression, let’s now come back to the criteria to discriminate
canonical transformations from all other possible transformation on the phase
space.

A second criterion, which is not very easy to handle in practical computa-
tions, but will be used later in the Arnold–Liouville theorem (see Section 1.9)
is the following: the transformation (v,x) → (v′,x′) is canonical if there exists
a function S(v′,x) (called a generating function) such that

vj =
∂S

∂xj
(v′,x) , x′j =

∂S

∂v′j
(v′,x) , 1 ≤ j ≤ n (1.41)

(see Chapter 4 of Whittaker, 1937). Note that not all canonical transforma-
tions can be written as in (1.41).

A third criterion, which is at the basis of Lie’s approach to perturbation
theory – as will be illustrated in Chapter 2 – is: the transformation (v,x) →
(v′,x′) is canonical if there exists a Hamiltonian χ(v′,x′) (called a generating
Hamiltonian) and a parameter ε such that

v = v′ +

∫ ε

0
v̇′dt ≡ v′(ε) , x = x′ +

∫ ε

0
ẋ′dt ≡ x′(ε) , (1.42)

where v̇′ and ẋ′ are given by the Hamiltonian equations v̇′ = −∂χ/∂x′ and
ẋ′ = ∂χ/∂v′ (see Gantmacher, 1975, Section 133-134 for a proof). In other
words, a transformation on the phase space is canonical if it can be inter-
preted as the result of a Hamiltonian flow at a certain time ε. For in-
stance, a rotation in phase space by an angle ϑ in one degree of freedom,
namely x = x′ cos ϑ + v′ sinϑ, v = −x′ sinϑ + v′ cos ϑ is canonical because it
can be interpreted as the flow at time t = ϑ generated by the Hamiltonian
χ(v′, x′) = 1/2(v′2+x′2) of the harmonic oscillator. Not all canonical transfor-
mations can be written as the result of a Hamiltonian flow (a counterexample
is given by the canonical transformation from Cartesian to polar coordinates
x =

√
2p cos q, y =

√
2p sin q).
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1.7 Properties of Hamiltonian flow

By Hamiltonian flow we mean the time evolution of coordinates and momenta
described by the Hamiltonian equations. Hamiltonian flow has some important
specific properties, that will be useful in the following.

A) Conservation of volume (Liouville’s theorem). As is well known, for a
system of equations of type (1.19), the volume δV of an infinitesimal set of
initial conditions evolves with time according to the equation

1

δV

dδV

dt
=

m
∑

j=1

∂Fi
∂ri

≡ divF , (1.43)

where m is the number of components of r and F. For a Hamiltonian system
(1.20), where m = 2n, r = (v1, . . . , vn, x1, . . . , xn) and

F =

(

− ∂H
∂x1

, . . . ,− ∂H
∂xn

,
∂H
∂v1

, . . . ,
∂H
∂vn

)

(1.44)

it is trivial to check that divF = 0. This means that the volume is preserved by
the Hamiltonian flow. This property is very important, because it implies that
a cloud of initial conditions can never shrink nor inflate. In particular, it also
implies that Hamiltonian dynamics cannot have attractors, namely manifolds
of dimension smaller than the number of degrees of freedom towards which
the flow may collapse. This will be very important for the considerations that
will be covered in Chapter 4.

B) Conservation of H. The rate by whichH changes with time can be written,
by differentiation of H(v,x, t), as

dH
dt

= gradxH · ẋ+ gradvH · v̇ +
∂H
∂t

. (1.45)

Using the Hamiltonian equations (1.20) for v̇ and ẋ one gets

dH
dt

=
∂H
∂t

. (1.46)

In other words, the Hamiltonians which do not depend explicitly on time (i.e.
the autonomous Hamiltonians) do not change value along the flow that they
generate, namely they are constants of motion. For the systems (1.23) such
that T1 = T0 = 0, H is the total energy of the system, so that the conservation
of the value of the Hamiltonian is nothing but the conservation of energy.
However, this is not true in general, when T1 or T0 are not null.
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C) Time evolution of a function along a Hamiltonian flow. Given a func-
tion f(v,x) defined on phase space, with v and x evolving according to the
Hamiltonian equations (1.20), one gets by differentiation

df

dt
= gradxf · ẋ+ gradvf · v̇ = {f,H} . (1.47)

The value f(t) ≡ f(v(t),x(t)) is called the evolution of f along the flow of H.
Formula (1.47) allows one to write f(t) as a function of t,v(0) and x(0) as
follows. For t small enough, one expands f(t) in a Taylor series as

f(t) = f(0) +
∞
∑

i=1

ti

i!

dif

dti
(0), (1.48)

where f(0) ≡ f(v(0),x(0)) and dif/dti(0) ≡ dif/dti(v(0),x(0)), and uses the
relations

df

dt
= {f,H} , d2f

dt2
=

{

df

dt
,H
}

= {{f,H},H} , . . . (1.49)

Then, denoting
L1
Hf = {f,H} , LiHf = L1

HLi−1
H f , (1.50)

one finally gets

f(t) = f(0) +
∞
∑

i=1

ti

i!
LiHf(0) . (1.51)

This expansion is usually called the Lie series of f under the flow of H, and
we will denote it hereafter by StHf . As anticipated above it allows one to
write f(v(t),x(t)) as a function of v(0),x(0), the time t playing the role of a
parameter, and it will become very important in Chapter 2 to design a suitable
perturbation approach to study Hamiltonian systems.

Finally, using (1.51), the canonical transformation (1.42) can be rewritten

v = Sεχv
′ , x = Sεχx

′ , (1.52)

where the vectorial notation α = Sεχα
′ denotes α1 = Sεχα

′
1, . . . , αn = Sεχα

′
n.

1.8 Integrable Hamiltonians

The solution of the system of differential equations

dri
dt

= Fi(r) , with i = 1, . . . , n and r ≡ (r1, . . . , rn) (1.53)
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can be written in implicit form as a system of integral equations

∫ r(t)

r(0)

dri
Fi(r)

=

∫ t

0
dt . (1.54)

The system (1.53) is therefore said to be integrable, if the integrals on the left-
hand side of (1.54) can be explicitly computed, and the resulting relationships
F ′
i (r(t)) − F ′

i (r(0)) = t, where F ′
i are the primitives of 1/Fi, can be inverted,

giving r(t) as an explicit function of t (see chapter 4 of Arnold et al., 1988).
For example, the differential equation dx/dt = x is integrable, because

the integral equation
∫ x(t)
x(0) dx/x =

∫ t
0 dt gives lnx(t) − lnx(0) = t, namely

x(t) = x(0) exp(t).
Using this definition of integrability, it is very difficult to conclude whether

a given system of differential equations is integrable or not. If the solutions
of the integrals are not found, it is hard to know if this is due to a genuine
lack of integrability of the system, or simply to a lack of skill in finding the
primitives F ′

i .
For Hamiltonian systems, partial help comes from Liouville’s theorem,

which states that an n-degree of freedom Hamiltonian is integrable if it ad-
mits n independent constants of motion Φ1, . . . ,Φn, such that {Φi,Φj} = 0 for
i 6= j. Although it is easier to find constants of motion than to actually solve
the Hamiltonian equations, there is no general recipe on how all constants of
motion can be found. In particular, if only m constants of motion are known,
with m < n, it is hard to know if additional constants of motion are still to
be found or really don’t exist. For instance, celestial mechanicians looked for
several years for a third constant of motion of the three-degree of freedom
Hamiltonian that describes the motion of a star in a cubic galactic potential,
until Hénon and Heiles (1964) numerically showed that such a third constant
of motion does not exist. Conversely, the Toda lattice Hamiltonian has been
long conjectured to be nonintegrable, until M. Hénon (1974) found the last
missing constant of motion!

Luckily nowadays the situation is not so desperate as it was before the
work of Poincaré (1892). There exists a criterion of nonintegrability – that is
the appearance of chaos, which will be discussed in Chapter 4 – that can be
used both analytically and numerically. In this book, we will often be led to
introduce integrable approximations of the real dynamics. These integrable
Hamiltonians will be of only three kinds:

i) They will depend only on the momenta of the system, i.e. H(v1, . . . , vn).
In this case the solution is trivial. The momenta vi are constants of
motion (because ∂H/∂xi = 0), and the coordinates xi move linearly
with time, with constant speeds ωi = ∂H/∂vi, for 1 ≤ i ≤ n.



28 CHAPTER 1. CELESTIAL AND HAMILTONIAN MECHANICS

ii) They will have only one degree of freedom, i.e. H(v, x). In this case the
Hamiltonian system is integrable because it has one constant of motion,
that is the Hamiltonian itself. The motion will then evolve along level
curves of H on the two-dimensional phase space (v, x).

iii) They will depend only on one coordinate, i.e. H(v1, . . . , vn, xk). In this
case the system is integrable because it has n independent constants of
motion which are v1, . . . , vk−1, vk+1, . . . , vn and H. The motion evolves
preserving the value of v1, . . . , vk−1, vk+1, . . . , vn, and follows level curves
of H on the plane (vk, xk).

1.9 Action–angle variables

For integrable Hamiltonian systems, of crucial importance is the Arnold–
Liouville theorem, an extension of Liouville’s theorem (see Section 1.8) found
by Arnold (1963a). Arnold proved that, in the hypotheses of Liouville’s the-
orem and if the n-dimensional surface implicitly defined by the constants of
motion Φ1, . . . ,Φn is compact, it is then possible to introduce canonical mo-
menta p and coordinates q such that

i) The coordinates q1, . . . , qn are angles, cyclically defined on the interval
[0, 2π], and the canonical transformation from the original momenta and
coordinates, i.e. v(p,q),x(p,q), is 2π-periodic on the angles q1, . . . , qn.

ii) In the new variables, the Hamiltonian is a function of the momenta p
only, i.e. H ≡ H(p).

The momenta p are usually called the actions of the system. A set of canonical
variables (p,q), where the coordinates q are angles will be generically called
action–angle variables. Although action–angle variables had been previously
used by several authors (Epstein, 1916; Sommerfeld, 1922; Born, 1927) on
specific problems, the Arnold–Liouville theorem is very important because it
shows that basically any integrable Hamiltonian can be written, in suitable
action–angle variables, as a function of the sole actions. Therefore, in the light
of the Arnold–Liouville theorem, one can generically represent the integrable
Hamiltonians by functions H(p), and work out the general theory of quasi-
integrable Hamiltonian dynamics in action–angle variables – as will be done
hereafter in this book.

Moreover, the proof of the Arnold–Liouville theorem also provides a con-
structive recipe for the introduction of action–angle variables in practical cases.
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The existence of n constants of motion for an n-degree of freedom Hamilto-
nian system ensures that the motion evolves on an n-dimensional surface MΦ

embedded in 2n-dimensional phase space. The fact that {Φi,Φj} = 0 for i 6= j
ensures that the motion can be decomposed in n independent flows, generated
by the functions Φ1, . . . ,Φn, each considered as a one-degree of freedom Hamil-
tonian. This means that the evolution of the motion at time t, i.e. v(t),x(t),
can be obtained following the flow of Φ1 for a time t, from the initial condition
v(0),x(0) to a point v1,x1, then following the flow of Φ2 for a time t, from
v1,x1 to another point v2,x2, and so on. The final point vn,xn will coin-
cide with v(t),x(t). The condition that the surface MΦ is compact implies
that the individual flows of Φ1, . . . ,Φn, and hence the global motion, can be
decomposed into independent periodic cycles, which we denote by γ1, . . . , γn.
The actions p are then introduced by

pi =
1

2π

∮

γi

n
∑

j=1

vjdxj . (1.55)

Then, writing v as functions of p and x, the integral generating function

S(p,x) ≡
∫ n
∑

j=1

vj(p,x)dxj (1.56)

is defined, and the new coordinates q are introduced as

qi =
∂S

∂pi
(p,x) . (1.57)

The transformation (v,x) → (p,q) so defined is of the form (1.41) and there-
fore is, by construction, canonical. One can prove that q1, . . . , qn are angles,
namely qi is increased by 2π when a complete cycle γi is followed, and that
the Hamiltonian H is dependent on the actions p only (see Arnold, 1963a).

1.9.1 Delaunay variables

As an example of the application of the Arnold–Liouville theorem, let’s proceed
to introduce the action–angle variables for the integrable Hamiltonian of the
two-body problem. They will be the variables that we will later use to study
the dynamics of the restricted problem and of the planetary problem using
Hamiltonian perturbation techniques. We follow here the approach of Born
(1927), elaborated for the equivalent problem of classical motion of an electron
around the core of the hydrogen atom.
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Figure 1.3: (a) The cycle γϑ defined by the constant of motion G2; (b) the
cycle γ̺ defined by the constant of motion H.

It is convenient to start from the two-body problem Hamiltonian in spheri-
cal coordinates (1.24). We first identify three independent constants of motion:

H = pϕ , G2 = p2ϑ +
H2

sin2 ϑ
, H =

1

2

(

p2̺ +
G2

̺2

)

− G(m0 +m1)

̺
, (1.58)

and check that the conditions {H,G2} = 0, {H,H} = 0 and {G2,H} = 0
trivially hold (the last two Poisson brackets also prove that H and G2 are
constants of motion for H). Using the definition of the momenta pϑ and pϕ,
it is easy to see that G is the norm of the angular momentum of the system,
while H is the component of the angular momentum vector along the z axis,
both normalized by the reduced mass. The constant H is the Hamiltonian of
the two-body problem.

Then we proceed to identify the cycles. The Keplerian case is easier than
the general case, because each of the constants of motion (1.58) straightfor-
wardly defines a cycle. The constant H defines a cycle γϕ on the (pϕ, ϕ) plane,
which is given by pϕ = H and ϕ ∈ [0, 2π] (remember that ϕ is already defined
as an angle). The constant G2 defines a less trivial cycle γϑ, shown in Fig. 1.3a,
on the (pϑ, ϑ) plane. Along this cycle, ϑ oscillates between two values ϑmin
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and ϑmax, with ϑmin, ϑmax and pϑ(ϑ) given by the relations

ϑmin = arcsin

∣

∣

∣

∣

H

G

∣

∣

∣

∣

, ϑmax = 2π − ϑmin , pϑ(ϑ) = ±
√

G2 − H2

sin2 ϑ
. (1.59)

Finally the constant H defines – if it is negative – a cycle γ̺ in the (p̺, ̺) plane,
illustrated in Fig.1.3b. The condition that H is negative is nothing but the
condition that the surface MΦ is compact, which is crucial in the Arnold–
Liouville theorem. If H were not negative, the motion would be unbounded
and γ̺ would not be a closed cycle. Along this cycle, ̺ oscillates between two
positive values ̺min and ̺max, with

̺min = {−G(m0 +m1) +
√

G2(m0 +m1)2 + 2HG2}/2H ,

̺max = {−G(m0 +m1)−
√

G2(m0 +m1)2 + 2HG2}/2H ,

p̺(̺) =±
√

2 (H + G(m0 +m1)/̺)−G2/̺2 . (1.60)

The following step is to introduce the actions of the system, using (1.55).
Because on the cycle γϕ only ϕ evolves, dϑ and d̺ are zero, and the sum in
(1.55) reduces to the sole term pϕdϕ; an analogous situation happens for the
cycles γϑ and γ̺. Therefore, using (1.59) and (1.60) the actions become:

p1 =
1

2π

∮

γϕ
pϕdϕ =

1

2π

∫ 2π

0
Hdϕ = H

p2 =
1

2π

∮

γϑ

pϑdϑ =
1

π

∫ ϑmax

ϑmin

pϑ(ϑ)dϑ = G−H

p3 =
1

2π

∮

γ̺
p̺d̺ =

1

π

∫ ̺max

̺min

p̺(̺)d̺ = −G+

√

−G2(m0 +m1)2

2H . (1.61)

Using these actions, it is easy to compute, by inversion of (1.61), that the
Hamiltonian of the two-body problem is

H = − G2(m0 +m1)
2

2(p1 + p2 + p3)2
. (1.62)

Finally, to introduce the conjugate angles q1, q2, q3, we first define the
generating function

S(p1, p2, p3, ϕ, ϑ, ̺) =

∫

p̺(p1, p2, p3, ̺)d̺+pϑ(p1, p2, ϑ)dϑ+pϕ(p1)dϕ (1.63)

where the expressions of p̺(p1, p2, p3, ̺), pϑ(p1, p2, ϑ) and pϕ(p1) are obtained
by inverting (1.58) and using the relations (1.61). The conjugate angles will
then be:

q1 =
∂S

∂p1
, q2 =

∂S

∂p2
, q3 =

∂S

∂p3
. (1.64)
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The construction of canonical action–angle variables for the two-body problem
is therefore complete.

Once a set of action–angle variables is introduced, any linear transforma-
tion of the type

J = Ap , ψ = (AT )−1q , (1.65)

where A is a matrix with integer coefficients and determinant equal to 1, and
(AT )−1 is the inverse of its transposition, defines new canonical action–angle
variables. Moreover, if the Hamiltonian depends of the actions p only, then it
will obviously depend only on the actions J. In other words, Arnold action–
angle variables are not unique. In the case of the two-body problem, because
of the form of (1.62), it is convenient to use as new canonical action–angle
variables the following

L = p1 + p2 + p3 , l = q3

G = p1 + p2 , g = q2 − q3

H = p1 , h= q1 − q2 .
(1.66)

With this choice, the Hamiltonian of the two-body problem will be simply

H = −G2(m0 +m1)
2

2L2
. (1.67)

The canonical action–angle variables L, l,G, g,H, h are usually called the De-
launay variables. The relationship of the actions G and H to the orbital
elements defined in Section 1.2 is already given in formulæ (1.14) and (1.15)
respectively, while the expression for L can be easily obtained from (1.13).
Conversely, in order to establish the relationship of the angles l, g and h with
the orbital elements it is necessary to compute the integral equations (1.64)
and use (1.9). The resulting relationships are:

L =
√

G(m0 +m1)a , l =M

G =L
√
1− e2 , g = ω

H =G cos i , h= Ω .
(1.68)

To avoid the problem that the angles l, g, h are not well defined when the
inclination and/or the eccentricity are zero, the following modified Delaunay
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variables are also often used:

Λ =L =
√

G(m0 +m1)a , λ= l + g + h =M +̟

P =L−G = L(1−
√
1− e2) , p= −g − h = −̟

Q=G−H = 2G sin2 i
2 , q = −h = −Ω .

(1.69)

These variables have the advantage that λ is always well defined, while p and
q are not defined only when the conjugate actions P and Q are respectively
equal to zero. Therefore, (P, p) and (Q, q) constitute polar coordinate systems.
Note that, for small eccentricities and inclinations, P is proportional to e2 and
Q to i2.

1.9.2 Hamilton equations in Delaunay variables for the
restricted and the planetary problem

The Hamiltonian of the restricted problem (1.29) can be rewritten in Delau-
nay’s variables as

H = −G2m2
0

2L2
+H1(L,G,H, l, g, h, t) , (1.70)

where H1(L,G,H, l, g, h, t) is obtained by rewriting

−G
N
∑

j=1

mj

(

1

‖∆j‖
− r · sj

‖sj‖3

)

, (1.71)

in osculating elements using (1.9) and the inverse of (1.68). The time t en-
ters through the position vectors of the planets sj. Although the resulting
expression is quite long, it can be explicitly written and used for practical
computations. The Hamiltonian equations are

L̇ =−∂H1

∂l
, l̇ =

G2m2
0

L3
+
∂H1

∂L

Ġ=−∂H1

∂g
, ġ =

∂H1

∂G

L̇ =−∂H1

∂h
, ḣ=

∂H1

∂H
.

(1.72)

For the Hamiltonian of the planetary problem (1.38) the introduction of the
Delaunay variables is a little more complicated. First notice that the inte-
grable approximation of (1.38) is the sum of Hamiltonians (1.39) which are
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two-body-problem Hamiltonians, but in the form (1.26) rather than (1.22).
Had we started the construction of action–angle variables from (1.26), the
resulting actions would have been multiplied by µ1 with respect to those de-
fined in (1.68), and the resulting Hamiltonian would have been multiplied by
µ31 with respect to (1.67).3 Second, recall that the momenta vj in (1.39) are
not equal to µj ṙj. This however does not change the relationships between
vj, rj and the Delaunay variables Lj, Gj ,Hj, lj , gj , hj with respect to those
valid for a classical two-body problem where vj = µj ṙj ; in fact the Hamilto-
nians (1.39) and (1.26) are formally identical, regardless of what the momenta
really represent. For this reason, we can define formal osculating elements
aj , ej , ij ,Mj , ωj ,Ωj by using formula (1.9) with vj/µj instead of dr/dt, and
write the Delaunay variables for the planetary problem as

Lj =µj
√

G(m0 +mj)aj , lj =Mj

Gj =Lj
√

1− e2j , gj = ωj

Hj =Gj cos ij , hj = Ωj .
(1.73)

The Hamiltonian (1.38) then becomes

H =
∑

j

−G2(m0 +mj)
2(µj)

3

2L2
j

+H1 (1.74)

where H1 can be explicitly written as a function of the Delaunay variables
(1.73) by direct substitution in (1.38), similarly to what is done in the case of
the restricted problem. The Hamiltonian equation will then be, for each j:

L̇j =−∂H1

∂lj
, l̇j =

G2(m0 +mj)
2(µj)

3

L3
j

+
∂H1

∂Lj

Ġj =−∂H1

∂gj
, ġj =

∂H1

∂Gj

L̇j =−∂H1

∂hj
, ḣj =

∂H1

∂Hj
.

(1.75)

Equations (1.72) and (1.75) are the Hamiltonian version of the Lagrange equa-
tions.

3This can be easily seen as follows. Multiply (1.26) by µ1. Then (1.26) becomes formally
equal to (1.22), with constant G′ = Gµ2

1 replacing G. The Delaunay variables and the
resulting Hamiltonian will then be as in (1.68) and (1.67), with G′ instead of G. Finally
divide the resulting Hamiltonian by µ1.
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As for the restricted problem, to avoid the apparent singularities occurring
in (1.75) when some inclination and/or the eccentricity is zero, one usually uses
the modified Delaunay variables:

Λj =Lj , λj = lj + gj + hj

Pj =Lj −Gj , pj = −gj − hj

Qj =Gj −Hj , qj = −hj .
(1.76)

1.9.3 D’Alembert rules

In classical studies of the dynamics of the restricted and planetary problems,
the function H1 in (1.70) and (1.74) is usually expanded in Fourier series of
the angles λ,̟ and Ω and in power series of e and i, or equivalently, using
the modified Delaunay variables (1.69), in Fourier series of λ, p, q and in power
series of P 1/2, Q1/2. Although in this book we will never deal with classical
explicit expansions, in the following chapters it will be very important to know
their general form.

Let us denote by Λj, Pj , Qj , λj , pj , qj (j = 1, . . . , N) the modified Delaunay
variables of N bodies (one small body and N planets, or N planets) and
by αj , βj , kj ,mj , sj integer numbers. Moreover we generically denote by Λ,
α,β,k,m and s the vectors whose components are Λj, αj , βj , kj ,mj and sj
respectively. The most general form of the Fourier series expansion in the
angles and power series expansion in

√

Pj ,
√

Qj is therefore:

H1 =
∑

α,β,k,m,s

cα,β,k,m,s(Λ)





∏

j

P
αj/2
j Q

βj/2
j



 exp
[

ι
(
∑

j
kjλj+

∑

j
mjpj+

∑

j
sjqj
)]

,

(1.77)

where ι denotes
√
−1, and cα,β,k,m,s are suitable coefficients (for their com-

putation see Brouwer and Clemence, 1961; Duriez, 1989; Laskar and Robutel,
1995; Ellis and Murray, 2000).

Consideration of the symmetries and analytic properties of H1 allow the
easily derivation of the so-called D’Alembert rules:

1) H1 must be invariant under a simultaneous change of sign of all the angles
λj , pj, qj . Therefore the Fourier series expansion must contain only cosine
terms, namely cα,β,k,m,s = cα,β,−k,−m,−s and all coefficients are real.
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2) H1 must be invariant under an arbitrary rotation of the reference frame
around the z axis. A rotation of the reference frame by an angle ϑ incre-
ments the longitudes λj,̟j ,Ωj by ϑ. Because pj = −̟j and qj = −Ωj, the
invariance of H1 implies that

∑

j kj −
∑

jmj −
∑

j sj = 0. Note that the
mean anomaly lj = λj −̟j and the argument of perihelion ωj = ̟j −Ωj are
invariant by rotation of the reference frame.

3) H1 must be invariant under a simultaneous change of sign of all inclinations,

namely by a transformation Q
1/2
j → −Q1/2

j ,∀j (recall that Q
1/2
j ∼ ij). This

implies that
∑

j βj/2 must be an integer number.

4) In the original coordinates and momenta [see (1.29) and (1.38)] H1 evidently
has singularities in real phase space only in correspondence with collisions
between two bodies. Therefore, the singularities at Pj = 0 and Qj = 0 that
H1 has when written in the form (1.77) are not intrinsic to the function, but
must be due to the specific choice of the action–angle variables. The angles
pj and qj are in fact not defined when the corresponding actions Pj and Qj
are equal to zero, namely when the eccentricity and inclination are null. This
singularity, typical of canonical polar coordinates, must be eliminable with
the introduction of canonical Cartesian coordinates. We define the Poincaré
variables

yj =
√

2Pj cos pj , xj =
√

2Pj sin pj , zj =
√

2Qj cos qj , vj =
√

2Qj sin qj .

(1.78)

As is easy to check, using the Poisson bracket criterion (1.36), this transfor-
mation is canonical and defines xj and vj as the new coordinates, and yj and
zj as the respective conjugate momenta. (yj , xj) and (zj , vj) are both well
defined when Pj = 0 and Qj = 0. Therefore in these new canonical variables
H1 must recover its regularity properties. This implies that in (1.77) αj−|mj |
and βj − |sj | must be nonnegative even numbers. In fact, only in this case is
H1 an analytic expression of xj , yj, zj , vj .

1.10 Integrable dynamics

We finally study the dynamics of an integrable system which, as we have
seen in Section 1.9, can be generically represented by a Hamiltonian H(p),
independent of the angles q of the system.

The equations of motion are simply:

ṗj = −∂H
∂qj

(p) = 0 , q̇j =
∂H
∂pj

(p) ≡ ωj(p) , 1 ≤ j ≤ n , (1.79)
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from which it follows that the actions pj are constants of motion, while the
angles qj have constant time derivatives ωj. Since the coordinates qj are angles,
the time derivatives ωj are in fact their frequencies.

An n-dimensional manifold, which admits as a global coordinate system
n independent angles, is called a torus, and is usually denoted by Tn. To
fix ideas, a one-dimensional torus T1 is topologically equivalent to a circle,
while a two-dimensional torus T2 is topologically equivalent to the surface of
a doughnut. In the motion given by an integrable Hamiltonian, the angles
circulate with constant frequencies on tori defined by constant values of the
actions p. The tori p =constant are therefore invariant for the dynamics, in
the sense that a trajectory starting on a torus will never leave the torus, the
actions p being constants of motion. The phase space is said to be foliated
in invariant tori, because every initial condition p(0),q(0) generates a motion
lying on an invariant torus.

The motion of the angles on a torus depends on the frequencies ωj(p). If
the frequencies are such that the equation

k · ω =
n
∑

j=1

kjωj = 0 , k ≡ (k1, . . . , kn) ∈ Zn (1.80)

admits as a unique integer solution k = (0, . . . , 0), the motion densely cov-
ers the torus. This means that every region of the torus is visited or, more
precisely, that, given an arbitrary small neighborhood U(q0) of an arbitrary
point q0 on the torus, the motion will sooner or later pass inside U(q0). In
this case, the frequencies are said to be nonresonant and the motion is called
quasi-periodic.

Conversely, if equation (1.80) admits as solution n−1 independent integer
nonzero vectors k1, . . . ,kn−1, the motion on the torus is periodic. In fact, in
this case it is easy to see that it is possible to express n− 1 angles as periodic
functions of a unique angle. The frequencies are said to be completely resonant.

There are finally intermediate cases where equation (1.80) admits as solu-
tion only m independent integer nonzero vectors k1, . . . ,km, with m < n− 1.
The resulting motion on the torus is neither dense nor periodic. It is possible
to express m angles, say for simplicity q1, . . . , qm, as periodic functions of the
other n −m angles qm+1, . . . , qn. This implies that the projection of the mo-
tion on the (n−m)-dimensional torus defined by qm+1, . . . , qn is dense, while
its projection on the m-dimensional torus defined by q1, . . . , qm is periodic. In
this case the frequencies are said to be in a resonance of multiplicity m. The
quantity

min1≤j≤m|kj| , with |kj| ≡ |kj1|+ · · ·+ |kjn| (1.81)

is called the order of the resonance.
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In general, the frequencies depend on the torus we consider, namely on
the values of the actions p. In the case where the Hamiltonian is linear in the
actions, however, the frequencies are independent of p. In this case the system
is said to be isochronous. More generally, a Hamiltonian system is called
degenerate if the determinant of the matrix of its second-order derivatives
vanishes:

det

(

∂2H
∂pi∂pj

)

= 0 . (1.82)

If the system is degenerate, then there exists at least one direction in the
action space along which the frequencies do not change. Conversely, if the
system is nondegenerate, at least one frequency must change for any arbitrary
small displacement in the action space. In the latter case, the resonant tori
are dense in the phase space, in the sense that arbitrarily close to any point
p∗ there is a point p such that equation (1.80) is satisfied by a nonzero integer
vector k.

The theory of Hamiltonian dynamics is well settled for nondegenerate sys-
tems and their small perturbations. Conversely, for degenerate systems the
properties of the dynamics strongly depend on the specificities of the system
under consideration, in particular for what concerns the directions along which
the frequencies are preserved, and how the degeneracy is removed when a small
perturbation of the system is considered.

Unfortunately, the two-body problem is highly degenerate. As we have
seen in the previous section, the Hamiltonian depends only on one action (L)
out of three. This implies that the frequencies are the same, whatever the
actions G and H are. Moreover, two of the three frequencies, namely ġ and
ḣ are identically zero, so that g and h are additional constants of motion for
the Keplerian problem. Therefore, there is a degeneracy along two directions
for l̇ and over the entire action space for ġ and ḣ. For this reason even small
perturbations of the two-body problem, like the restricted problem and the
planetary problem, may exhibit very complicated dynamics.



Chapter 2

QUASI-INTEGRABLE
HAMILTONIAN SYSTEMS

2.1 Introduction to perturbation theory

A Hamiltonian system is said to be quasi-integrable if, using a suitable set of
canonical action–angle variables, its Hamiltonian function can be written as

H(p,q) = H0(p) + εH1(p,q) , (2.1)

where ε is a small parameter and gradpH0 and H1 are intended to be of order
unity. It is therefore natural to regard H0 as the integrable approximation,
and H1 as its perturbation. In fact, the flow generated by H0 (namely p =
constant and q = ω0t + q(0) with ω0 = gradpH0) approximates at order
ε the real dynamics generated by H, in the sense that it deviates from the
real trajectory by a quantity of order ε in a time of order unity, and by
a quantity of order unity in a time of order 1/ε. Unfortunately, if one is
interested in a very accurate description of the dynamics or in its qualitative
behavior on timescales longer than 1/ε, knowledge of the flow generated by
H0 is not enough, and one has to look for much better approximations of the
real dynamics. This is precisely the goal of perturbation theory. As will be
detailed in Section 2.5, both the Hamiltonians of the restricted problem (1.70)
and of the planetary problem (1.74) have the form (2.1), ε being of the order
of the mass of Jupiter relative to that of the Sun, namely ∼ 10−3. Therefore,
the study of quasi-integrable Hamiltonian systems is not just a mathematical
challenge, but is of practical importance in Celestial Mechanics.

The power of the Hamiltonian formalism is that, instead of looking for
approximations of the real dynamics by working on the equations of motion –
which would be very cumbersome – one can work directly on the Hamiltonian

39
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function. More precisely, the general strategy of every perturbation approach
for Hamiltonian systems is to look for a canonical transformation close to the
identity of the form

p = p1 + εf1(p
1,q1) , q = q1 + εg1(p

1,q1) (2.2)

such that, by substituting (2.2) in (2.1), the latter becomes

H1(p1,q1) = H0(p
1) + εH̄1(p

1) + ε2H2(p
1,q1) , (2.3)

with some new functions H̄1 and H2 of order unity (typically H̄1 will be
the average of H1 over the angles q). If this operation is successful, then
H0 + εH̄1 is the integrable approximation of order ε2 of the real dynamics. In
principle, this procedure can be iterated, looking for a sequence of canonical
transformations close to the identity:

pr−1 = pr + εrf r(p
r,qr) , qr−1 = qr + εrgr(p

r,qr) (2.4)

such that the Hamiltonian in the action–angle variables pr,qr becomes

Hr(pr,qr) = H0(p
r) + εH̄1(p

r) + · · ·+ εrH̄r(p
r) + εr+1Hr+1(p

r,qr) , (2.5)

thus obtaining a sequence of increasingly better approximations of the real
dynamics. One could hope to use this procedure indefinitely, thus transforming
the original H(p,q) into the integrable H∞(p∞). However, we now know from
the work of Poincaré that this hope is vain: in general the procedure cannot
be successful up to infinite order (see Section 2.4), but one has to stop at some
optimal order r, depending on ε and on the properties of the system. As a
consequence, the best integrable approximation of the real dynamics is pr =
constant, qr = ωrt+qr(0) with ωr = gradpr [H0+ · · ·+εrH̄r(p

r)]. The image
of this motion in the original variables p,q can be obtained by composing all
the sequence of canonical transformations: p(t),q(t) have oscillations of size
ε around the values pr,qr(t).

In the following sections we will detail this procedure, and the difficulties
that it encounters, following the most frequently adopted approach in Celestial
Mechanics: the one making use of Lie series.

2.2 Lie series approach

In the procedure sketched in the previous section, a big problem is to select,
among all possible transformations (p,q) → (p1,q1) that transform (2.1) to
(2.3), the one that is canonical. The clever way to avoid the problem (Gröbner,
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1960; Hori, 1966; Deprit, 1968) is to look for the good transformation among
a class of transformations that are all canonical by construction. This is done
by defining the transformations as the time–ε flow of generating Hamiltonians
χ, as explained in Section 1.6. More precisely, the transformations are defined
as in (1.42), or equivalently as:

p = Sεχp
1 , q = Sεχq

1 , (2.6)

where Sεχ is the Lie series operator, defined in Section 1.7C (see formula (1.52)).
All transformations of this kind are indeed canonical. To write the Hamilto-
nian H in the new variables, using (1.42) by substitution one gets

H(p,q) = H(p1(ε),q1(ε)) ≡ H1(p1,q1) , (2.7)

so that H1 appears as the evolution at time ε of the function H(p1,q1) (ob-
tained by formal substitution of p,q with p1,q1 inH) along the flow generated
by the Hamiltonian χ. As seen in Section 1.7C, H1 can therefore be written
using the Lie series as

H1 = SεχH . (2.8)

The problem is now reduced to finding a suitable generating Hamiltonian
χ such that, if H has the form (2.1), H1 has the form (2.3). For this purpose,
we write (2.8) in explicit form up to order ε2, using (1.51) and (1.50):

H1 = H0 + εH1 + ε{H0, χ}+ ε2{H1, χ}+
ε2

2
{{H0, χ}, χ} +O(ε3) . (2.9)

In this equation, H0, H1 and χ should all be considered as functions of p1,q1.
From (2.9), we immediately see that the term of H1 of order zero in ε is
H0(p

1); therefore H1 will have the form (2.3) if and only if the first-order
term in ε will be a function of the sole actions p1, namely if and only if the
equation

H1 + {H0, χ} = H̄1 , (2.10)

which is also called the homologic equation, is satisfied by some functions
χ(p1,q1) and H̄1(p

1).

To solve (2.10) we take advantage of the fact that the coordinates q1 are
angles and that the Hamiltonian H is periodic in q1. We expand H1 in a
Fourier series as

H1(p
1,q1) =

∑

k∈Zn

ck(p
1) exp

(

ιk · q1
)

(2.11)
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where k is an integer vector, n is the number of degrees of freedom and ι
denotes

√
−1. We then look for a solution χ of (2.10) of a similar form

χ(p1,q1) =
∑

k∈Zn

dk(p
1) exp

(

ιk · q1
)

(2.12)

so that we can write

{H0, χ} = −ι
∑

k∈Zn

dk(p
1)k · ω0(p

1) exp
(

ιk · q1
)

(2.13)

where ω0 = gradp1H0. Then, one immediately sees that the solution of equa-
tion (2.10) is given by a generating Hamiltonian χ of the form (2.12), with
coefficients dk given by

d0 = 0 , dk(p
1) = −ι ck(p

1)

k · ω0(p1)
∀k 6= 0 , (2.14)

and a function H̄1 that is simply

H̄1(p
1) = c0(p

1) . (2.15)

Now that the generating Hamiltonian χ is determined, the canonical trans-
formation relating the original variables p,q to the new ones p1,q1 is also
determined. The terms of the new Hamiltonian H1(p1,q1) of quadratic or
higher order in ε can be simply computed using the complete expression (2.9).

However, the solution of (2.10) that we have provided is only a formal
solution. One should check that the generating Hamiltonian χ is well defined
as an analytic function, namely that its Fourier series (2.12) with coefficients
given by (2.14) is absolutely convergent. In principle, it should also be checked
that the power series expansion in ε that defines H1 in (2.9) is absolutely
convergent. However, the latter is guaranteed for ε small enough if χ and H
are analytic. In fact, in this case the right-hand side of (2.9) is by definition the
Taylor series expansion of the time evolution of an analytic function (H) along
an analytic flow (the one generated by χ), which is known to be convergent
provided the time interval [0, ε] covered by the expansion is short enough.

Therefore, we have only to worry about the analytic properties of χ.

2.3 The small divisors problem

It is immediately evident from (2.12) and (2.14) that the function χ is not
defined if there exists an integer vector k∗ such that the denominator

k∗ · ω0(p
1) (2.16)
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vanishes for some p1 and the corresponding coefficient ck∗
(p1) is not zero.

Recalling the definition (1.80), this means that the generating Hamiltonian χ
is not defined on any torus p1 that carries resonant motion of the integrable
approximation H0. As recalled at the end of Chapter 1, if H0 is nondegenerate
resonances are necessarily dense, so that there is no hope that the function
χ can be in general well defined in an open domain of the phase space. Res-
onances are dense also in most of the interesting degenerate cases, such as
the restricted three-body problem. In other words, the perturbation approach
outlined in the previous section must fail, in general.

Luckily, there are a couple of ways out of this unpleasant situation. The
first way takes advantage of the analytic properties of H1. A function f(ϕ),
2π-periodic in the angles ϕ and analytic on the complex torus

Tn
σ = {ϕ ∈ Cn : Reϕj ∈ [0, 2π] , | Imϕj | < σ , 1 ≤ j ≤ n} (2.17)

admits a Fourier expansion

f(ϕ) =
∑

k∈Z

αk exp (ιk ·ϕ) , with |αk| < F exp (−|k|σ) (2.18)

where |k| = |k1| + . . . + |kn| is the order of the Fourier harmonic with index
k = (k1, . . . , kn), and F is the supremum of |f(ϕ)| for ϕ ∈ Tn

σ (Arnold,
1963b). Using the exponential decay of its coefficients, it is therefore natural
to separate the Fourier expansion ofH1 in two parts, namelyH1 = H<K

1 +H≥K
1

with

H<K
1 =

∑

k∈Zn,|k|<K

ck(p) exp (ιk · q) , H≥K
1 =

∑

k∈Zn,|k|≥K

ck(p) exp (ιk · q) ,

(2.19)
choosing K large enough1 that H≥K

1 is of order ε with respect to H<K
1 . Then,

in the expression (2.9) only εH<K
1 appears at order ε, and equation (2.10)

admits the solution

χ =
∑

k∈Zn\0,|k|<K

−ι ck(p
1)

k · ω0(p1)
exp

(

ιk · q1
)

. (2.20)

Now the series defining χ contains only a finite number of harmonics, so that
it will be possible to find an open domain UK in the action space, such that

1Some authors prefer to choose K independent of ε, thus introducing effectively a new
perturbation parameter exp (−σK). The advantage of this procedure is that the normalized
Hamiltonian will be analytic in ε, which is not the case if K is an integer (and therefore
discontinuous) function of ε.
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the denominators in (2.20) do not vanish for any p1 ∈ UK . The domain UK
will be said to be nonresonant up to order K.

A second way to solve the small divisors problem is to choose a point
in the action space p∗ such that the frequencies ω0(p∗) satisfy the so-called
diophantine condition:

|k · ω0(p∗)| >
γ

|k|τ , ∀k ∈ Zn , k 6= 0 (2.21)

with some suitable positive γ and τ . Number theory ensures that these fre-
quencies exist (and the volume of their set in Rn has positive measure), pro-
vided that τ > n − 1. Then we expand H0 in a power series of p̂ ≡ p − p∗

as
H0(p) =

∑

j≥1

Hj
0(p̂) (2.22)

with Hj
0 a homogeneous polynomial of degree j in p̂. Finally we consider the

action domain of size ε around p∗:

Uε(p∗) = {p̂ ∈ Rn : ‖p̂‖ < ε} (2.23)

so that the terms Hj
0 with j ≥ 2 are of higher order in ε with respect to H1

0.
Therefore, in equation (2.9) H1

0 would play the role of H0, while the higher-
order terms Hj

0 with j ≥ 2 would be included in H1. In equation (2.10) the
function H0 in the Poisson bracket with χ would be completely isochronous
– being linear in the actions p̂ – with fixed frequencies ω0(p∗), so that the
formal solution for χ would be

χ =
∑

k∈Zn\0

−ι ck(p
1)

k · ω0(p∗)
exp

(

ιk · q1
)

. (2.24)

Now, using the exponential decay of the coefficients ck (2.18) and the definition
(2.21) of the diophantine frequencies ω0(p∗), one easily sees that (2.24) is
absolutely convergent on the complex torus Tn

σ−δ, for any positive δ < σ.
In practical computations, usually done with the help of an algebraic ma-

nipulator implemented on a computer, it is common to use a combination of
the two ways discussed above for the solution of the small divisors problem. To
be efficient, algebraic manipulators need to represent the functions in power
series of the actions and Fourier series of the angles. This naturally leads one
to expand H0 in a power series of p̂, which also has the advantage that the
resulting generating Hamiltonian χ (2.24) has denominators that are not func-
tions of the actions, p∗ being fixed. On the other hand, for obvious reasons
of limited storage capability, all series expansions need to be truncated. It
is natural, then, to keep in H1 and in χ only the Fourier harmonics of order
|k| < K.
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2.3.1 Normal forms

The above discussion shows that, although it is not possible in general to
transform the original Hamiltonian H into a new Hamiltonian H1 of the form
(2.3), it is nevertheless possible to achieve this goal if the actions are restricted
to a local domain UK that is nonresonant up to order K (depending on ε), or
to the neighborhood Uε of a torus p∗ with diophantine frequencies. Whenever
the Hamiltonian is transformed into the form (2.3) in some domain of the
action variables, it is said to be in Birkhoff normal form to first order in ε.

However, in some cases, one is interested in a domain that is crossed by
resonances of order smaller than K. In these cases, the corresponding terms in
the Fourier expansion of εH1 cannot be relegated among the terms of higher
order in ε. On the other hand, there is no way to eliminate these terms because
of the small divisors problem. Therefore, in these cases it is not possible to
transform the Hamiltonian into a Birkhoff normal form, and one has to keep
the resonant harmonics in the new Hamiltonian H1.

More precisely, denote by U the domain of interest in the action space, and
define the resonant set

K = {k ∈ Zn , |k| < K : k · ω0(p) = 0 for some p ∈ U} . (2.25)

It is then convenient to split H1 into three parts, namely H1 = HR
1 +HNR

1 +
H≥K with

HR
1 =

∑

k∈K

ck(p) exp (ιk · q) , HNR
1 =

∑

k∈Zn,|k|<K,k6∈K

ck(p) exp (ιk · q) ,

(2.26)
and H≥K

1 defined as in (2.19). With the transformation (2.6), the term of
order ε in H1 = SεχH will therefore be ε[HR

1 + HNR
1 + {H0, χ}]. It is then

possible to choose the generating Hamiltonian χ such as HNR
1 + {H0, χ} = 0,

setting

χ =
∑

k∈Zn,|k|<K,k6∈K

−ι ck(p
1)

k · ω0(p1)
exp (ιk · q1) . (2.27)

The generating Hamiltonian χ is analytic in p1 ∈ U because none of the
denominators k · ω0(p

1) vanish for p1 ∈ U and k 6∈ K, by construction of K
(note that the term with k = 0 has also been included in HR

1 ), and because
the Fourier expansion in (2.27) contains only a finite number of terms.2 The

2Because
∥

∥p− p1
∥

∥ = O(ε) (see formula 2.6) to guarantee that p1 ∈ U one has to choose
p ∈ U −O(ε), where the latter denotes the largest set that is contained in U together with
a neighborhood of radius O(ε). This implies that the size of U must be at least O(ε).
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canonical transformation (2.6) is therefore well defined, and the Hamiltonian
(2.1) is transformed into

H1(p1,q1) = H0(p
1) + εHR

1 (p
1,q1) +O(ε2) . (2.28)

The Hamiltonian H1 is said to be in resonant normal form to first order in ε.

Resonant normal forms are very useful to study resonant dynamics, be-
cause they retain at low order only the essential resonant terms, while the
nonresonant ones are relegated to higher order. Unfortunately the Hamilto-
nian H0(p

1) + εHR
1 (p

1,q1) is in general nonintegrable, whenever K contains
more than one resonance,3 or one resonance with multiplicity larger than 1
(see Section 1.10 for the definition of multiplicity). Conversely, in the case
where K contains only one resonance of multiplicity 1, H0(p

1) + εHR
1 (p

1,q1)
is integrable, as will be shown in Chapter 4.

2.4 Beyond the first order

The procedure discussed in the previous section allows the elimination of the
harmonics with coefficients of order ε that do not belong to the resonant set
K. It is then natural to iterate the procedure, in order to eliminate also the
nonresonant harmonics with coefficients of higher order in ε. More precisely,
one looks for a sequence of generating Hamiltonians χr and a sequence of
canonical transformations

pr−1 = Sε
r

χr
pr , qr−1 = Sε

r

χr
qr , r > 1 (2.29)

such that finally the Hamiltonian is transformed to the form

Hr(pr,qr) = H0(p
r) + εHR

1 (p
r,qr) + · · ·+ εrHR

r (p
r,qr) + εr+1Hr+1(p

r,qr) ,
(2.30)

with functions HR
1 , . . . ,HR

r containing only harmonics k ·qr with k ∈ Kr. The
latter is the set of resonances up to order Kr that cross the domain U , namely

Kr = {k ∈ Zn , |k| < Kr : k · ω0(p) = 0 for some p ∈ U} , (2.31)

where Kr is chosen such that all harmonics with order larger than Kr have
coefficients smaller than εr (see below). The Hamiltonian (2.30) will be said
to be in resonant normal form to order εr with respect to Kr. Note that in
case Kr = {0}, i.e. no resonances up to order Kr cross the domain of interest,

3Meaning that there are at least two values p1 and p2 in U and two nonzero integer vectors
k1 and k2 such that k1 · ω0(p1) = k2 · ω0(p2) = 0 and k1 · ω0(p2) 6= 0, k2 · ω0(p1) 6= 0.



2.4. BEYOND THE FIRST ORDER 47

(2.30) reduces to the form (2.5), and Hr will be said to be in Birkhoff normal
form to order εr.

In order to determine the generating function χr, one decomposes the
perturbation Hr as HR

r +HNR
r +H≥Kr

r , where HR
r and HNR

r are defined as in
(2.26) and H≥Kr

r as in (2.19), with Kr and Kr instead of K and K. Remember
that, whileHR

r andHNR
r contain harmonics whose coefficients are effectively of

order εr, H≥Kr
r contains, by definition of Kr, only harmonic terms with smaller

coefficients. Then, analogously to what is done for the resonant normal form
of order 1 in ε (see Section 2.3.1), χr is chosen to eliminate the nonresonant
part of the perturbation of order εr, namely as the solution of the equation

HNR
r + {H0, χr} = 0 . (2.32)

The key point in this procedure is the choice of Kr. As anticipated above,
Kr must be large enough so that all harmonics of order larger than Kr have
coefficients smaller than εr. Remember that the harmonics of the original per-
turbation εH1 of order between 1 and K, where K is defined as in (2.19), have
coefficients of order ε; therefore, because of the exponential decay (2.18), the
harmonics of εH1 of order between (r− 1)K and rK have coefficients of order
εr. As a consequence one must choose Kr ≥ rK. This implies that the reso-
nant set Kr, must contain more and more resonant terms as r increases. Since
all the resonant terms are kept in the normalized Hamiltonian Hr, it turns
out that the latter is not in a much more advantageous form than the origi-
nal Hamiltonian H. In particular, there is in general no hope of constructing
Hamiltonians Hr in Birkhoff normal form to order εr, with arbitrarily large r,
namely to transform the original Hamiltonian into an integrable H∞(p∞).

In practical applications, one is interested in a given domain U of the
action space, and wants to transform the original Hamiltonian into the simplest
possible normal form on that domain. Therefore one usually chooses few
independent integer vectors k1, . . . ,km corresponding to the main resonances
that are present in the domain, and wants to keep in the resonant normal form
only the harmonics k · qr with

k ∈ M ≡
{

k ∈ Zn : k = n1k
1 + · · ·+ nmk

m with (n1, . . . , nm) ∈ Zm
}

.

(2.33)
It is easy to see that M – usually called the resonant module – is the integer
vector space generated by the basis k1, . . . ,km (the most interesting case is
that where the basis is reduced to one single vector k1, because the resulting
normal form will be integrable – see Chapter 4). Then, one needs to solve
equations (2.32) with increasing r, keeping in HR

r only the harmonics k · qr
with k ∈ M. It is evident that this process must stop at some order r, when
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the first harmonic that is resonant inside U and does not belong to the resonant
moduleM is encountered in H<Kr

r . At that step, the Hamiltonian has already
been transformed to the form

Hr−1 = H0 +Hr−1
norm + εrHr +O(εr+1) (2.34)

with Hr−1
norm ≡ εHR

1 + · · ·+εr−1HR
r−1. This should be considered as the optimal

normal form, in the sense that, given U and M, it minimizes the size of the
nonnormalized remainder εrHr+O(εr+1). The order r of the optimal normal
form and the size of the remainder are completely determined once the domain
U and the resonant module M are chosen. In fact, the image of U in frequency
space (i.e. the set of frequencies ω(p) with p ∈ U) and M determine which
is the harmonic of lowest order that is resonant in U and does not belong to
M. Denoting by kmin its order, from (2.18) its coefficient cannot be larger
than exp(−kminσ), with some positive σ related to the analytic properties of
the original Hamiltonian. As a consequence, in general this harmonic will be
encountered in the normalization process at step r = −kminσ/ ln ε. (For more
details see Morbidelli and Giorgilli, 1997).

2.4.1 Example of computation of the optimal order of the
normal form

Consider the Hamiltonian (2.1) and a point in the action space p∗ such that the
frequencies ω0(p∗) satisfy the diophantine property (2.21). Let us construct
the optimal Birkhoff normal form in the domain Uε(p∗) defined in (2.23). Re-
member that, as explained in footnote 2 (Section 2.3.1), Uε(p∗) is the domain
of minimal size in which one can attempt to construct the normal form. If
the Hamiltonian H0 is nondegenerate, in Uε(p∗) the frequencies ω0(p) cover a
neighborhood of size ε of ω0(p∗). Then, taking into account (2.21), in Uε(p∗)
one has

|k · ω0(p)| ≥ ||k · ω0(p∗)| − ε|k|| ≥ γ

|k|τ − |k|ε (2.35)

so that k · ω0(p) can be zero only if |k| ≥ (γ/ε)1/(τ+1) . Therefore, the res-
onances of lowest order in Uε(p∗) have order o ∼ 1/ε1/(τ+1) and the size of
the remainder of the optimal Birkhoff normal form is of order exp[−ε−1/(τ+1)],
i.e. exponentially small in ε (Morbidelli and Giorgilli, 1997). We can conclude
that the dynamics in the ε-neighborhood of an unperturbed diophantine torus
is approximated by integrable dynamics, up to a time exponentially large in
1/ε.

It is interesting to remark that in the example considered above, if one
expands H0 in Taylor series of p̂ ≡ p−p∗ as in (2.22), and relegates to higher
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order in ε the terms Hj
0 with j > 1 (as done in Section 2.3 to construct the

Birkhoff normal form to first order in ε), there appears to be no formal obstruc-
tion to the construction of the Birkhoff normal form up to any arbitrary order
r. In fact, because the leading term H1

0 = ω0(p∗) · p̂ is isochronous with dio-
phantine frequencies ω0(p∗), none of the harmonics in the perturbation seem
to be resonant in Uε(p∗), at every order. However, if one computes nontrivial
rigorous estimates of the norm of the perturbation, as in Giorgilli and Gal-
gani (1985), one realizes that in this case the norm of Hr amazingly increases
with r as r!ε−rτ/(τ+1), so that εrHr behaves as r!εr/(τ+1). This quantity first
decreases with r, then definitely diverges when r tends to infinity. The min-
imal size is achieved when r ∼ ε−1/(τ+1) and is of magnitude exp[−ε1/(τ+1)].
Therefore, one finds again the previous result on the size of the remainder of
the optimal normal form.

This example is intended to show that no formal trick may allow the con-
struction of the normal form up to an arbitrarily large order. The presence
of resonances inside the domain of interest is an essential obstruction which
cannot be passed around.

2.4.2 Generation of high-order harmonics by the
normalization process

In many cases of practical importance the original Hamiltonian H has only a
few harmonic terms of low order. In these cases, one could expect that the
high-order resonances that cross the domain of interest do not raise the small
divisors problem because the coefficients of the corresponding harmonics are
identically equal to zero. This would allow the construction of the normal
form up to an arbitrarily large order.

However, this is not true in general. Even if the original Hamiltonian does
not have harmonics of high order, these harmonics are usually generated by
the construction of the normal form. This can be easily seen in the following
example.

Let’s consider the two-degree of freedom Hamiltonian (2.1) with

H0 = ω1p1+ω2p2+
1

2
(p21+p

2
2) , H1 = cos q1+cos(q1−q2)+cos(q1+q2)+cos q2 ,

(2.36)
with nonresonant ω1 and ω2, and try to construct the Birkhoff normal form
to first order in ε. The generating Hamiltonian χ is the solution of equation
(2.10) and therefore has the same harmonics as H1. Note that the function
H̄1 in (2.10) is zero, because H1 has zero average in q1, q2.

Let’s represent the Fourier spectrum of H1 and χ as:
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k1

k2

The black dots represent the harmonics (k1, k2) ≡ exp[ι(k1q1 + k2q2)] which
have nonzero coefficient. Because H1 and χ are real functions, we can restrict
our representation to the half-plane k1 ≥ 0; in fact, if the coefficient of the
harmonic (k1, k2) is nonzero, then the coefficient of the harmonic (−k1,−k2)
must be nonzero, and vice versa.

We now proceed to compute which harmonics have nonzero coefficients in
the transformed Hamiltonian H1 = SεχH. For this purpose, it is enough to
remark how harmonics compose in a Poisson bracket, namely that

{α(p1, p2)exp [ι(k1q1 + k2q2)], β(p1, p2) exp [ι(m1q1 +m2q2)]}
= γ(p1, p2) exp {ι[(k1 +m1)q1 + (k2 +m2)q2]} ,

(2.37)

where α and β are generic functions of the actions p1 and p2 and the resulting
γ = ι(αk ·gradpβ−βm ·gradpα). For instance, in {H1, χ} the harmonic (1,1)
in H1 combined with each harmonic in χ generates with nonzero coefficients
all the harmonics that are represented by open squares below

k1

k2

As a consequence, the terms of H1 of order 2 in ε, namely LχH1 and 1/2L2
χH0,

have the Fourier spectrum represented as in the scheme below:

k1

k2

Similarly, the terms of H1 of order 3 in ε, namely 1/2L2
χH1 and 1/6L3

χH0,
have the Fourier spectrum represented by
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k1

k2

This shows that all harmonics are generated with generally nonzero coeffi-
cients, despite the fact that the original Hamiltonian had only a few Fourier
terms.

It is immediate to see that the generic part of H1 of size εs has harmonics
up to order |k| = 2s. Thus the coefficients of the harmonics of order |k|
decay as exp(−|k|σ), with σ = | ln ε|/2, so that the Fourier law (2.18) is
satisfied. Actually this example shows that, after a few normalization steps,
the Fourier law is not just an upper bound of the size of the coefficients of the
harmonics of the transformed Hamiltonian: the coefficients should be expected
to decay no faster than described by the Fourier law. An example with precise
computation of the coefficients of the harmonics is reported by Morbidelli and
Giorgilli (1997).

2.5 Averaging over the mean motions

The perturbation approach discussed in the previous sections can be directly
applied to the Hamiltonians of the restricted problem and of the planetary
problem, in the goal of constructing a normal form that is independent of the
fast angles (the mean anomalies or, equivalently, the mean longitudes). This
procedure is usually (improperly) called averaging in the jargon of Celestial
Mechanics, because to first order in the planetary masses it is equivalent to a
simple average over the fast angles.

For the restricted problem, we start from Hamiltonian (1.70) but, to avoid
apparent singularities, we rewrite it using the modified Delaunay variables
(1.69). We choose our units of mass, space and time such that Gm0 = 1, and
denote by ε the mass of the largest planet, relative to that of the Sun. The
vectors sj(t) can be written as functions of the planetary orbital elements,
and we assume for the moment that the planets move in Keplerian orbits.4

Thus, the time dependence of the perturbation appears only through the mean
longitudes of the planets λj . The latter are assumed to move linearly with
time, each with its own independent frequency. As explained in Section 1.5, to

4It is not necessary at this level to take into account the precession of the planetary orbits,
because the precession frequencies are small with ε.
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make the Hamiltonian autonomous, it is convenient to overextend the phase
space by introducing a couple of conjugate action–angle variables for each
independent time–frequency. Therefore, it is natural to choose as new angles
the planetary longitudes λjs, so that, denoting by Λj the conjugate actions,
the Hamiltonian of the restricted problem has the form (2.1), precisely:

H = H0 + εH1 = − 1

2Λ2
+

N
∑

j=1

njΛj + εH1(Λ, P,Q, λ, p, q, λ1, . . . , λN ) (2.38)

where n1, . . . , nN are the mean motions (i.e. orbital frequencies) of the N
planets. The perturbation H1 is also a function of the planetary longitudes
of perihelion pj and longitudes of node qj, but these, being assumed fixed,
play the role of parameters. The effects produced by their slow motion will be
considered in Chapters 8 and 11. Recall from (1.29) that the perturbation H1

is the sum of the perturbations provided separately by each planet, so that

H1 =
∑

jH
(j)
1 (Λ, P,Q, λ, p, q, λj , pj , qj). In other words, angles associated to

different planets cannot appear in the same harmonic in H1.
For the planetary problem, we start from Hamiltonian (1.74), rewritten in

the modified Delaunay variables (1.76). We denote by ε the mass of the largest
planet relative to that of the Sun and by βj the mass of the j-th planet relative
to the mass of the largest one; again the units are chosen so that G = m0 = 1.
With these settings, recalling the definitions of µj introduced for (1.39), one
has that µj = εβj/(1 + εβj) and m0 + mj = 1 + εβj . Then we define new
actions Λ′

j = Λj/ε, P
′
j = Pj/ε and Q′

j = Qj/ε, where Λj, Pj and Qj are given
by (1.76) and keep the angles λj, pj and qj unchanged. It is easy to see that
the Hamiltonian form of the equations of motion is preserved, provided that
a new Hamiltonian H′ = H/ε is introduced.5 The new Hamiltonian has the
form (2.1), precisely:

H′ =H′
0 + εH′

1 = −
N
∑

j=1

(1 + εβj)
−1β3j

2(Λ′
j)

2

+εH′
1(Λ

′
1, P

′
1, Q

′
1, λ1, p1, q1, . . . ,Λ

′
N , P

′
N , Q

′
N , λN , pN , qN ) . (2.39)

In the following, for simplicity of notation, we will omit all primes. Recall
from (1.38) that H1 is the sum of functions describing the interaction between
a pair of planets. Therefore, in its Fourier expansion, combinations of the
angles of more than two planets cannot appear in each harmonic.

To apply the perturbation approach, the perturbations εH1 in (2.38) and
(2.39) are expanded in Fourier series and only the harmonics with coefficients

5This transformation belongs to an extended class of canonical transformations, not dis-
cussed in Section 1.6, where also the Hamiltonian function is transformed.
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of order ε are kept in εH1, while those with coefficients of order ε2 or larger
are relegated to a higher-order perturbation function ε2H2, writing H = H0+
εH1+ε

2H2. The functions H1 and εH2 play the role of H<K
1 and H≥K

1 defined
in (2.19). The analytic properties of the original Hamiltonian together with
the D’Alembert rules ensure thatH1 contains only a finite number of harmonic
terms, which can be explicitly computed.

2.5.1 Secular normal form

The normal form of order ε is computed as H1 = SεχH, with χ such that
equation (2.10) is satisfied. However, the generating Hamiltonian χ cannot
be chosen such that the averaged Hamiltonian H̄1 depends only on the action
variables. In fact, because of the degeneracy of the two-body problem, which
makes the frequencies of perihelia and nodes identically equal to zero, the
harmonics independent of the mean longitudes, but dependent on perihelia
and nodes, cannot be eliminated.

To clarify, let’s focus on the restricted problem, because the planetary
problem is different basically only in the notation. In the restricted problem,
because

H1 =
∑

j

∑

k,kj,m
mj,s,sj

c
(j)
k,kj ,m,mj ,s,sj

(Λ, P,Q) exp [ι(kλ+kjλj+mp+mjpj+sq+sjqj)] (2.40)

the generating Hamiltonian χ would formally be

χ =
∑

j

∑

k,kj ,m
mj,s,sj

−ι
c
(j)
k,kj ,m,mj ,s,sj

(Λ1, P 1, Q1)

k 1
(Λ1)3 + kjnj

exp [ι(kλ1+kjλ
1
j+mp

1+mjpj+sq
1+sjqj)] ,

(2.41)
where k, kj ,m,mj, s and sj are integer numbers, and the new canonical vari-
ables Λ = SεχΛ

1, . . . , λ = Sεχλ
1, . . . are those introduced by the Lie series (see

formula 2.6). It is then evident that all harmonics with k = kj = 0 would
give denominators identically equal to zero in χ. Therefore, these harmonics
cannot be eliminated and must be retained in H̄1. As a consequence, the best
normal form that one can hope to construct is of type

H1 = H0(Λ
1,Λ1

j ) + εH̄1(Λ
1, P 1, Q1, p1, q1, pj , qj) +O(ε2) ; (2.42)

the Hamiltonian H1 will be said to be in secular normal form to order ε. In
the secular normal form the short periodic terms related to the orbital periods
have been averaged out, so that the resulting Hamiltonian describes the long
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term or “secular” evolution of the orbit, namely the evolution of P 1 and Q1

due to the precessional motion of the perihelion p1 and the node q1.

The new variables (Λ1, P 1, Q1, λ1, p1, q1) introduced to construct the secu-
lar normal form are called the mean modified Delaunay variables (of order ε).
By construction, they are the action–angle variables for the Hamiltonian of
the secular normal form. Formulæ (1.69) allow one to define, from the mean
Delaunay variables the mean orbital elements (a1, e1, i1,M1, ω1,Ω1).

The secular normal form, however, can be constructed only if the denomi-
nators k/(Λ1)3 + kjnj that appear in (2.41) are different from zero for each k
and kj appearing in the Fourier expansion of H1. As discussed in section 2.3,
this gives constraints on the domain where the secular normal form can be
constructed. More precisely, the expansion of H1 contains only a finite num-
ber of harmonics (k, kj), the others being relegated in εH2; then the equation
k/Λ3 + kjnj = 0 has a finite number of solutions Λ0(k, kj , nj). The secular
normal form can be constructed only in the domain, say U , of Λ1 that excludes
suitable neighborhoods of Λ0(k, kj , nj). As will be clear in Chapter 4, U must
exclude neighborhoods of size

√
ε of Λ0. If Λ

1−Λ0 ∼
√
ε, then the generating

Hamiltonian χ is also of order
√
ε, as well as the resulting difference |Λ− Λ1|

between the original and the new variables. Thus, to ensure that Λ1 ∈ U , the
original actions Λ must be chosen in a domain that is contained in U together
with a neighborhood of radius |Λ−Λ1|. This situation is sketched in Fig. 2.1.
The resonances k/Λ3 + kjnj = 0 are called mean motion resonances, because
they concern the mean motions of the body and of the j-th planet. In the
planetary problem the mean motion resonances are given by the equation

ki(1 + εβi)
−1β3i /Λ

3
i + kj(1 + εβj)

−1β3j /Λ
3
j = 0 , (2.43)

the indexes i and j referring to two planets.

To construct the secular normal form to higher order in ε one has to iter-
ate the procedure above, determining a sequence of generating Hamiltonians
χr and a sequence of canonical transformations ((Λr−1 = Sε

r

χr
Λr, . . . , λr−1 =

Sε
r

χr
λr, . . .) such that the transformed Hamiltonian Hr = Sε

r

χr
Hr−1 is in secular

normal form up to order εr. To this end, χr is given by the solution of the
equation {H0, χr} + Hr = H̄r, with the function H̄r depending only on the
actions and on perihelia and nodes. However, as discussed in Section 2.4, εrHr

must contain all the harmonics whose coefficients are effectively of order εr, so
that its Fourier expansion contains a number of terms that increases with r.
Note moreover that, in the restricted problem, at order ε2 the term {H1, χ}
also generates harmonics that depend on the mean longitudes of the body and
of two planets, while at order ε3 the term {{H1, χ1}, χ1} generates harmonics
that depend on the mean longitudes of the body and of three planets, and
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Λ

1

0
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ε ε

Λ
Λ

Λ

Figure 2.1: Sketch of the geometric construction of the secular normal form.
The normal form can be constructed only in the domain with |Λ1 − Λ0|>∼

√
ε

(the dashed domain in the upper plot). To ensure that Λ1 falls in such a
domain, the original action Λ must be chosen in the domain |Λ − Λ0|>∼2

√
ε

(the dashed domain in the lower plot); in fact the difference Λ − Λ1 depends
on the angles, and can be as large as ∼ √

ε.

so forth. Analogously, in the planetary problem the harmonics depending on
combinations of the angles of three planets appear at order ε2, those depend-
ing on combinations of the angles of four planets at order ε3, etc. This leads
us to generalize the definition of mean motion resonance to the relations

k/Λ3 +
∑

j

kjnj = 0 ,
∑

j

kj(1 + εβj)
−1β3j /Λ

3
j = 0 (2.44)

for the restricted problem and the planetary problem respectively.
As a consequence of the increasing number of harmonics, the domain on

which the secular normal form is constructed must be reduced at each step r,
by excluding the neighborhoods of the mean motion resonances (2.44) whose
corresponding harmonics appear in Hr. The size of these excluded neighbor-
hoods is O(

√
ε) in Λ whatever the order r of the normalization step, because

|Λ−Λr| ∼ |Λ−Λ1| ∼ √
ε (see Fig. 2.1). Of course, the domain of the original

action Λ on which the normal form is constructed must be nonempty. This
constrains the total number of resonance neighborhoods that one can exclude.
In turn, this forces one to limit the order r at which the secular normal form
is constructed.

Unfortunately, because of technical difficulties in the manipulation of the
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series, in practical computations the secular normal form is constructed only
up to a very limited order in ε. In the restricted problem, in several applica-
tions (see for instance Williams, 1969; Williams and Faulkner, 1981; Kozai,
1962; Nakai and Kinoshita, 1985; Yoshikawa, 1987) the secular normal form
is computed only to order ε, by simply averaging the perturbation over the
mean longitudes. Moreover, since the generating Hamiltonian is not explic-
itly computed in these works, with some inconsistency the mean elements are
simply assumed to be equal to the initial osculating elements.

A more accurate computation has been done by Milani and Knežević
(1990), who computed the secular normal form up to order ε2. To this end,
they considered in H1 the perturbations provided by Jupiter and by Saturn.
Moreover, they expanded H1 in a Fourier series retaining the harmonics with
|k| and |kj | no larger than 14, and expanded its coefficients ck,kj ,m,mj ,s,sj in
powers of the eccentricities and inclinations retaining all terms up to degree 4.
This in turn limits, because of D’Alembert rules, the possible values ofm,mj , s
and sj. The mean elements are computed to order ε, using the explicit form
of χ, but not to order ε2, because the second generating Hamiltonian χ2 is not
explicitly computed.

Lemâıtre and Morbidelli (1994) made a similar computation, but without
expanding the perturbation in power series of the eccentricity and inclination
of the small body (but still expanding in powers of the eccentricities and
inclinations of the planets). For this purpose, on the nodes of a regular grid in
(a, e, i) space, they expanded numerically in a Fourier series the perturbation
and its derivatives, and constructed the secular normal form to order ε2. Then,
in the applications they computed the secular normal form at any arbitrary
point of the (a, e, i) space by interpolation of the results on the grid nodes.

For what concerns the planetary problem, for historical reasons the con-
struction of the secular normal form has not been done following the Hamil-
tonian approach described in this section. The results are nevertheless equiv-
alent. Laskar (1985, 1986, 1988) computed the equations of motion corre-
sponding to the secular normal form of order ε2, including all the planets
from Mercury to Neptune and expanding the perturbations up to degree 6 in
the eccentricities and inclinations. This led him to take into account some
150,000 terms in the series. Bretagnon and collaborators (see for instance Si-
mon and Bretagnon, 1975; Bretagnon 1974, 1982, 1990), in a number of works
constructed analytic ephemerides of the planets computing all the orbital el-
ements as Fourier series of time. Their last theory for the four giant planets
(still unpublished at the time of writing) is equivalent to computing the secular
normal form and the generating Hamiltonians retaining all the terms related
to oscillations of eccentricities, inclinations and relative semimajor axes with
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amplitude larger than 2× 10−7.

2.5.2 Mean motion resonant normal form

Although in practical applications the secular normal form is usually con-
structed only to a very limited order in ε, still one has to discard the neigh-
borhoods of the main mean motion resonances, namely of the resonances whose
corresponding harmonics appear in the perturbation to an order in ε not ex-
ceeding the order of the normal form. To study the dynamics in the neighbor-
hood of these resonances, one first has to construct a resonant normal form,
following the lines discussed in Section. 2.3.1. For instance, in the restricted
problem, in the vicinity of a resonance k/Λ3 + kjnj = 0, one has to retain in
the normal form Hamiltonian not only the secular angles p and q but also of
the resonant combination of the mean longitudes ϕ = kλ+ kjλj, which would
give small denominators in the expression (2.41) of the generating Hamilto-
nian χ. The latter is therefore determined by solving (2.10), allowing H̄1 to
be a function of p1, q1 and ϕ1, with p = Sεχp

1, q = Sεχq
1, ϕ = Sεχϕ

1. More
generally, the Hamiltonian is said to be in mean motion resonant normal form
to order εr, if it is transformed to:

Hr
MMR = H0+εHR

1 (Λ
r, P r, Qr, pr, qr, ϕr)+. . . εrHR

r (Λ
r, P r, Qr, pr, qr, ϕr)+O(εr+1) ,

(2.45)

where Λr, P r, Qr, pr, qr, ϕr (called the semimean modified Delaunay variables)
are the new variables related to Λ, P,Q, p, q, ϕ through the sequence of Lie
series, and ϕ is the resonant combination of the mean longitudes corresponding
to a given resonance. The semimean orbital elements are defined from the
semimean modified Delaunay variables, by inversion of (1.69).

In practical applications, for mean motion resonances involving the mean
longitude of a small body and of a single planet, the mean motion resonance
normal form is typically computed only up to first order in ε (see for instance
Henrard and Lemâıtre, 1983, 1987; Sessin and Ferraz-Mello, 1984; Ferraz-
Mello, 1987; Yoshikawa, 1990, 1991, for a nonexhaustive list). Conversely for
resonances involving the mean longitudes of the small body and of two planets,
the normal form is computed up to order ε2 (Nesvorný and Morbidelli, 1998),
because the coefficient of the resonant harmonic is of order ε2.

In this book we will study the dynamics described by the secular normal
form in Chapters 7 and 8 and the dynamics given by the mean motion resonant
normal forms in Chapters 9, 10 and 11. But first we need to better understand
in general terms the properties of perturbed Hamiltonian dynamics (Chapters
3, 4 and 6) and acquire some useful tools for the numerical exploration of the
dynamical properties (Chapter 5).
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Chapter 3

KAM TORI

3.1 Kolmogorov’s theorem

The considerations of the previous chapter show that it is generically impos-
sible to construct the Birkhoff normal form of a Hamiltonian system up to an
arbitrary order in ε on an open domain in the action space, because of the
dense presence of resonances. This prevents the global integrability of the sys-
tem. However, Chapter 2 leaves open the possibility of integrating the motion
for specific values of the actions, corresponding to nonresonant frequencies.

A simple Hamiltonian that, although nonintegrable in general, admits one
exact solution is

H̄(I,ϕ) = H̄0(I) + H̄1(I,ϕ) with
∥

∥H̄1

∥

∥ = O(‖I‖2) , (3.1)

where I and ϕ are conjugate action–angle variables. In fact, for I = 0, the
equations of motion reduce to

İ = 0 , ϕ̇ = gradIH̄0(0) (3.2)

from which it is evident that I = 0 and ϕ = gradIH̄0(0)t + ϕ0 is the exact
solution corresponding to the initial condition (I,ϕ) = (0,ϕ0). Therefore, the
torus I = 0,ϕ ∈ Tn (n being the number of degrees of freedom) is invariant
for the flow of (3.1), because every orbit initially on the torus will never leave
the torus.

In 1954, Kolmogorov proved that, given an analytic quasi-integrable Hamil-
tonian system H(p,q) = H0(p)+εH1(p,q) and a point p0 in the action space
such that

i) ω0 = gradpH0(p0) satisfies the diophantine condition (2.21) with some
constants γ and τ ;

59
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ii) H0 is locally nondegenerate in p0, that is the matrix with entries
(∂H0/∂pi∂pj(p0)) has nonzero determinant;

there exists a threshold ε̄, depending on ω0, such that for every ε < ε̄ a
canonical transformation (p,q) → (I,ϕ) allows one to write the Hamiltonian
in the form (3.1), with gradIH̄0(0) = ω0.

Kolmogorov’s theorem implies that quasi-integrable Hamiltonian systems
admit, for small enough perturbations, invariant tori carrying motion with
diophantine frequencies. The Hamiltonian equations, although non-integrable
in general, can be integrated if restricted to these tori. Kolmogorov’s theorem
has been later extended and improved by Moser (1962) and Arnold (1963b),
and and is therefore now universally known as the KAM theorem. The invari-
ant tori carrying nonresonant motion are usually called KAM tori.

3.1.1 Sketch of proof of Kolmogorov’s theorem

It is interesting and instructive to understand how Kolmogorov’s theorem can
be proven, since the scheme of the proof is a nice application of the perturba-
tion and normal form theory illustrated in the previous chapter.

The Hamiltonian is first expanded in Taylor series of the actions around
p0, denoting p̂ = p − p0. Obviously, p̂ and q are canonical action–angle
variables. In the new variables, the Hamiltonian can be written as

H(p̂,q) = ω0 · p̂+
1

2
p̂ ·Cp̂+O(‖p̂‖3) + ε[f0(q) + p̂ · f1(q) +O(‖p̂‖2)] (3.3)

where C is the matrix of the second-order derivatives of H0 evaluated at p0,
f0 ≡ H1(p0,q) and f1 is a vector with components ∂H1/∂pj(p0,q), j =
1, . . . , n. By O(‖p̂‖j) we generically denote terms that are at least of order j
in the actions.

We now look for a canonical transformation that gives to (3.3) the form
(3.1) up to order ε2. This is done by composing three canonical transforma-
tions, each introduced by a suitable generating Hamiltonian.

The first transformation aims to eliminate the term f0(q) in the perturba-
tion. We introduce a generating Hamiltonian χ0 independent of the actions,
and the canonical transformation p̂ = Sεχ0

p1, q = Sεχ0
q1. In the new variables,

the Hamiltonian (3.3) becomes

Sεχ0
H=ω0 · p1 +

1

2
p1 · Cp1 +O(‖p1‖3) + ε[{ω0 · p1, χ0}+ f0(q1)

+{p1 · Cp1, χ0}+ p1 · f1(q1) +O(‖p1‖2)] +O(ε2) . (3.4)

It is easy to see that the last two terms in the first row are independent
of the actions, while the first two terms in the second row are linear in p1.
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We will denote in the following {p1 · Cp1, χ0} + p1 · f1(q1) by p1 · f1,1(q1).
The generating Hamiltonian χ0 is chosen to be a solution of the equation
{ω0 ·p1, χ0}+ f0(q1) = f̄0, with f̄0 denoting the average of f0 over the angles.
The terms independent of the actions annihilate to a constant that can be
dropped from the resulting Hamiltonian. Expanding f0 in a Fourier series as

f0(q1) =
∑

k∈Zn

ck exp (ιk · q1) , (3.5)

one has
χ0(q1) = −ι

∑

k∈Zn\0

ck
k · ω0

exp (ιk · q1) (3.6)

where with k ∈ Zn \ 0 we denote all nonzero integer vectors. As we have
seen in the previous chapter, f0 being analytic (as ensured by the analytic
properties of the original Hamiltonian) and ω0 diophantine, the Fourier series
defining χ0 in (3.6) converges absolutely.

The second transformation aims to eliminate the new term p1 · f1,1(q1) in
(3.4). We introduce a generating Hamiltonian χ1, linear in the actions, and
the canonical transformation p1 = Sεχ1

p2, q1 = Sεχ1
q2. In the new variables,

the Hamiltonian (3.4) becomes

Sεχ1
Sεχ0

H=ω0 · p2 +
1

2
p2 · Cp2 +O(‖p2‖3)

+ε[{ω0 · p2, χ1}+ p2 · f1,1(q2) +O(‖p2‖2)] +O(ε2) . (3.7)

It is easy to see that the first two terms in the second row are both linear in
the actions. The generating Hamiltonian χ1 is determined as a solution of the
equation {ω0 · p2, χ1} + p2 · f1,1(q2) = p2 · f̄1,1, the term f̄1,1 denoting the
average of f1,1 over the angles. Writing χ1 = p2 · g(q2) and expanding f1,1 as

f1,1(q2) =
∑

k∈Zn

dk exp (ιk · q2) , (3.8)

one has

g(q2) = −ι
∑

k∈Zn\0

dk

k · ω0
exp (ιk · q2) (3.9)

Again, f1,1 being analytic and ω0 being diophantine, the series defining g turn
out to be absolutely convergent.

However, this second transformation gives the resulting Hamiltonian:

Sεχ1
Sεχ0

H = ω0 · p2 +
1

2
p2 ·Cp2 +O(‖p2‖3) + ε[p2 · f̄1,1 +O(‖p2‖2)] +O(ε2) ,

(3.10)
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where a linear term in the actions (p2 · f̄ 1,1) is still present to order ε. Because
of this term, the frequencies of the torus p2 = 0 (computed neglecting the
O(ε2) term) are now ω0 + εf 1,1. These frequencies differ from ω0 only by a
quantity of order ε, but this could be enough to make them lose their essential
diophantine property, thus forbidding the iteration of the above procedure to
eliminate the angular terms that are independent of the actions and linear in
the actions at higher order in ε. However, the nondegeneracy of the matrix C in
(3.3) – which is guaranteed by condition ii) of the theorem – ensures that close
to the torus p2 = 0 there will be a torus p2 = εδp, with ‖δp‖ = O(1), with
frequencies ω0+εf̄1,1+εCδp = ω0. It is in fact enough to set δp = −C−1f̄1,1,
where C−1 denotes the inverse of the matrix C (which exists because the
determinant of C is different from zero by the nondegeneracy condition). Thus,
we introduce a third canonical transformation: p3 = p2 − εδp, q3 = q2. This
transformation can be written p2 = Sεχδp

p3, q2 = Sεχδp
q3, with χδp = −δp ·q3.

As a consequence, in the new action–angle variables the Hamiltonian can be
written as

Sεχδp
Sεχ1

Sεχ0
H = ω0 ·p3+

1

2
p3 ·Cp3+O(‖p3‖3)+ εO(‖p3‖2)+O(ε2) . (3.11)

Hamiltonian (3.11) has the form (3.1) – the so-called Kolmogorov normal
form – up to order 2 in ε.

The procedure explained above can be iterated, to give the Hamiltonian
the Kolmogorov normal form at increasingly higher order in ε. This is done
with a sequence of three transformations of type p = Sε

r

χ(r)p
′,q = Sε

r

χ(r)q
′,

where p,q,p′,q′ generically denote the old and the new action–angle vari-
ables and χ(r) suitable generating Hamiltonians, to eliminate the terms that
are independent or linear in the actions at each order r in ε. In this case, there
is in principle no obstruction to the iteration of the normalizing procedure up
to order infinity. This is because the Kolmogorov normal form does not re-
quire the complete elimination of the harmonics – which would be impossible
because of the dense presence of resonances – but only the suppression of those
whose coefficients are independent of the actions or linear in the actions. The
coefficient of each harmonic can still be as large as O(ε‖p‖2). Rigorous esti-
mates show that the series of terms generated by the normalization procedure
up to order r converges for r → ∞, provided ε is sufficiently small (see for
instance Giorgilli and Locatelli, 1997). This proves Kolmogrov’s theorem.

Kolmogorov’s theorem is also valid for time-dependent Hamiltonians of
type H0(p)+εH1(p,q, ν1t, . . . , νnt) provided the frequencies of time ν1, . . . , νn
are diophantine. As explained in Chapter 1, the Hamiltonian can be written
in an autonomous form as in (1.31). Apparently, Kolmogorov’s theorem could
be not applied to this Hamiltonian, because H0(p) +

∑

j νjTj is evidently
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degenerate. However, recalling the scheme of the proof, it is evident that,
because the actions Tj do not appear in the perturbation H1, the frequencies
ν1, . . . , νn will never change during the construction of the Kolmogorov normal
form. So, it will never be necessary to apply the third transformation – the
only one where the nondegeneracy condition plays a role – on the actions Tj.
The condition of nondegeneracy of H0(p) with respect to the actions p is
therefore sufficient.

3.2 Properties of KAM tori

The KAM theorem gives the first insight into the dynamical properties of
quasi-integrable Hamiltonian systems, for small enough perturbations. As il-
lustrated in Chapter 1, the dynamics of the integrable approximation H0(p)
gives a foliation of the phase space in invariant tori, the actions p being con-
stants and the angles q circulating linearly with time, with frequencies ω0(p)
(left panel in Fig. 3.1). When a small perturbation εH1(p,q) is added, the
KAM theorem ensures that some tori with diophantine frequencies continue
to be invariant for the flow of the complete Hamiltonian H0 + εH1. For each
invariant torus, new local action–angle variables I,ϕ can be introduced, such
that the Hamiltonian is transformed into the form (3.1). In these variables, the
motion on the torus is very simple: the actions I are constants on the invariant
torus and the angles ϕ circulate linearly with time. In the original variables
p,q the motion on the torus can be computed by composing all the trans-
formations that have been required to give the Hamiltonian the form (3.1).
Since each of these transformations is periodic in the angles, the relationship
between p,q and I,ϕ is of type p = P(I,ϕ),q = Q(I,ϕ), with functions
P and Q periodic in ϕ, and Q−1 periodic in q. Therefore on the torus the
angles q are no longer linear functions of time, but their Fourier spectrum
has constant frequencies, while the actions p have oscillations that are peri-
odic in the angles q, because p = P(I,Q−1(q)), and quasi-periodic with time,
because the angles have nonresonant frequencies. However, the average of p
over time is not equal to the value p0 for which the unperturbed frequencies
ω0(p0) are equal to the frequencies of the invariant torus. In other words, for
a given frequency vector, the perturbed invariant torus is translated in phase
space with respect to the unperturbed torus. This situation is illustrated in
Fig. 3.1. Note that the KAM theorem does not provide any information on
the perturbed dynamics away from the invariant tori. This requires the study
of resonant dynamics, as will be shown in the next chapter.

The size ε of the perturbation determines which tori continue to be in-
variant among all the unperturbed ones with diophantine frequencies. Kol-
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Figure 3.1: For an integrable Hamiltonian the phase space is foliated in in-
variant tori. According to the KAM theorem, the tori with diophantine fre-
quencies are preserved when a small perturbation is added. However on the
perturbed tori the actions are no longer constants of motion, but are periodic
functions of the angles. Moreover the mean values of the actions on a KAM
torus are in general different from the values of the actions corresponding to
the unperturbed torus with the same frequencies.

mogorov’s theorem states that εmust be smaller than a threshold ε̄. The latter
depends on the frequency vector, through the constants γ and τ that charac-
terize its diophantine property (2.21). In Kolmogorov’s theorem, it turns out
that ε̄ ∼ γ4. Therefore, with increasing size of the perturbation, the number
of tori that continue to be invariant is reduced, only those with large enough
γ being able to survive. If ε is sufficiently large, no invariant tori persist.
The KAM theorem, in the version provided by Arnold (1963b), states that
the Lebesgue measure of the set of invariant tori is nonzero if ε is sufficiently
small. Moreover, this measure grows with decreasing ε, and in the limit ε→ 0
tends to 1. A later estimate by Neishtadt (1982) shows that the measure tends
to 1 as 1 − √

ε. This result can be interpreted from a probabilistic point of
view. Let us imagine of making a numerical exploration of a Hamiltonian
system and, ignoring everything about its dynamics, to randomly choose the
initial conditions of our test orbits. Neglecting round-off errors, the probabil-
ity of picking up by chance initial conditions corresponding to a KAM torus
is proportional to the Lebesgue measure of the set of KAM tori. Therefore,
in the light of Arnold’s result, in the limit of very small perturbations, the
probability of integrating an orbit on a KAM torus is close to 1. The property
will be illustrated with numerical examples in the next section.

In Hamiltonian systems with two degrees of freedom, each KAM torus
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Figure 3.2: An intuitive view of invariant tori and “diffusion” in frequency
space: in two degrees of freedom, the frequency space for a given value of
the Hamiltonian is a line (left), while in three degrees of freedom it is a plane
(right). Invariant KAM tori are invariant points in frequency space. Therefore,
in two degrees of freedom, KAM tori bound “diffusion” in frequency space,
while in three degrees of freedom chaotic orbits can slalom among tori and
“diffuse”, in principle, everywhere.

divides the phase space in two parts that are disconnected for the dynam-
ics. In fact, the phase space is four-dimensional, but the conservation of the
Hamiltonian forces the motion to evolve in a three-dimensional space. An in-
variant torus is a two-dimensional manifold, embedded in this two-dimensional
space. As a consequence, trajectories cannot pass from one side of a torus to
the other without crossing the invariant torus: this is evidently impossible,
by definition of invariance (invariant means precisely that the time evolution
of any initial condition lying on the torus will never quit the torus). In the
next section an illustration of the isolating properties of KAM tori in two de-
grees of freedom will be given. For Hamiltonian systems with more than two
degrees of freedom, the isolating property is no longer true. This is due to
the codimension of KAM tori with respect to the phase space. In n degrees
of freedom the dimension of the phase space is 2n. The conservation of the
Hamiltonian forces the motion to evolve in a (2n − 1)-dimensional space. A
KAM torus has dimension n; therefore the codimension is n− 1. This means
that the phase space is divided into disconnected parts only if n = 2. It is
very difficult to “visualize” this important rigorous geometric argument, since
one cannot imagine a space and a surface in more than, respectively, three
and two dimensions. To have an intuitive nonrigorous view, instead of look-
ing at the dynamics in phase space, it is convenient to restrict attention to
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the space of frequencies, which is only (n− 1)-dimensional for an n-degree of
freedom system, once the constancy of the Hamiltonian is taken into account.
For a two-degree of freedom system, on a surface of constant Hamiltonian the
frequency space is a line, parametrized by the ratios ω1/ω2. The KAM tori
are fixed points on the frequency line, which correspond to diophantine ratios,
and it is evident that each KAM torus cuts the frequency space into two dis-
connected parts. The trajectories that are not on invariant tori can wander,
in principle, on the frequency line, but cannot pass through diophantine ratios
(see Fig. 3.2), and are therefore bounded by KAM tori. In a three-degree of
freedom system, on a surface of constant Hamiltonian, the frequency space is
two-dimensional. We can choose the ratios ω1/ω3 and ω2/ω3 as coordinates.
Again, KAM tori are represented by dots in this frequency plane, while the
trajectories that are not on invariant tori may wander on the frequency plane.
It is immediately evident from Fig. 3.2 that the latter can slalom among KAM
tori and “diffuse”, in principle, everywhere.

This portrait, however, is naive: to slalom among KAM tori may take an
extremely long time. This can be seen as follows. Once the Hamiltonian is in
Kolmogorov normal form (3.1), in the neighborhood of the invariant torus one
can construct the Birkhoff normal form, i.e. eliminate all the terms of order
r in ε that depend on the angles, with increasing r up to an optimal order.
The procedure is completely analogous to that illustrated in Section 2.4.1, so
that the optimal size of the remainder of the normal form is determined by
the minimal order of the resonances that cross the domain where the normal
form is constructed. In the vicinity U̺ of radius ̺ of the invariant torus I = 0
one has:

|k · ω(I)|= |k · ω(0) + k · (ω(I)− ω(0))|
≥ ||k · ω(0)| − |k||ω(I)− ω(0)|| ≥ γ

|k|τ − |k|α̺ , (3.12)

where ω(I) denotes the frequencies of the torus I in the integrable approxima-
tion H̄0(I); in the above inequality we have used the diophantine property of
the frequencies ω(0) and the fact that, for each I ∈ U̺, ‖ω(I)− ω(0)‖ ≤ α̺,
for some positive α. As a consequence, k · ω(I) can be zero only if |k| ≥
(γ/α̺)1/(τ+1) . Therefore, the resonances of lowest order in U̺ have order
o ∼ 1/̺1/(τ+1), so that the size of the remainder of the optimal Birkhoff nor-
mal form will be ∼ exp[−̺−1/(τ+1)].1 This implies that the “slalom” around

1This result can be compared with the one obtained in Section 2.4.1, setting ̺ = ε. The
difference is that in Section 2.4.1 the minimal size of the domain where the normal form can
be constructed is ε, because the original actions p have oscillations of order ε. Here, using
the actions I, which are constant on the invariant torus, the normal form can be constructed
in any neighborhood of arbitrarily small size ̺.
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the invariant torus in Fig. 3.2 must be exponentially slow with the inverse of
the distance from the invariant torus. As a matter of fact, Chapter 6 will show
that the situation is even more critical: there exists a threshold ¯̺, such that
in U ¯̺ the drift in the frequency space is superexponentially slow. This shows
that in more than two degrees of freedom KAM tori, if dense enough, can still
provide effective barriers to the “diffusion” of motion in phase space. These
barriers can be crossed only after extremely long times.

3.3 Numerical examples

Clear examples of the dynamical structure described by the KAM theorem
can be given for two-degree of freedom Hamiltonian systems, because in this
case KAM tori can be easily visualized using the so-called Poincaré sections.

Poincaré sections are very useful because they allow the representation of
the dynamics of a two-degree of freedom system on two-dimensional pictures,
one for each value of the corresponding Hamiltonian. This is achieved as fol-
lows. Consider the Hamiltonian system H(p1, q1, p2, q2), where p1, q1 and p2, q2
are the canonical action–angle variables, and restrict to the trajectories that
satisfy H(p1, q1, p2, q2) = C, for some constant C. Choose a two-dimensional
surface Σ that is transverse to most such trajectories. Since in general the
actions of the system have only small oscillations, while the angles circulate
between 0 and 2π, this is usually achieved by choosing Σ as the surface defined
by a constant value of one of the angles, for instance setting q2 = 0. For a
given value C, the values of p1, q1 on the surface q2 = 0 unequivocally deter-
mine the value of the remaining action p2, which can be computed by solving
the implicit equation H(p1, q1, p2, 0) = C. Now, by numerically integrating the
equations of motion (see for instance Press et al., 1986), compute the succes-
sive intersection that each trajectory has with the surface Σ and consider only
those generated when the trajectory pierces the surface in a given direction,
for instance with q̇2 > 0. The sequence of points p1, q1 that each trajectory
leaves on Σ gives an unequivocal stroboscopic image of the time evolution of
the trajectory in phase space.

If a trajectory lies on a KAM torus, the sequence of points p1, q1 must fall
on a one-dimensional curve. In fact, on a KAM torus the actions are periodic
functions of the angles, so that – denoting by p1 = P (q1, q2) the periodic
relationship between p1 and both q1 and q2 – on the surface Σ defined by
q2 = 0 the points p1, q1 must lie on the curve p1 = P (q1, 0). Moreover, because
the angles have nonresonant frequencies (see the definition of nonresonance in
Section 1.8), at each intersection with Σ the angle q1 has to assume a different
value on the interval [0, 2π] and, with time passing, the sequence of points on
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Σ must densely fill the curve p1 = P (q1, 0). As a consequence, if the Poincaré
section is computed for long enough time, the KAM tori appear as solid curves
crossing the entire interval [0, 2π].

By way of example, instead of writing a two-degree of freedom Hamiltonian
system and computing the Poincaré section, it is much simpler to use the so-
called standard map, where the sequence of points p1, q1 is explicitly given
iterating the relationships

q′1 = q1 + p1 , p′1 = p1 + ε sin(q′1) . (3.13)

The standard map can be regarded as the Poincaré section of a two-degree of
freedom Hamiltonian (Henrard, 1970) – although the latter cannot be written
in explicit form – so that the considerations above on the representation of
KAM tori in Poincaré sections apply also to the standard map. If ε = 0 in
(3.13) the standard map reduces to the Poincaré section at q2 = 0 of the
integrable Hamiltonian system H(p1, q1, p2, q2) = p21/2 + 2πp2, so that ε plays
the role of a perturbation parameter.

We now show the portraits of the standard map for different values of ε
(Fig. 3.3) and discuss them in the light of KAM theory. The reader may easily
implement the standard map equations on his own computer and familiarize
himself with the dynamical structures related to the different values of the
perturbation parameter.

In Fig. 3.3 we have chosen 20 initial conditions on the axis q1 = 0, with
initial p1 regularly spaced on the interval [−π, π]. In the case where ε is small
(panel a) every initial condition generates an orbit lying on a KAM torus. This
implies that the volume filled by KAM tori is large. Note however that the
tori are significantly distorted with respect to the case ε = 0, where p1 would
be constant on each torus. The distortion of the KAM tori leaves an “empty
region” around p1 = 0. This is a resonance region (associated to the resonance
q̇1 = 0), and the trajectories there do not cross the q1 = 0 axis, so that they
cannot be computed with our choice of initial conditions. The dynamics in
the resonance region will be investigated in detail in the next chapter. Finally
note that, while most of the KAM tori appear as solid curves in panel (a), the
one passing through p1 = −2.24 on the q1 = 0 axis (and, by symmetry, also
the one passing through p1 = 2.24) appears as a dotted curve. This is because
the time required to fill the torus in a dense way with respect to the graphic
resolution depends on the frequencies on the torus. The closer the frequencies
are to a rational ratio, the longer is this time. In Fig. 3.3 only 1000 iterations
of the standard map are computed for each initial condition. If the number of
iterations were doubled, also this torus would appear as a solid curve.

In panel (b), the value of ε is increased by a factor of 3. The dynam-
ical structure changes significantly. Now only 14 initial conditions generate
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Figure 3.3: The phase portrait of the standard map for different values of ε.
Note that with increasing ε the KAM tori become more distorted and more
rare, while chaotic regions become more and more extended. See the text for
comments.
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trajectories lying on KAM tori. The initial conditions with p1 = ±2.84 and
p1 = ±1.36 generate trajectories still lying on invariant curves, but these
curves have a topological structure that is different from that of KAM tori:
they appear as chains of closed circles (islands). These invariant curves
are also related to resonant dynamics and they will be discussed in the next
chapter. Finally, the trajectories with initial conditions p1 = ±0.15, q1 = 0
do not lie on invariant curves, but appear as a collection of scattered points.
The region covered by the these points is called the chaotic region, and we
will see that its existence is also related to resonant dynamics. In the chaotic
region KAM tori do not exist, and the actions are not periodically related to
the angles. Note that the distortion of the invariant tori and the size of the
“empty region” at the center of the figure have both increased with respect to
panel (a).

In panel (c), only four initial conditions generate trajectories on KAM tori,
showing that the volume filled by KAM tori shrinks with increasing value of
ε. Chaotic zones appear also around some chains of islands, and not only
around the central “empty region” as was the case in panel (b). As we said in
the previous section, the surviving KAM tori separate the (p1, q1) space into
disconnected regions, bounding the dynamical evolution of the trajectories in
the chaotic regions. For instance, the trajectory starting with p1 = −0.15
will never reach the region with p1 < −2.5, because a KAM torus should be
crossed.

Finally, in panel (d), all KAM tori have disappeared. The chaotic regions
have merged together, and now dominate the phase portrait of the system. It
is not possible to distinguish the evolutions of different initial conditions in
the chaotic zone. The action p1 can assume any value during the evolution of
chaotic trajectories.

From the examples above, it is clear that the KAM theorem is able to give
a satisfactory description of the global dynamical structure of the system only
for very small values of the perturbation parameter. When the latter increases,
KAM tori become more and more rare, and other structures appear. To have
a complete understanding of Hamiltonian dynamics it is therefore necessary
to investigate the complement of KAM tori, that is resonant dynamics and
interactions among resonances. This will be done in the next chapter and in
Chapter 6.



Chapter 4

SINGLE RESONANCE
DYNAMICS

4.1 The integrable approximation

We now consider the n-degree of freedom quasi-integrable Hamiltonian
H(p,q) = H0(p) + εH1(p,q) and concentrate our attention on a domain
U in the action space characterized by one main resonance of multiplicity 1
(see Section 1.10 for the definition of multiplicity). Our study of resonant dy-
namics starts by constructing the resonant normal form, in order to reduce to
a minimal size all the harmonics that are not related to the main resonance.
More precisely, we denote by k̄ the minimal nonzero integer vector related to
the main resonance, namely the vector of minimal norm such that k̄·ω0(p) = 0
for some p ∈ U , and we construct the resonant normal form with respect to
the resonant module M generated by k̄ (see definition 2.33).

Following Chapter 2, the resonant normal form of the Hamiltonian is of
type:

H = H0(p) +Hnorm(p, k̄ · q) +R(p,q) , (4.1)

where for simplicity we still denote by p,q the new action–angle variables
introduced for the construction of the normal form. The normalized pertur-
bation Hnorm, whose size is not larger than ε, contains only the main resonant
harmonic k̄·q and its integer multiples; R denotes the remainder of the optimal
normal form, whose size will be discussed in Section 4.3.

For the moment, we neglect the presence of the remainder R and consider
only the truncated resonant Hamiltonian Hres = H0 + Hnorm. To study the
dynamics of Hres it is convenient to introduce a new angle ϕ1 = k̄ · q. This
can be done with a canonical transformation. In fact, it can be shown (see
Lemma 4 in Morbidelli and Giorgilli, 1993) that it is always possible to define
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a matrix U which has integer entries, determinant equal to 1, and first row
equal to k̄1, . . . , k̄n (components of k̄); then, denoting by (UT )−1 the inverse of
the transposition of U , the transformation defined by ϕ = Uq, I = (UT )−1p
is canonical, and it gives by construction ϕ1 = k̄ · q. The angle ϕ1 is usually
called the resonant angle or critical angle of the resonance. In the new
variables, Hres has the form:

Hres(I,ϕ) = H0(I) +Hnorm(I, ϕ1) . (4.2)

Because the system depends only on one angle (ϕ1), the Hamiltonian Hres is
trivially integrable.1 The actions I2, . . . , In are constants of motion, so that
the interesting part of the dynamics takes place on the (I1, ϕ1) plane. On this
plane, the motion evolves along level curves of Hres(I1, ϕ1), the other actions
playing the role of parameters.

Generically, on the (I1, ϕ1) plane the dynamics of Hres has the local struc-
ture of the dynamics of a pendulum. This can be seen as follows. Denote
by p∗ a value of the actions p that is exactly resonant, namely satisfying the
equation k̄ ·ω0(p

∗) = 0. Let I∗ = (UT )−1p∗. Fix now in (4.2) I2, . . . , In equal
to I∗2 , . . . , I

∗
n, and expand the Hamiltonian in a Taylor series of I1 around I∗1 .

Defining Î1 = I1 − I∗1 and neglecting terms of order Î31 in H0 and of order Î1
in Hnorm, (4.2) becomes:

Hres = α(I∗)Î1 +
β(I∗)

2
Î21 +Hnorm(I

∗, ϕ1) , (4.3)

where α and β are the coefficients of the two first orders of the Taylor expansion
of H0. In the expression above, α must necessarily be equal to zero; in fact,
taking into account only H0, α is equal to ϕ̇1 at the resonant location Î1 = 0,
but ϕ̇1 = k̄·q̇ = k̄·ω0(p

∗) = 0. Finally in (4.3) expandHnorm in a Fourier series
of ϕ1 and retain only the main term. Assuming, without loss of generality,
that the leading harmonic is c(I∗) cosϕ1, the Hamiltonian Hres takes the form

Hres =
β

2
Î21 + c cosϕ1 , (4.4)

which is the well-known Hamiltonian of the pendulum.
The left panel of Fig. 4.1 shows the dynamics of the pendulum, assuming

β and c both positive; the left and the right border of the panel should be
identified. The pendulum has two equilibrium points both at Î1 = 0: one at
ϕ1 = 0 – unstable or hyperbolic – the other at ϕ1 = π – stable or elliptic –.

1If the considered resonance had multiplicity m > 1, the resulting truncated normal form
would not be integrable, because in this case it would depend on m independent angles. The
case of resonances of larger multiplicity will be discussed in Chapter 6.
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Figure 4.1: Integrable resonant dynamics in local Cartesian coordinates (left
panel) and global polar coordinates (right panel). The bold curve denotes
the separatrix; the dotted line/circle denotes the unperturbed resonant value
I1 = I∗1 .

The bold curve, connecting the unstable equilibrium point to itself (module
2π), is called the separatrix, because it separates the (Î1, ϕ1) plane in three
regions with different dynamical properties. Above the separatrix, the angle
ϕ1 circulates from 0 to 2π with positive derivative; its frequency monotoni-
cally increases with the distance from the separatrix. Below the separatrix,
ϕ1 circulates again, but with negative derivative. Inside the separatrices, ϕ1

librates around π, and the motion evolves on a closed curve surrounding the
stable equilibrium point. The frequency of libration is

√
cβ for the trajectory

closest to the stable equilibrium, and decreases to zero approaching the sepa-
ratrix. On the separatrix it takes an infinite time to travel from the unstable
equilibrium to itself, because the motion slows down exponentially with time,
approaching the unstable equilibrium. The regions above and below the sepa-
ratrix are called the circulation regions, while the region inside the separatrix
is called the libration region. The resonant region is, strictly speaking, the
libration region, because only for librating orbits is the averaged time deriva-
tive of ϕ1 equal to zero. Conversely, above and below the separatrix ϕ̇1 is on
average positive or negative. The half-width of the resonant region, measured
as the value of Î1 at the apex of the separatrix, is 2

√

c/β. The minimal size
of the domain U for the construction of the resonant normal form, therefore,
must be 4

√

c/β in I1. We will see in Section 4.3 how this determines the size
of the remainder of the optimal normal form. The half-width of the resonance
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in the unperturbed frequency space is equal to the unperturbed frequency of
the resonant angle ϕ1 at the apex of the separatrix, namely 2

√
βc.

Of course, (4.4) is only the local approximation of the dynamics of Hres

around I1 = I∗1 . But in most problems of Celestial Mechanics I1 and ϕ1 con-
stitute a system of global polar coordinates. The global representation of the
resonant dynamics in these coordinates is shown in the right panel of Fig. 4.1.
As one sees, around I1 = I∗1 the dynamics is topologically equivalent to that
shown on the left panel; however close to the coordinate center I1 = 0 a third
(stable) equilibrium point appears. In fact, introducing the canonical Carte-
sian coordinates x =

√
2I1 sinϕ1, y =

√
2I1 cosϕ1, if the Hamiltonian Hres is

analytic at x = y = 0 (as ensured by the D’Alembert rules for the Hamilto-
nians of Celestial Mechanics), all curves must be smooth; therefore, close to
the center the curves must be topologically equivalent to circles, surrounding
a fixed point. The analytic property in I1 = 0 implies that the Fourier ex-

pansion of (4.2) has the form
∑

m cm(I1) exp[ιmϕ1], with cm(I1) ∼ I
m/2+k
1 ,

where k is a nonnegative integer number (see the discussion for rule No. 4 in
Section 1.9.3). If c1(I1) =

√
I1 (i.e. k = 0), then the equilibrium point is offset

with respect to I1 = 0, while in all other cases it is at I1 = 0.

The portrait of Fig. 4.1 can be considered as a paradigm for integrable
resonance dynamics. In fact, higher-order harmonics in ϕ1 and the complete
dependence on I1 of all coefficients can deform the dynamical portrait of Hres

with respect to the picture shown in the right panel of Fig. 4.1 but do not
change, in general, its basic features: the presence of a stable equilibrium
point surrounded by a separatrix that connects an unstable equilibrium point
to itself, and a second stable equilibrium close to the origin of the polar coor-
dinates.

4.2 Resonant action–angle variables

Because the truncated resonant normal form (4.2) is integrable, following the
Arnold–Liouville theorem one can introduce new action–angle variables J,ψ
and write Hres solely as a function of the actions J. We will denote hereafter
these new variables as resonant action–angle variables. The introduction of
resonant action–angle variables is of crucial importance in Celestial Mechanics
to study in detail the perturbed resonant dynamics. Therefore, in this section
we detail how these variables are defined and how the new Hamiltonian can
be handled using numerical techniques.

Since in (4.2) the actions I2, ..., In are constants of motion, the new actions
J2, ..., Jn are simply equal to the original ones: therefore J2 = I2, ..., Jn = In.
The definition of J1 is more complicated. Having fixed the values of I2, ..., In,
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the Hamiltonian (4.2) is reduced to one degree of freedom. So, in I1, ϕ1, every
trajectory is represented by a closed curve. These curves are the cycles that
are used in Arnold’s recipe for the definition of the new action. As Fig. 4.1
shows, in a resonant problem there are circulation cycles (where ϕ1 ranges
from 0 to 2π) and libration cycles (where ϕ1 is bounded between ϕ1min and
ϕ1max). On each cycle, one can express the action I1 as a function of ϕ1, by
solving the implicit equation Hres(I1, ϕ1) = E, the constant E characterizing
the value of the Hamiltonian on the cycle. As explained in Section 1.9, the
action J1 is defined by the integral over the cycle of the action I1, namely:

J1 =
1

2π

∮

I1(E,ϕ1)dϕ1 . (4.5)

For a circulation cycle, this is simply

J1 =
1

2π

∫ 2π

0
I1(E,ϕ1)dϕ1 (4.6)

which is (normalized by 2π) the area enclosed between the cycle and the I1 = 0
axis (see Fig. 4.2, panel a). For a libration cycle, (4.5) reads

J1 =
1

2π

[

∫ ϕ1max

ϕ1min

I+1 (E,ϕ1)dϕ1 −
∫ ϕ1max

ϕ1min

I−1 (E,ϕ1)dϕ1

]

, (4.7)

where I+1 denotes the upper part of the cycle and I−1 the lower part. The
difference between the two integrals gives the dotted area shown in Fig. 4.2
(panel b), i.e. the area enclosed by the libration cycle.

For what concerns the new angles ψ, these can be introduced via the gen-
erating function S =

∫ ∑n
i=1 Ii(J,ϕ)dϕi (see formula 1.56). However one can

use the fact that the new angles ψ1, . . . , ψn are linear functions of time (since
the new Hamiltonian depends only on the actions J) and that the transforma-
tion between the old and the new variables is periodic on the cycle (as ensured
by the Arnold–Liouville theorem). Therefore one must have

ψ̇1 =
2π

T
, ψ̇l =

1

|T |

∫ T

0

∂Hres

∂Il
(I1(t), ϕ1(t))dt (l = 2, ..., n) , (4.8)

where t is the time and T denotes the period of ϕ1 on the cycle, with the
convention that T is positive if ϕ1 circulates with positive derivative, or if the
motion of I1, ϕ1 evolves on cycles of clockwise libration, and it is negative oth-
erwise. With this convention the transformation (I,ϕ) → (J,ψ) is close to the
identity in the circulation region, and it is close to the transformation defining
the action–angle variables of a harmonic oscillator in the vicinity of the stable
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Figure 4.2: In the circulation region (panel a) the action J1 is proportional to
the area between the cycle and the I1 = 0 axis, while in the libration region
(panel b) it is proportional to the area enclosed by the libration cycle.

equilibrium point. The above formulæ imply that the time derivative of ψ1

is the frequency of the motion on the cycle (frequency of libration/circulation
of ϕ1); the time derivatives of the other angles ψl (l 6= 1) are the averages of
the time derivatives ϕ̇l on the cycle. Therefore, the relationships I1(ψ1) and
ϕ1(ψ1) on each cycle can be simply obtained from I1(t) and ϕ1(t) by substi-
tuting ψ1 = 2πt/T . Moreover, writing ϕl(t) as νlt+ ̺l(t), with ̺l(t) periodic
with period T , the expression of ϕl as a function of ψ1 and ψl (l = 2, . . . , n)
gives ϕl = ψl + ̺l(Tψ1/2π).

We now come to the expression of the Hamiltonian (4.1) in the resonant
action–angle variables. In principle, both Hres(J) and the remainder R(J,ψ)
can be obtained by replacing the old variables with the new ones. However, it
is very hard to write the relationship between the old and the new variables in
an explicit form. One has to analytically compute I1(t),ϕ(t) and the integral
(4.5). For the exact Hamiltonian of the pendulum (4.4) this requires the use
of elliptic functions, but for generic resonant Hamiltonians (4.2) the analytic
computation becomes practically infeasible. Nevertheless, as shown by Hen-
rard (1990), one can efficiently compute the Hamiltonian and its derivatives
in the new variables using numerical techniques. We give here only some ex-
amples of how this can be done; the reader can refer to Henrard’s paper for a
more exhaustive discussion.

The motion on each cycle can be numerically computed, using a numerical
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integrator of the equations of motion. For each cycle, the value of the action
J1 can be computed by numerically solving the integral (4.5). This allows
one to numerically determine the function J1(E, J2, . . . , Jn), which can be
numerically inverted to compute Hres ≡ E(J1, J2, . . . , Jn).

The derivatives of Hres(J) with respect to J can also be simply computed:
the numerical integration gives the libration/circulation frequency ν1 of ϕ1

and the circulation frequencies ν2, . . . , νn of ϕ2, . . . , ϕn. But these are also the
frequencies of the new angles ψ1, ψ2, . . . , ψn. Therefore, one has:

∂Hres

∂Jl
= νl , l = 1, . . . , n . (4.9)

Finally, on each cycle one can expand the remainder R – or any other
function originally written in the variables I,ϕ – in Fourier series of the new
angles ψ and numerically compute the coefficients of the series. This is done
as follows: the numerical integration allows one to determine I1 and ϕ on each
cycle as a function of time. With the substitution t = Tψ1/(2π), this gives
the functions I1(ψ1), ϕ1(ψ1) and ̺l(ψ1). Then one writes

R = R(I1(ψ1), I2, . . . , In, ϕ1(ψ1), ψ2 + ̺2(ψ1), . . . , ψn + ̺n(ψ1)) , (4.10)

and numerically computes the Fourier transform of this expression. This gives
the coefficients of the Fourier expansion of R(J,ψ) with respect to ψ1, . . . , ψn,
for each value of J. The gradient of these coefficients with respect to J can
then be computed by numerical differentiation.

As we have seen in the previous section, the resonant phase space is divided
by the separatrix into three different dynamical regions, and the “period” on
the separatrix is infinite; the cycles in the libration region and in the circulation
regions have different structures. Therefore the sets of action–angle variables
introduced in the libration region and in the circulation regions cannot be
joined smoothly; the singularity corresponding to the separatrix cannot be
eliminated. In practice, the introduction of resonant action–angle variables
transforms the original integrable resonant dynamical system Hres(I, ϕ1) into
three distinct dynamical systems of type Hres(J), each of which is defined on
a different dynamical region. Each of these new systems is characterized by
constant values of the actions J and linear evolutions of the angles ψ, but the
actions and the angles are different for the three systems. As a consequence,
also the perturbation R in the new variables will have different expressions
in the different dynamical regions. In other words, each integrable system
Hres(J) will have its own perturbation R(J,ψ). Therefore, using resonant
action–angle variables, the study of perturbed resonant dynamics breaks into
three parallel studies, each focused on a different dynamical region of the main
resonance.
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4.3 Perturbed resonant dynamics

We now consider the effects that the remainder R of the optimal resonant
normal form (4.1) has on the dynamics given by the integrable approximation
Hres.

To fix notation, we will denote by main resonance the resonance for which
the normal form has been constructed and whose dynamics is described by
Hres; by secondary resonances we denote those that are present in the do-
main where the normal form is constructed, but whose harmonics have not
been retained in Hres; the leading secondary resonance will be the secondary
resonance of lowest order.

4.3.1 Size of the remainder

As explained in Section 2.4, the size of R is dictated by the size of the coeffi-
cient of the harmonic of the leading secondary resonance. The latter depends
on the problem under consideration, and in particular on the frequencies of
the angles ϕ2, . . . , ϕn. Speaking of “single resonance” we implicitly imply that
all secondary resonances are of much larger order than the main resonance,
so that R is small compared to Hres. If this is not the case, then the “single
resonance” model is not appropriate, and a multiresonance problem should be
considered (see Chapter 6).

There are two cases that are worthy of mention, for which we can ensure
that R is much smaller than Hres, at least in the limit where the coefficient c
of the main resonant harmonic (see formula 4.4) is small:

i) Two degrees of freedom. Recall, from Section 4.1, that the minimal size of
the domain where the resonant normal form is constructed must be of order
√

c/β in Î1 to contain the entire resonant region, with c and β defined as in
formula (4.4). While β is typically independent of ε, c is of order ε or smaller.
On this domain ϕ̇1 ≡ ∂H0/∂I1 ranges from 0 (at Î1 = 0) to ∼

√
cβ (recall

that at the border of the domain Î1 ∼ ±
√

c/β). The secondary resonances
correspond to the relationships:

k1ϕ̇1 + k2ϕ̇2 = 0 , (4.11)

with integer k1, k2 and k2 6= 0. Since ϕ̇2 ≡ ∂H0/∂I2 is of order 0 in c while ϕ̇1

is at most ∼
√
cβ, to satisfy (4.11) one needs to have k1 ∼ 1/

√
cβ and k2 ∼ 1.

Therefore the leading secondary resonance must be of order ∼ 1/
√
cβ. As a

consequence, the coefficient of the corresponding harmonic and the size of the
remainder R are ∼ exp(−1/

√
cβ).
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ii) Fixed nonresonant frequencies with diophantine properties. Assume that
the frequencies of ϕ2, . . . , ϕn are fixed (i.e. they don’t depend on the actions)
and satisfy the diophantine condition

∣

∣

∣

∣

∣

n
∑

l=2

klϕ̇l

∣

∣

∣

∣

∣

≥ γ

(
∑n
l=2 |kl|)τ

, (k2, . . . , kn) ∈ Zn−1 (4.12)

for some positive γ and τ . The secondary resonances then correspond to the
relationships:

k1ϕ̇1 +
n
∑

l=2

klϕ̇l = 0 (4.13)

with k2, . . . , kn not all simultaneously equal to zero. Because ϕ̇1 is at most
∼ √

cβ, and because of (4.12), the relations (4.13) can be satisfied only if
∑n
l=2 |kl| ∼ 1/

√
cβ

1/τ
. As a consequence the leading secondary resonance

must be of order 1/
√
cβ

1/τ
. Therefore, the coefficient of the corresponding

harmonic and the size of the remainder R are ∼ exp(−1/
√
cβ

1/τ
).

4.3.2 Resonant invariant tori

As shown in the previous section, by introducing resonant action–angle vari-
ables in each dynamical region, the Hamiltonian (4.1) can be written as
Hres(J) + R(J,ψ). Under the assumption that Hres is nondegenerate, the
KAM theorem can therefore be applied. As seen in Chapter 3, if the per-
turbation R is sufficiently small, there must exist a set of large measure of
invariant tori. These tori must be “close” to the invariant tori for the in-
tegrable approximation Hres, i.e. close to the tori defined by J =constant.
Therefore, in the variables I1, ϕ1 the invariant tori of the perturbed resonance
will be close to the invariant curves of the pendulum (see Fig. 4.1). In partic-
ular, in the circulation regions the invariant tori have the same structure as
those already discussed in the previous chapter: the angles ϕ1, . . . , ϕn range
from 0 to 2π, and the actions I are periodic functions of the angles. In the
libration region, conversely, the motion on the invariant torus will result in the
circulation of the angles ϕ2, . . . , ϕn and in the oscillation of ϕ1 on a bounded
interval; we will call this a librational or resonant invariant torus.

As seen in Chapter 3, invariant tori can be well visualized in two-degree of
freedom problems, using Poincaré sections. Figure 4.3 gives an example using
the standard map (see formula 3.13). In this case, the initial conditions have
been chosen on the q1 = π axis, in order to explore also the dynamics in the
region associated to the resonance q̇1 = 0 that appeared empty in Fig. 3.3.
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Figure 4.3: The phase portrait of the standard map for ε = 0.6.

In Fig. 4.3 (drawn for the same value of ε as in Fig. 3.3b) the resonant
region appears to be filled by closed curves: these are the images of the libra-
tional invariant tori on the Poincaré section. Outside of the resonant region,
we find again the invariant tori already seen in Fig. 3.3b. The chains of islands
visible above and below the main resonant region are the images of the libra-
tional invariant tori associated to other resonances, of type k1q̇1 + k2q̇2 = 0.
Notice that for these resonances the Poincaré section on q2 reproduces the
typical pendulum-like portrait k1 times on the [0, 2π] interval of q1. Recalling
that in the standard map (3.13) q̇2 = 2π and q̇1 ∼ p1, it follows that the chain
of three islands at p1 ∼ 2π/3 corresponds to the resonance 3q̇1 − q̇2 = 0 and
the chain of two islands at p1 ∼ π corresponds to the resonance 2q̇1 − q̇2 = 0.
If we zoomed the image around one of these islands, we would reveal a struc-
ture very similar to that of the big island at the center of the panel. Islands of
course could also appear among librational invariant tori, related to secondary
resonances between the libration period of the critical angle of the main reso-
nance and the circulation period of q2 (these are the resonances between the
angles ψ1 and ψ2 introduced in the libration region for the integrable approx-
imation Hres of the main resonance). In Fig. 4.3 these islands are not visible,
because they are too small. However an example can be seen in Fig. 3.3d,
where a chain of eight islands surrounds the main resonant region.
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Figure 4.4: Left: stable and unstable manifolds of the hyperbolic equilibrium
point in the local linear approximation of Hres. Right: the stable and unstable
manifolds for the pendulum.

The KAM theorem cannot be applied close to the separatrices of the in-
tegrable approximation Hres, because the latter, when written in resonant
action–angle variables, loses its regularity properties in correspondence to the
separatrix. On the other hand, Fig. 4.3 shows that there are no invariant
curves at the boundary between the libration and the circulation regions. The
separatrix, typical of the pendulum model, has disappeared and its place has
been taken by a chaotic region, which appears on the Poincaré section as a
collection of scattered points. To understand the origin of the chaotic region,
we have to analyze in detail what happens to the separatrix of the integrable
approximation Hres in the presence of an arbitrarily small perturbation R.

4.3.3 Splitting of separatrices

The unstable equilibrium point of the pendulum at Î1 = ϕ1 = 0 has a hyper-
bolic structure. The second-order Taylor expansion of the Hamiltonian (4.4)
around this point gives

Hres =
β

2
Î21 − c

2
ϕ2
1 (4.14)

whose trajectories are hyperbolæ having for asymptotes the lines E−, of equa-
tion Î1 =

√

c/βϕ1, and E+, of equation Î1 = −
√

c/βϕ1 (Fig. 4.4a). On
E− the motion is ϕ1(t) = ϕ1(0) exp (

√
cβt), Î1(t) =

√

c/βϕ1(0) exp (
√
cβt),

which tends to the equilibrium point for t → −∞: we will call this line
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p

q

Figure 4.5: If the unstable (dashed curves) and stable (solid curves) manifolds
did not intersect, two of them should spiral towards the center of the resonance.
But this would violate the property of volume conservation of Hamiltonian
flow. Therefore stable and unstable manifolds must intersect.

the unstable manifold; on E+ the motion is ϕ1(t) = ϕ1(0) exp (−
√
cβt),

Î1(t) = −
√

c/βϕ1(0) exp (−
√
cβt), which tends to the equilibrium point for

t → +∞: we will call this line the stable manifold. Taking into account the
higher-order terms in Î1 and ϕ1 in the Taylor expansion, the stable and the
unstable manifolds are no longer straight lines, but more generally they are
curves in the Î1, ϕ1 plane. For the pendulum the stable manifold of the equilib-
rium point at ϕ1 = 0 coincides with the unstable manifold of the equilibrium
point at ϕ1 = 2π and vice versa (Fig. 4.4b). Stable and unstable manifolds
constitute what we have called the separatrix in Section 4.1.

We now consider an additional uncoupled degree of freedom and look at
the pendulum dynamics in extended phase space. To fix ideas, consider the
integrable Hamiltonian

H(Î1, I2, ϕ1) = I2 +Hres(Î1, ϕ1) , (4.15)

where Hres is a one-degree of freedom pendulum-like Hamiltonian as in (4.4),
and the action–angle variables I2, ϕ2 represent an additional uncoupled degree
of freedom. The dynamics in the Î1, ϕ1 plane is of course unchanged, so that
the Poincaré section of (4.15) on ϕ2 gives a portrait identical to the one of
the pendulum (Fig. 4.1). Introduce now an arbitrarily small coupling between
the two degrees of freedom, namely consider the generically nonintegrable
Hamiltonian

H = I2 +Hres(Î1, ϕ1) +R(ϕ1, ϕ2) , (4.16)
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Figure 4.6: The transversal intersections between the stable (bold curve) and
unstable (light curve) manifolds of the (0,0) unstable equilibrium point of the
standard map. Only half of the picture (that produced by the upper manifolds)
is plotted, for simplicity. The parameter ε is equal to 2.5.

with Hres still as in (4.4). It can be proven (Poincaré, 1892) that the Poincaré
section of the new system still shows a hyperbolic fixed point close to Î1 =
ϕ1 = 0 (as well as a stable fixed point close to Î1 = 0, ϕ1 = π). Moreover,
the stable and unstable manifolds still have to intersect, because otherwise
one of the manifolds should spiral towards the center of the resonance as
sketched in Fig. 4.5, in manifest violation of the conservation of volume that
is characteristic of Hamiltonian systems (see Section 1.7). However, there is
no reason to expect that the stable and unstable manifolds still coincide, as
in the pendulum case. Generically, they will intersect transversally. This is
known as the phenomenon of homoclinic intersection or separatrix splitting
(see Poincaré, 1892; Arnold and Avez, 1968).

Figure 4.6 shows for the standard map (3.13) the upper unstable (light
curve) and stable (solid curve) manifolds of the hyperbolic point at q1 = 0 on
the interval [−2π, 2π] (the reader can find in Simó, 1990, the explanation of
the standard algorithm for the numerical computation of the manifolds). As
one sees, the two manifolds intersect transversally; each point of intersection is
called a homoclinic point. As the figure suggests, there is an infinite number of
homoclinic points: in fact, choose one homoclinic point as the initial condition
of one orbit, say the one indicated by the number 1 in Fig. 4.6. Since the initial
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condition is on both the stable and the unstable manifold, the whole orbit is,
by definition, on both manifolds. Moreover, the successive images of this orbit
on the Poincaré section (the points indicated by 2, 3, 4, . . .) cannot coincide,
because otherwise the orbit would be periodic and would not tend to the
hyperbolic fixed point; this proves that the orbit must leave infinitely many
distinct points on the Poincaré sections which, by definition, are all homoclinic
points.

As Fig. 4.6 also shows, the distance between two successive homoclinic
points decreases, because the orbit “slows down” exponentially approaching
the hyperbolic fixed point. Now pay attention to the area enclosed by the
stable and the unstable manifolds, labeled by L1 in Fig. 4.6. We call this area
a lobe. By a continuity argument, one can prove that this lobe is mapped onto
L2, and, successively, onto Li, i = 3, . . . ,+∞, which are thus all successive
iterations of the same lobe. The area of each Li must be the same, because
the Hamiltonian flow preserves areas; thus, because the length of the bases
of the Lis decreases exponentially with i, the length of their “heights” must
increase exponentially. The picture gets complicated: different lobes must in-
tersect, as shown in the figure, generating homoclinic intersections of second
order between the stable and the unstable manifolds. The result is what is
usually called the homoclinic tangle. The region densely criss-crossed by the
stable and unstable manifolds is called the chaotic region. The dynamics in
the chaotic region is equivalent to that of the well-known Smale horseshoe,
(Smale, 1963, 1980; see also Wiggins, 1988). Arbitrary close initial conditions
belong to different parts of the homoclinic tangle (i.e. to different lobes) and
therefore their dynamical evolutions are completely different. The distance
between their orbits diverges exponentially with time. As shown in Fig. 4.3,
the Poincaré section of an orbit in the chaotic region gives a collection of scat-
tered points whose distribution misses any apparent regularity; the resonant
angle for chaotic trajectories alternates between libration and circulation in
an apparently random fashion.

4.3.4 Size of the chaotic region

The size of the chaotic region depends on the “distance” between the stable
and the unstable manifolds. As suggested by Fig. 4.6, the distance between the
manifolds can be measured on the Poincaré section as the difference between
the values of the action on the two manifolds, for a given value of the angle. If
the stable and the unstable manifolds coincide, as in the case of the integrable
resonance, the distance is zero for all values of the angle; conversely, if the
separatrix splits, the distance is zero only in correspondence to the homoclinic
points.
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In principle, the distance between the manifolds can be measured using the
so-called Poincaré–Melnikov integral (Poincaré, 1892; Melnikov, 1983; see also
Arnold et al., 1988). The idea is quite simple. Consider again the Hamiltonian
(4.16): on the Poincaré section, once ϕ1 is fixed, there is a local one-to-one
correspondence between Î1 and the value of Hres. Therefore, the distance be-
tween two points on the Poincaré section which have the same value of ϕ1 can
be measured as the difference between the respective values of Hres. Denote
now by H+

res(ϕ
0
1) the value of Hres on the stable manifold when it first inter-

sects the axis ϕ1 = ϕ0
1. Analogously, denote by H−

res(ϕ
0
1) the corresponding

value on the unstable manifold. The distance between the manifolds can then
be measured as ∆Hres = H+

res(ϕ
0
1)−H−

res(ϕ
0
1). Using (1.47) one has

H+
res(ϕ

0
1) =Hres(+∞)−

∫ +∞

0
{Hres,H}dt

H−
res(ϕ

0
1) =Hres(−∞) +

∫ 0

−∞
{Hres,H}dt (4.17)

where the first integral is computed along the stable manifold, the second
integral along the unstable manifold, and Hres(+∞) = Hres(−∞) are the
values of Hres on the hyperbolic fixed point (reached respectively at t = +∞
on the stable manifold and t = −∞ on the unstable manifold). The origin
of time has been arbitrarily set equal to 0, since the function {Hres,H} does
not explicitly depend on time; the integrals depend only on the values of the
coordinates at time 0.

The integrals in (4.17) cannot be computed, because one does not explicitly
know the solution of the equations of motion on the stable and the unstable
manifolds. One notes, however, that the manifolds of H differ from the mani-
folds of Hres by a quantity proportional to the size of R, say µ. On the other
hand, also the Poisson bracket {Hres,H} is of order µ. Therefore computing
the integrals in (4.17) along the manifolds of Hres one makes an approximation
not worse than order µ2. The advantage is that the equations of motion on the
manifolds of Hres are known, because Hres is integrable, so that in principle
the integrals can be computed.

With this approximation one gets

∆Hres = −
∫ +∞

−∞
{Hres,H}dt+O(µ2) , (4.18)

the integral being computed on the separatrix of Hres. The integral in (4.18)
is usually called the Poincaré–Melnikov integral, and it depends only on the
chosen value ϕ0

1 at t = 0.
As an example, let us compute the Poincaré–Melnikov integral for the

model (4.16), with R(ϕ1, ϕ2) = µϕ1 sinϕ2 and Hres as in (4.4). One has
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{Hres,H} = −µβÎ1 sinϕ2. The solution of the equations of motion on the
separatrix of Hres in (4.4) are

Î1(t) = ±2

√

c/β

coshτ
ϕ1(t) = ±arc cot(−sinhτ) , (4.19)

where τ =
√
cβ(t − s0). The initial value of ϕ1 and Î1 at t = 0 is therefore

determined by the parameter s0. In addition, from the equations given by
Hamiltonian (4.15) one has

ϕ2(t) = t+ ϕ2(0) (4.20)

where ϕ2(0) is the initial phase (assume 0 for simplicity). The Melnikhov
integral is therefore

M(s0) =µβ

∫ +∞

−∞
Î1(t) sinϕ2(t)dt

=µβ

∫ +∞

−∞

2
√

c/β

cosh(
√
cβ(t− s0))

sin tdt

=− 2πµ

cosh π

2
√
cβ

sin s0 . (4.21)

As one sees, M(s0) is alternatively zero, negative or positive, depending on
s0. This proves that i) there exist homoclinic intersections, which occur for
the values ϕ0

1 of ϕ1 given by s0 = kπ (k ∈ Z) in (4.19) and ii) the intersections
are transversal because the distance between the manifolds is zero only for
discrete values of s0 (i.e. of ϕ0

1).

The computation of the Poincaré–Melnikov integral, although feasible in
principle, is very difficult in practice, apart from simple cases where the motion
on the separatrix of Hres and the Poisson bracket {Hres,H} have a simple
expression (see Delshams et al., 1999, for a review). Moreover, in several
cases, the result of the Poincaré–Melnikov integral is small compared to µ2,
so that the neglected term in (4.18), which is in principle as large as µ2, could
dominate the result. In these cases, it would be necessary to look for more
complicated formulæ for ∆Hres that are exact up to higher order in µ. As
a consequence, in most of the cases the rigorous analytic computation of the
amplitude of separatrix splitting is an open problem.

However, heuristic arguments and numerical experiments (see Morbidelli
and Giorgilli, 1997) show that the amplitude of the splitting is in most cases
related to the coefficient of the leading secondary resonance (see the top of
Section 4.3 for its definition), i.e. to the size of the remainder R of the optimal
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Figure 4.7: Panel a (left): the amplitude of the splitting in (4.22) as a function
of µ. Panel b (right): the same as a function of k. Reprinted from Figs. 4 and 5
of Morbidelli and Giorgilli (1997), with permission from Elsevier Science.

normal form. Let us consider as an example the Hamiltonian H(p, q, t) =
Hres(p, q) +R(p, q, t) with:

Hres(p, q) =
1

2
p2−ε cos q ; R(p, q, t) = −εµ

2
{cos[(k+1)q−t]+cos[(k−1)q−t]} .

(4.22)
Choosing the integer k close to 1/(2

√
ε) the harmonics in R are resonant at

the border of the domain |p| < 2
√
ε that is spanned by the separatrices of

the pendulum Hamiltonian Hres, and thus they correspond to secondary reso-
nances. Therefore, in this case the Hamiltonian (4.22) can be considered as the
paradigm of the optimal normal form of a perturbed pendulum problem. Fig-
ure 4.7a shows the amplitude of the separatrix splitting (measured numerically
as the distance ∆p between the stable and the unstable manifolds at q = π)
as a function of µ; ε and k are fixed equal to 10−4 and 50 respectively. The
amplitude of the splitting perfectly scales as

√
µ over nine orders of magnitude

in µ. The power of µ depends on the value of q for which the amplitude of the
splitting is computed: at q = 0, the scaling would have become proportional
to µ. Figure 4.7b shows the amplitude of the splitting as a function of k, for
fixed ε = µ = 10−4. For k ≥ 1/(2

√
ε) = 50 the harmonics in R correspond to

secondary resonances (since they are located at p ∼ 1/k, i.e. inside the domain
|p| ≤ 2

√
ε spanned by the separatrices), and the amplitude of the splitting is
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constant within an order of magnitude. For k < 50 the harmonics in R do
not correspond to secondary resonances so that (4.22) cannot be considered
as an optimal normal form. Using the normalization algorithm explained in
Chapter 2, one could proceed to the elimination of nonresonant harmonics,
until the harmonics related to secondary resonances are generated; this would
happen only at order |k − 50| in εµ, so that their coefficients would be of size
O((εµ)|k−50|). Figure 4.7b shows in fact that the amplitude of the splitting
drops exponentially with k for k < 50.

This example shows that the “amount” of nonintegrability, that is the
size of the remainder of the optimal normal form, is intimately related to
the “amount” of chaos, that is the amplitude of separatrix splitting. The
appearance of chaos is a criterion of nonintegrability of a given Hamiltonian
system (a rigorous result known as the Ziglin theorem; Ziglin, 1980; see also
Arnold et al., 1988). If it is very difficult to rigorously prove the existence of
chaos (since one must solve the Poincaré–Melnikov integral), several powerful
numerical tools – nowadays largely in use in Celestial Mechanics – allow to
unequivocally reveal chaotic behavior.



Chapter 5

NUMERICAL TOOLS FOR
THE DETECTION OF
CHAOS

5.1 Monitoring the time evolution in phase space

How is it possible to show that a given initial condition generates chaotic
evolution? How is it possible to show that a given orbit lies on an invariant
torus? These questions become important at this point.

We have seen in the previous chapter that the computation of the Poincaré
section allows one to unequivocally distinguish regular from chaotic orbits.
However, the Poincaré section is useful only for two-degree of freedom systems.
In more degrees of freedom, in fact, the “surface” of the section has more than
two dimensions, so that it is not possible to display the Poincaré section in a
graphical way.

The time evolution of the canonical variables p,q might also reveal, at
a glance, the dynamical character of the orbit. For the simple Hamiltonian
H(p, q, t) = p2/2+cos q+1/4[cos(q+5t)+cos(q−5t)], Fig. 5.1 shows the time
evolution of the action p and the angle q for a chaotic orbit (panel a) and a
regular orbit (panel b). The difference between the two evolutions is evident.
For the chaotic orbit, the angle q alternates among large amplitude oscillations
around π, circulations from 0 to 2π with positive derivative, and circulations
from 2π to 0 with negative derivative. Correspondingly, the conjugate action
p oscillates around p ∼ 1 when q circulates with positive derivative, oscil-
lates around p ∼ −1 when q circulates with negative derivative, and oscillates
around p ∼ 0 – with amplitude that is about twice as large – when q librates
around π. It is evident that these three behaviors correspond to the three

89
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Figure 5.1: Time evolution for a chaotic (panel a) and a regular orbit (panel
b) of a perturbed pendulum. See text for comments.

dynamical regimes close to the separatrix of the integrable resonant approxi-
mation Hres = p2/2+ cos q; the characteristic of chaotic orbits is precisely the
alternation among the different regimes. The transitions from one to another
regime repeat without any apparent regularity. Conversely, a regular orbit
(panel b) does not alternate among the different dynamical regimes; p and q
oscillate in a regular, quasi-periodic way.

However, the situation is not so simple when one considers more compli-
cated dynamical systems, with larger number n of degrees of freedom. In these
cases, due to the coupling among the degrees of freedom, also for regular orbits
the actions and the angles show a complicated time dependence, character-
ized by n independent frequencies. Therefore, chaotic orbits may not differ
too much from regular ones, and it becomes impossible to visually distinguish
them. As an example, Fig. 5.2 shows by a solid line the time evolution of the
eccentricity of the orbit of the Earth – which is chaotic (see Chapter 7) – and
by a dotted line the evolution of a similar but regular orbit, issued from an
integrable analytical approximation.

The point is that for a quasi-integrable Hamiltonian H0(p) + εH1(p,q)
chaos may be raised by the separatrix splitting of a resonance whose corre-
sponding harmonic has a quite small coefficient, say for example of size ε4.
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Figure 5.2: The time evolution of the eccentricity of the Earth according to nu-
merical integration (solid curve) and to an analytic model (dotted curve). It is
difficult to say which evolution is regular and which is chaotic. Reprinted from
Fig. 1 of Laskar (1988), with permission from Astronomy and Astrophysics.

In this case, one can introduce new variables p1,q1 in order to transform
the Hamiltonian into the resonant normal form of type Hres = H′

0(p
1) +

ε4Hnorm(p
1,q1) +R(p1,q1), with R smaller than ε4. Then, visual inspection

of the time evolution of the variables p1,q1 would easily reveal whether the
orbit is regular or chaotic, as in the example of Fig. 5.1. The size of the regu-
lar/chaotic oscillations of p1 are of order ε2, i.e. the square root of the size of
the coefficient of the main resonant harmonic, as shown in the previous chap-
ter. However, the transformation from the original variables p,q to the new
variables p1,q1, is of order ε and periodic in the angles q1 (see Chapter 2).
Therefore, the time evolution of p,q shows quasi-periodic oscillations with
amplitude ε, completely hiding the chaotic oscillations, whose amplitudes are
only ε2.

In conclusion, one cannot in general rely on the visual analysis of the
time evolution of the variables of the system to conclude anything about the
regular/chaotic character of the orbits. It is therefore necessary to look for
more precise and mathematically founded tools.
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In the following we detail on Lyapunov exponents, frequency analysis and
on their surrogates, which are by far the most frequently used tools for the
investigation of Solar System dynamics. Conversely, we will not to elaborate
about tools like the KS–entropy (Krylov, 1950; Kolmogorov, 1959; Sinai, 1959;
see also Lichtenberg and Lieberman, 1983) and the Ricci curvature (Gurzadyan
and Kocharyan, 1987; El-Zant 1997; El-Zant and Gurzadyan, 1998), because
they are mostly used to characterize globally chaotic systems with ergodic
properties – like the N -body problems with very large N – typical of galactic
dynamics. The reader concerned by the characterization of chaos in these
systems can find several interesting chapters in Gurzadyan and Ruffini (2000).

5.2 Lyapunov exponents

As we have seen in the previous chapter, in a chaotic region arbitrarily close
initial conditions lead to evolutions that diverge exponentially fast with time.
TheMaximum Lyapunov Exponent (MLE) characterizes the rate of such expo-
nential divergence. A detailed treatment of the theory of Lyapunov exponents
goes beyond the scopes of this chapter; readers can instead refer to the papers
by Lyapunov (1907), Oseledec (1968) and Benettin et al. (1976, 1980) and
also to Lichtenberg and Lieberman (1983). Here we just outline the basic ideas
and properties that are important for applications in Celestial Mechanics.

Consider two orbits, with initial conditions p(1)(0),q(1)(0) and
p(2)(0),q(2)(0); to measure the relative divergence of their time evolutions
(p(1)(t),q(1)(t)) and (p(2)(t),q(2)(t)) one cannot just measure their Euclidean

distance
∥

∥

∥p(1)(t)− p(2)(t)
∥

∥

∥+
∥

∥

∥q(1)(t)− q(2)(t)
∥

∥

∥ as a function of time. In fact,

in the case of bounded motion, the relative distance cannot grow indefinitely.
To fix ideas, consider two trajectories on the surface of a sphere: it is evident
that, despite their initial rate of relative divergence, their mutual distance can
never exceed the diameter of the sphere. The exponential divergence can be
measured only locally. It is therefore convenient to linearize the equations of
relative motion.

Denoting δp(t) = p(2)(t) − p(1)(t) and δq(t) = q(2)(t) − q(1)(t), the lin-
earized equation of relative motion can be written:

˙δpi=− ∂2H
∂pj∂qi

(p(1)(t),q(1)(t))δpj −
∂2H
∂qj∂qi

(p(1)(t),q(1)(t))δqj

˙δqi=
∂2H
∂pj∂pi

(p(1)(t),q(1)(t))δpj +
∂2H
∂pi∂qj

(p(1)(t),q(1)(t))δqj (5.1)

where H(p,q) is the Hamiltonian of the system of which p(1)(t),q(1)(t) and
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p(2)(t),q(2)(t) are trajectories. In the above formula δpi, δqi, pi, qi denote the
components of δp, δq,p,q and summation over the index j is implicit.

In principle, equations (5.1) should be followed only for a time such that
δp(t) and δq(t) stay small enough to consider the linearized equations as a
good approximation of the real relative motion of the two trajectories. How-
ever, on a limited time interval, the motion of δp(t), δq(t) and its growth rate
depend of course on the initial condition δp(0), δq(0) and on the considered
time interval. This would be quite inconvenient to characterize the dynamical
properties of the orbit p(1)(t),q(1)(t). Therefore, forgetting about the original
meaning of δp, δq, the maximum Lyapunov exponent (MLE) is defined as:

L = lim
t→+∞

1

t
ln

‖δp(t), δq(t)‖
‖δp(0), δq(0)‖ , (5.2)

where ‖δp(t), δq(t)‖ denotes the Euclidean norm of the vector of components
(δp1(t), . . . , δpn(t), δq1(t), . . . , δqn(t)). It can be proven that L is the same for
most initial choices of δp(0), δq(0) (i.e. the volume of the set of δp(0), δq(0)
that lead to a different value of L is zero), and that its value is also independent
of the choice of canonical variables p,q, used to write the equations of motion
(5.1) (Oseledec, 1968). Thanks to these properties, one can conclude that
the MLE characterizes the orbit p(1)(t),q(1)(t). In principle, each orbit of a
dynamical system has its own MLE.

In the case where the trajectory p(1)(t),q(1)(t) is a fixed point, namely
p(1)(t) = p(1)(0) and q(1)(t) = q(1)(0), the equations (5.1) become linear with
constant coefficients, and are therefore integrable. Denote by λ1, . . . , λ2n the
(possibly complex) eigenvalues of the matrix of the second-order derivatives
of H in p(1)(0),q(1)(0). Because the Hamiltonian system preserves volume, if
λ is an eigenvalue then 1/λ is also an eigenvalue. Denote by λ̄ the eigenvalue
such that |λ̄| = maxi=1,...,2n |λi|; then, either |λ̄| > 1 or |λ̄| = 1. In the first
case, the linearized dynamics (5.1) has at least one hyperbolic component,
namely there exist at least two conjugate variables whose behavior is like in
Fig. 4.4a. Therefore, for all initial conditions δp(0), δq(0) – except those that
have null projection on the eigenvector associated to λ̄ (a set of zero measure) –
‖δp(t), δq(t)‖ will grow for t → +∞ as exp λ̄t. As a consequence, from (5.2),
one has L = λ̄. Conversely, in the case |λ̄| = 1 the linearized dynamics is
elliptic, and the evolution δp(t), δq(t) is bounded, so that L = 0.

The MLE of the orbits on KAM tori is also 0. This can be seen as follows.
In the neighborhood of the torus one can introduce new action–angle variables
I,ϕ to transform the Hamiltonian into the Kolmogorov normal form (3.1). In
these variables, the equations (5.1) for an orbit on the torus become:

δ̇I = 0 , ˙δϕ = CδI+ F (ϕ(t))δI , (5.3)
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where ϕ(t) is the vector of the angles on the torus, that evolves linearly with
t; the matrix C is constant, while the matrix F is periodic in ϕ. As a conse-
quence, the motion relative to the orbit of the torus is given by δI =constant
and δϕ = αt + β(t) with constant α and periodic function β(t). Therefore
there is no exponential divergence of the orbits in the vicinity of the torus,
which, according to (5.2), gives L = 0.

Because chaotic orbits have L > 0 while orbits on KAM tori have L = 0,
a positive MLE is usually considered as an indicator of chaos. However, a
positive MLE does not really imply that the considered orbit is chaotic, if we
intend the word chaos as a synonym for irregular and unpredictable behavior.
Strictly speaking, a positive Lyapunov exponent just indicates the presence
of local hyperbolicity in the neighborhood of the orbit. For instance, the hy-
perbolic fixed point of a pendulum has positive MLE, despite its evolution
being highly regular and predictable! However, remember that in the pen-
dulum case local hyperbolicity implies the existence of stable and unstable
manifolds, which, when a perturbation is introduced, generically intersect in
a transversal way, generating a homoclinic tangle, i.e. a chaotic region.

In addition to the maximum Lyapunov exponent, other n − 1 positive or
null Lyapunov exponents (n being the number of degrees of freedom) can
be effectively computed, but using a more complicated recipe illustrated in
Benettin et al. (1980). The number of positive Lyapunov exponents indicates
the number of independent directions in phase space along which the orbit
exhibits chaotic (or at least hyperbolic) behavior. A theorem by Pesin (1977)
shows that the KS–entropy can be computed from the Lyapunov exponents
Li as:

h =

∫

∑

Li>0

Li(x)dx , (5.4)

where the sum is over all positive Lyapunov exponents and the integral is over
a specific region of phase space.

5.2.1 Numerical computation of the MLE

The numerical computation of the MLE is not straightforward, because one
should integrate the system (5.1) for infinite time in order to compute the limit
in (5.2). Moreover, if the system (5.1) is hyperbolic, δp and δq indefinitely
grow with time, inevitably causing an overflow in the numerical computation
of their evolution.

These problems have been brilliantly overcome by Benettin et al. (1980).
Their suggested recipe is the following. Start with an arbitrary δp(0), δq(0);
compute the evolution of δp(t), δq(t) up to some time T that is short
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Figure 5.3: The evolution of the estimate of the Lyapunov exponent L(lT )
for a chaotic (panel a) and for a regular orbit (panel b) of the standard map.
Here T = 1 and l is the number of iterations of the standard map.

enough to avoid the overflow error on the computer; then, let s1 =
‖δp(T ), δq(T )‖/‖δp(0), δq(0)‖ and define δp1 = δp(T )/s1 and δq1 =
δq(T )/s1; finally use δp1, δq1 as new initial conditions δp(0), δq(0) and iterate
the above procedure. In this way, one obtains a sequence of renormalization
factors s1, s2, . . . , sl. It has been proven by Benettin et al. (1980) that

L = lim
l→+∞

∑l
j=1 ln sj

lT
, (5.5)

and that the result is independent of the choice of T .
To estimate the value of the above limit, one plots the quantity L(lT ) ≡

(
∑l
j=1 ln sj)/lT as a function of lT on a logarithmic scale, and tries to guess

the asymptotic behavior. Figure 5.3 gives an example of what one usually
obtains for a chaotic orbit (panel a) and for a regular orbit (panel b). Despite
the fact that the value of L(lT ) is initially larger for the regular than for
the chaotic orbit, in the regular case it seems to monotonically decrease with
lT , while in the chaotic case it has large oscillations and eventually seems to
stabilize around a definite value (∼ 10−1.1 in Fig. 5.3). Then, it is reasonable
to expect that in case (b) the limit for lT → +∞ of L(lT ) is zero, while in
case (a) it is ∼ 10−1.1.

In most cases, pictures like those of Fig. 5.3 are enough to discriminate
between regular and chaotic orbits. However, one is never absolutely sure to
guess the right limit. In some cases, the evolution of L(lT ) initially decreases
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Figure 5.4: The time evolution of the estimate of the Lyapunov exponent
L(lT ) for three orbits with decreasing distances (from bottom to top) from
the main resonance of the standard map. The size of the oscillations of L(lT )
is an indicator of the distance from the most effective resonance.

as in Fig. 5.3b, but then asymptotically converges to some small, but positive
value. Therefore, if the evolution of L(lT ) is not followed for a long enough
time, one can be erroneously led to guess that the Lyapunov exponent is zero.
Actually, computing the evolution of L(lT ) up to a finite value of lT , one
can detect only the orbits with MLE larger than some quantity (related to
the maximal value of lT used in the computation). Only by increasing the
integration timespan can one detect orbits with smaller MLE. The detection
of all chaotic orbits would require the exact computation of the Lyapunov
exponent, i.e. infinite time.

The evolution of L(lT ) is never perfectly monotonically decreasing: it al-
ways presents small oscillations. The amplitude of these oscillations is an
indicator of the distance of the considered orbit from the most effective reso-
nance. As an example, Fig. 5.4 shows the evolution of L(lT ) for three orbits in
the standard map; the linear scale for lT has been used to better see the peri-
ods of oscillations, and the value of LogL(lT ) has been changed by a suitable
constant in order to avoid superposition among the different curves. From
bottom to top, the three curves correspond to orbits with decreasing distance
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from the main resonance at p1 ∼ 0. The oscillations reveal that the vector
δp, δq in (5.1) is alternately contracted and stretched. This happens when the
orbit passes close to the hyperbolic point of the resonance (at p1 = 0, q1 = 0 in
the standard map 3.13), and the amount of stretching and contraction is evi-
dently strongest for the orbit that passes closest to the hyperbolic point. Note
also that the period of oscillation increases with decreasing distance from the
resonance, which is a consequence of the fact that the circulation period of the
resonant angle decreases. The oscillations of L(lT ) as a function of lT might
therefore help to guess whether an orbit will have at the end a positive or a
zero MLE, without waiting until the final convergence of L(lT ) to its asymp-
totic value. If the oscillations are almost undetectable, the orbit does not feel
the close presence of a resonance, so that it very likely lies near an invariant
torus, and its MLE is equal to zero; conversely, if large oscillations appear, the
orbit is close to a resonance, so that it is probable (but not certain!) that the
orbit is chaotic, with a positive MLE.

Also, if the evolution of L(lT ) does not show significant oscillations, orbits
with close initial conditions will have close values of L(lT ), for any fixed lT .
This is not true in the case of large oscillations of L(lT ), because the period of
these oscillations differs slightly from one orbit to another. As a consequence,
the value L(lT ) is a smooth function of the initial conditions only in the regions
where resonances have negligible effects, while it is an irregular function in
the regions that are chaotic or at least strongly affected by resonances. As
an example, Fig. 5.5 shows the value of L(1000) for the standard map as a
function of the initial action p1, the initial value of q1 being equal to 0 for
all orbits. Following the discussion above, the figure can be interpreted as
a map of the dynamical character of the system: the plateaux where L is
almost constant (with L(1000) ∼ 10−2.2) reveals the “regular” regions, where
the relative volume of KAM tori is close to 1, while the peaks and the dips
(and all discontinuities in general) mark the main chaotic or resonant regions.

To conclude this section, a final word of caution is necessary. Some authors,
to avoid the computation of the linearized equations of motion (5.1), follow the
Benettin et al. recipe (5.5) by computing δp(t), δq(t) as the difference between
the evolutions of two trajectories of the system. This is a very dangerous way
to proceed, as the result in this case depends on the time T at which the
renormalization is done and on ‖δp(0), δq(0)‖, unless both are extremely small
and very high accuracy is used in all computations. Because of numerical
instabilities, it is very easy to compute an incorrect value of the MLE (see
Holman and Murray, 1996 for a discussion). It is therefore highly preferable to
compute the evolution of δp(t), δq(t) using the linearized equations of motion
in all the cases where the latter can be computed.
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Figure 5.5: The value of the Lyapunov exponent, computed over 1000 itera-
tions of the standard map, as a function of the initial value of the action. The
parameter ε is here equal to 0.6, as in Fig. 3.3b.

5.3 Frequency analysis

This powerful tool for the detection of chaos has been introduced by Laskar
(1990) to analyze the secular evolution of the planets (see Chapter 7), and it
has been successfully used also for studying small body dynamics (Nesvorný
and Ferraz-Mello, 1997b; Robutel and Laskar, 2001) and galactic dynamics
(Papaphilippou and Laskar, 1998); its properties and applicability are detailed
in Laskar et al. (1992a) and Laskar (1993).

The idea behind frequency analysis is simple. As seen in Chapter 3, orbits
on KAM tori have constant frequencies; conversely chaotic orbits do not have
well-defined frequencies, their actions and angles randomly moving inside the
chaotic zone. The point is that the value of the frequencies can be numerically
determined on a time interval, so that it is possible to check whether the
frequencies change or stay constant from one time interval to another.

More precisely, given the evolution of an orbit p(t),q(t) as resulting from
a numerical integration, one numerically determines (following the procedure
indicated in Section 5.3.1) the fundamental frequencies ν(t0) of the motion on



5.3. FREQUENCY ANALYSIS 99

Figure 5.6: Time evolution of the frequency of orbits close to a 1/6 resonance
in the standard map. The orbits for which the frequency is approximately
constant with time lie on KAM tori, while the others are chaotic. Reprinted
from Fig. 5 of Laskar et al. (1992a), with permission from Elsevier Science.
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a time interval [t0, t0+T ]. The duration T of the time interval must be chosen
to be longer than the inverse of the slowest fundamental frequency, to achieve
an accurate determination of the latter. Then one repeats the computation
for different values of t0, thus numerically determining the frequencies as a
function of time. If the frequencies are constant, then the considered orbit is
“regular”, namely it either lies on a KAM torus or is a periodic orbit (Laskar,
1999). Conversely, if ν(t0) changes with t0 there is a strong presumption that
the orbit is chaotic. Figure 5.6 gives an example of this kind of analysis, for a
sequence of orbits close to a 1/6 resonance in the standard map. The top panel
shows the time evolution of the frequency of the angle q1 for orbits which are
on both sides and quite far from the resonance (located at ν = 0.1666 . . .). For
the most distant orbits from the resonance, straight lines are obtained, which
implies that the time variations of the frequency are smaller than the resolution
of the plot. Thus, these orbits presumably lie on KAM tori. Conversely,
for the orbits that are closer to the resonance, the frequency ν shows time
variations that are larger than the numerical accuracy by which the frequency
is computed on each time interval (the latter being indicated by the vertical
segments). These orbits therefore should not lie on KAM tori, but rather
be weakly chaotic. For orbits even closer to the 1/6 resonance (panel b) the
amplitude of frequency variations increases, suggesting a stronger chaos. The
second orbit from the top is properly in the 1/6 resonance, and therefore
its frequency has large irregular oscillations around the exact resonant value;
note however a number of excursions of the frequency towards values smaller
than 0.166, which correspond to temporary trapping of the orbit into the
circulation region below the resonance. Conversely, the second orbit from the
bottom spends most of the time below the resonance (ν ∼ 0.1654) but is twice
temporarily trapped in the resonance (when ν ∼ 0.1666).

A second way to proceed to explore the dynamical structure of a system
is to compute the frequencies as a function of the initial conditions. More
precisely, one fixes the initial angles and constructs a fine grid of initial condi-
tions p0 in the action space; then, for each initial condition one computes the
corresponding frequencies ν(p0) on the interval [0, T ], for some fixed large T .
A theoretical result by Lazutkin (1973) shows that the frequencies on KAM
tori can be fitted by a smooth (C∞) function of the actions. Therefore, in
the regions where KAM tori fill a large relative volume, the numerically de-
termined function ν(p0) must appear smooth. Conversely, such smoothness
must be lost in the chaotic region, where the frequencies are not well defined
and only rough approximations are computed on the [0, T ] interval. Figure 5.7
shows an example of this, again for the region around the 1/6 resonance in
the standard map. The value of the frequency ν is plotted as a function of
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Figure 5.7: Frequency as a function of the initial value y of the action p1, for
orbits close to a 1/6 resonance in the standard map. The smooth parts of the
graphe denote regular regions, while scattered points reveal chaotic regions.
The horizontal line shows the exact resonant value of the frequency. Reprinted
from Fig. 6 of Laskar et al. (1992a), with permission from Elsevier Science.

the initial value of p1. The function ν(p1) is smooth for p1 < −1.222, slowly
increasing with p1; then it starts to show bumps and wiggles and subsequently
becomes a collection of scattered points. The exact resonant value is crossed,
and then ν(p1) again becomes a smooth function of p1.

Figures 5.6 and 5.7 show how effective is frequency analysis in detecting
chaotic orbits and chaotic zones. With respect to the computation of Lya-
punov exponents, frequency analysis requires in principle shorter integration
times. Several periods of the slowest angle are enough to accurately determine
the frequencies and understand their behavior with respect to time and/or ini-
tial conditions, while for the computation of the Lyapunov exponent one has
to wait until the evolution of L(t) has reached its asymptotic limit. Moreover,
from the frequency analysis it is straightforward to deduce which resonances
are responsible for the origin of the detected chaos, while the computation
of the Lyapunov exponent does not provide any indication in this sense. On
the other hand, the numerical computation of the frequencies requires quite
sophisticated software, in particular for the applications in Celestial Mechan-
ics, where both slow and fast frequencies exist due to the degeneracy of the
Keplerian problem. For these competing reasons, both Lyapunov exponent
computations and frequency analysis are nowadays largely in use.



102 CHAPTER 5. NUMERICAL TOOLS

5.3.1 Numerical determination of the frequencies

This section is devoted to giving some indications of the practical implemen-
tation of frequency analysis. More details can be found in the original paper
by Laskar et al. (1992a).

For an n-degree of freedom system, a regular orbit on a KAM torus is
quasi-periodic with n independent frequencies ν1, . . . , νn. In principle, due to
the coupling among the degrees of freedom, these n frequencies are present
in the time evolution of each action and angle of the system. However, each
frequency νj is in general the leading frequency of an angle qj, so that, instead
of looking for all independent frequencies in the time evolution of a unique
variable, it is more convenient to look for the main frequency of each of the
angles qj(t). If one looks for the frequency of libration inside a resonance, it is
suitable to introduce the critical angle of the resonance ϕ1 and its conjugate
action I1, as in Chapter 4, and then introduce the angle – say ϑ1 – that defines
in polar coordinates the position of I1, ϕ1 relative to the center of libration.
The frequency of libration is the leading frequency of ϑ1(t).

In order to avoid the problem raised by the definition of the angles modulo
2π, for each angle qj(t) the complex function fj(t) = exp[ιqj(t)] is introduced.
The leading frequency of qj(t) becomes of course the leading frequency of fj(t).
Given a time interval [t0, t0 + T ] the frequencies of fj cannot be determined
with good accuracy using a simple fast Fourier transform, because fj(t) is
generically not periodic on that interval. Instead, one computes the function

Φj(ω) ≡
1

T

∫ t0+T

t0
fj(t) exp (−ιωt)dt (5.6)

and looks for the value ω∗ for which Φj(ω) assumes the maximal value. The
value ω∗ approximates the leading frequency of fj. It is the exact frequency
if the function fj(t) is simply periodic: in fact, for fj = exp[ινt], (5.6) gives
Φj(ω) = sin[(ν − ω)T/2]/[(ν − ω)T/2], which has an absolute maximum for
ω = ν. If fj has several independent frequencies ν1, . . . , νn, the value ω∗ will
not be exactly equal to the leading frequency; however, the “error” must be
small if the frequencies are well distinct and the amplitude associated with the
leading frequency is significantly larger than the amplitudes associated with
the secondary frequencies.

In Celestial Mechanics applications, the problems are raised by the con-
temporary existence of fast and slow frequencies, associated respectively to
the mean longitudes and to the perihelia and nodes of the bodies. From the
point of view of numerical determination, this is equivalent to the case where
the frequencies ν1, . . . , νn are almost equal and have comparable associated
amplitudes in the Fourier spectrum. In the original application by Laskar
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(1990), this problem did not exist, because Laskar was considering only the
secular evolution of the solar system, starting from the secular normal form
(see Section 2.5), so that the fast angles were not present.

When one has to deal with the evolution of an orbit computed in the
framework of the complete system (i.e. including also short-period terms),
the best strategy is first to filter the evolution using a numerical procedure
(Carpino et al., 1987), in order to average over all short-period oscillations, and
then to apply the frequency analysis on the filtered angles. The whole process
is discussed in detail by Nesvorný and Ferraz-Mello (1997a) and efficiently
allows the computation of the frequencies of the slow angles. However, in this
way one cannot monitor the short-period frequencies.

5.4 Surrogates

A number of additional numerical tools for the detection of chaos have been
recently introduced, as variations on the themes of Lyapunov exponents or of
frequency analysis. Here we briefly review those that have been successfully
used in Celestial Mechanics problems or seem promising for future applica-
tions.

5.4.1 Fast Lyapunov indicator

This was introduced by Froeschlé et al. (1997). For a given orbit of a system,
one considers the linearized equations (5.1) and, starting from an arbitrary
initial condition δp(0), δq(0), one computes the evolution δp(t), δq(t). The
fast Lyapunov indicator (FLI) is the time T at which ‖δp(t), δq(t)‖ is first
equal to some large but arbitrarily fixed value R. Intuitively, the FLI is re-
lated to the Lyapunov exponent: orbits such that the system (5.1) is strongly
hyperbolic have a short FLI; if (5.1) is weakly hyperbolic the FLI is longer,
and if its motion of δp, δq is bounded the FLI is infinite. However, the FLI
evidently depends on the choice of the initial condition δp(0), δq(0), on the
choice of R and on the choice of the canonical variables p,q that are used to
write the linearized equations. Therefore, in contrast to the MLE, it is not
intrinsically related to the considered orbit and cannot be used as an absolute
measure of its chaoticity.

However, once the choice of the canonical variables, the initial condition
δp(0), δq(0) and the threshold value R are fixed, the computation of the FLI
allows one to effectively compare the dynamical behaviors of different orbits.
In this sense, the FLI can be considered as an indicator of the chaotic nature
of an orbit relative to another one. To give absolute indications, it needs to
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be calibrated using reference orbits, for which the chaotic nature has been
determined, for instance computing the MLE.

The major quality of the FLI is the simplicity and the rapidity of the proce-
dure required for its computation, which allows the investigation of a large set
of orbits. The FLI technique has been successfully applied by Froeschlé et al.
(1997) to investigate the dynamical evolution of all numbered asteroids, from
which it has been possible to reveal the importance of three-body resonances
for the origin of chaos in the asteroid belt (see Chapter 11).

5.4.2 Helicity and twist angles

These were introduced by Contopoulos and Voglis (1996). Given the linearized
equations (5.1), one computes the orientation of the vector δp(t), δq(t) as a
function of time. For an n-degree of freedom system, the orientation is defined
by n− 1 angles: the helicity angles Φ1, . . . ,Φn−1. The mean values of the he-
licity angles with respect to time 〈Φ1〉, . . . , 〈Φn−1〉 in principle depend only on
the orbit around which the linearized equations of motion (5.1) are computed,
while they do not depend on the initial choice of the vector δp(0), δq(0). Con-
topoulos and Voglis showed that for orbits in a uniform chaotic region the mean
value of the helicity angles is invariant, while for regular orbits it smoothly
changes with the initial conditions. This property allows one to easily distin-
guish regular from chaotic regions, once the mean value of the Helicity angles
is computed on a regular grid of initial conditions. Of course the computation
of the mean helicity angles requires in principle infinite computation time;
however a quite precise indication of their values can already be effectively
achieved on a quite short time interval, which makes this method appealing
from the computational viewpoint.

In addition to the helicity angles, Contopoulos and Voglis considered also
their time derivatives: the twist angles. Again, the mean values of the twist
angles allow one to distinguish regular from chaotic orbits. They are invariant
for orbits in a uniform chaotic zone, are identically equal to zero for orbits lying
on KAM tori (for which all angles circulate), and are equal to the libration
frequencies for orbits lying on resonant invariant tori (Chapter 4). Examples
of the behavior of the mean value of the twist angle in the standard map can
also be found in Froeschlé and Lega (1998).
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5.4.3 Mean exponential growth factor of nearby orbits

The formula (5.2) for the computation of the maximum Lyapunov exponent
can be rewritten in integral form as:

L = lim
t→+∞

1

t

∫ t

0

δ̇(t′)

δ(t′)
dt′ , (5.7)

where δ = ‖δp, δq‖ and δp(t), δq(t) are solutions of (5.1); δ̇ denotes, as usual,
the time derivative of δ. The mean exponential growth factor of nearby orbits
(MEGNO) was introduced by Cincotta and Simó (2000) as the quantity

Y (t) =
2

t

∫ t

0

δ̇(t′)

δ(t′)
t′dt′ . (5.8)

The evolution of this quantity as a function of time allows the determination of
the dynamical character of the considered trajectory (the trajectory p(t),q(t)
around which the variational equations (5.1) are computed). In fact, for a
quasi-periodic trajectory, for which δ grows linearly with time, Y (t) oscillates
with bounded amplitude around the value 2. Conversely, for a chaotic trajec-
tory, for which δ diverges exponentially with time and σ is the maximum Lya-
punov exponent, Y (t) oscillates around the linearly divergent solution y = σt.
Thus, introducing the running time-average of the MEGNO:

Ȳ (t) =
1

t

∫ t

0
Y (t′)dt′ , (5.9)

one has
lim

t→+∞
Ȳ (t) = 2 (5.10)

for a quasi-periodic trajectory and

lim
t→+∞

Ȳ (t) ∼ σ

2
t (5.11)

for a chaotic trajectory.
At first sight, the time-average of the MEGNO seems to be perfectly equiv-

alent to the maximum Lyapunov exponent. Indeed, it shares the same nice
property of depending solely on the considered trajectory, and not on the coor-
dinates and on the metric used for the computations. However, Cincotta and
Simó showed that Ȳ (t) converges to its limit value faster than the estimate
of the Lyapunov exponent. This is because the latter keeps a long memory
of the initial transient evolution of the tangent vector δp, δq; on the contrary,
the integral (5.8) gives a preferential weight to the late evolution of δp, δq,
thus losing more rapidly the memory of the initial transient evolution.
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Cincotta and Giordano (2001) have provided numerous examples of the
application of the MEGNO on systems with two and three degrees of freedom.
In all cases, the MEGNO was found to be advantageous with respect to the
computation of the maximum Lyapunov exponent: in equal computing time,
the MEGNO allowed the detection of finer chaotic regions than the MLE.

5.4.4 Mean, maximal and minimal values of the actions

The idea of this approach is inspired by the frequency analysis method. If
an orbit has a regular evolution (it is periodic or lies on a KAM torus), not
only are the frequencies constant, but also the behavior of the actions repeats
periodically or quasi-periodically (see for instance Fig. 5.1a). Therefore, the
minimal, the maximal and the mean values of the actions on a time interval
[t0, t0 + T ] do not depend on the initial time t0 of the interval, provided T is
large enough.

From this consideration, an easy criterion to distinguish regular from
chaotic orbits is derived: regular orbits are those for which the mean, maxi-
mal or minimal values of the actions do not change from one time interval to
another; chaotic orbits are those for which these values change with t0. This
criterion was first used by Laskar (1994) to illustrate the long-term evolution of
the planets, and since then has been repeatedly applied (see for instance Mor-
bidelli, 1997, Morbidelli and Nesvorný, 1999) to point out slow changes of the
orbital elements of asteroids and Kuiper belt objects. The advantage of this
technique with respect to frequency analysis is its much easier implementation;
moreover it gives more easily readable information on the long-term changes of
the mean orbital elements (semimajor axis, eccentricity and inclination). Con-
versely, frequency analysis allows easy identification of the resonance(s) that
are responsible for the origin of chaos, which cannot be obtained by simply
monitoring the actions.

The maximal, minimal and mean values assumed by the actions on a time
interval [0, T ] can also be studied as a function of the initial conditions, sim-
ilarly to what can be done for the frequencies. This again allows one to dis-
tinguish regular from chaotic regions. An extensive discussion, and examples
based on the standard map, can be found in Contopoulos et al. (1997).



Chapter 6

INTERACTIONS AMONG
RESONANCES

6.1 Two degrees of freedom

In Chapter 4 we have seen that a resonance located in p0 in reality influ-
ences the dynamics in a neighborhood centered on p0, whose size is of order
∼ √

c, where c is the coefficient of the resonant harmonic. As a consequence,
resonances located at different places in the action space are effectively sepa-
rated only if the coefficients of the corresponding resonant harmonics are small
enough, otherwise their domains of influence overlap.

To clarify, consider the quasi-integrable Hamiltonian

H(p1, p2, q1, q2) =
p21
2

+ 2πp2 + ε[cos(q1) + cos(q1 − q2)] (6.1)

and consider the resonances q̇1 = 0 and q̇1 − q̇2 = 0, located respectively at
p1 = 0 and p1 = 2π for each value of p2. To study the dynamics of this system,
to a first approximation we can consider each resonance separately, taking into
account only its corresponding harmonic and neglecting the other harmonic.
More precisely, we use the integrable single resonance models H = p21/2 +
2πp2+ ε cos(q1) and H = p21/2+2πp2+ ε cos(q1− q2) to compute the Poincaré
section around p1 = 0 and p1 = 2π respectively. The resulting description
of the dynamics is illustrated in Fig. 6.1. If ε is small, the separatrices of
the two resonances are far; the domains, delimited by the dashed lines, where
the dynamics is significantly influenced by each resonance, are very far apart.
The assumption that the resonances are separated turns out to be a good
approximation; from Chapter 4, we know that in reality the separatrix of each
resonance is split, giving rise to a small chaotic region, but we expect that

107
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Figure 6.1: Poincaré sections of two resonances, computed using integrable
single resonance models. When their sizes are small, the resonances are well
separated, and the single resonance approximations are reliable (panel a: left).
Conversely, when their sizes are large, resonances overlap (panel b: right). In
the latter case, the generation of large-scale chaos may be expected.

many KAM tori exist between the two resonances, so that each chaotic region
is locally confined. In particular, it is not possible for the motion to pass from
one resonance to the other.

The situation is completely different when ε is large (Fig. 6.1b). In this
case the domains where the dynamics is strongly influenced by either resonance
overlap each other, and the separatrices of the two resonances, as computed
on the Poincaré section with the corresponding integrable models, appear to
intersect. The approximation that each resonance is isolated therefore breaks:
the global dynamics cannot be studied using the integrable single resonance
models. It is reasonable to expect that in this situation KAM tori do not
exist between the two resonances, so that the chaotic regions associated to the
separatrices of the two resonances are in reality connected, and approximately
extend over all the space occupied by the two resonances. Roughly speaking,
an initial condition in the overlapping region does not know which resonance
it belongs to, and “hesitates” about which guiding trajectory (the curves in
Fig. 6.1b) it should follow. As a result, the evolution of an initial condition
in the chaotic region can freely pass from one resonance to the other one, the
action p1 evolving from 0 to 2π and vice versa and the two resonant angles q1
and q1 − q2 alternatively librating and circulating.

The intersection of the separatrices of different resonances, each computed
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Figure 6.2: Left: the simple overlapping criterion between the two main reso-
nances at p1 = 0 and p1 = 2π (ε = 2.47). Middle: overlapping criterion taking
into account also the resonance at p1 = π (ε = 1.46). Right: overlapping
criterion taking into account the width of the chaotic layers (dotted regions)
of the two main resonances (ε = 1.2).

using integrable single resonance models, has been considered by Chirikov
(1960, 1979) and Contopoulos (1966) as a practical criterion to quantitatively
estimate the threshold value of ε that corresponds to the disappearance of
KAM tori and the transition to global chaos. This criterion is now usually
known as the Chirikov criterion, and its accuracy has been tested by Chirikov
(1979) on the standard map (3.13). Taking into account only the two main
resonances q̇1 = 0 and q̇1 − q̇2 = 0 at p1 = 0 and p1 = 2π, Chirikov found a
critical value of ε ∼ 2.47. The real value for the transition to global chaos,
which corresponds to the destruction of the golden KAM torus (the torus with
frequency ratio q̇1/q̇2 = (

√
5− 1)/2), is ε ∼ 0.9716, as determined numerically

by Green (1979). Therefore the result provided by the Chirikov criterion
seems only partially satisfactory and very approximate from the quantitative
viewpoint. In general the Chirikov criterion underestimates the threshold of
transition to global chaos, in the sense that the actual transition occurs for
a value of the perturbing parameter which is smaller than the one predicted
by the criterion. This is due mainly to two facts: first, one neglects all the
resonances whose harmonics are not present in the original Hamiltonian but
are generated after a suitable number of perturbation steps (see Chapter 2),
with coefficients of higher order in ε, and, second, one completely neglects the
mutual interactions and deformations induced among the resonances. Chirikov
tried to improve from the quantitative point of view the results of his criterion
by taking into account more and more perturbation terms. Taking into account
the resonance 2q̇1− q̇2 = 0 at p1 = π, whose harmonic coefficient is of order ε2,
the estimated threshold decreases to ε = 1.46, and taking into account also the
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Figure 6.3: Sketch of the overlapping of resonances as a function of the pertur-
bation parameter for a two-degree of freedom system. The resonance widths
depend on the size ε of the perturbation. If the perturbation is larger than a
given threshold, resonance overlapping occurs. For ε sufficiently small, reso-
nances cannot overlap, and invariant tori fill almost the entire volume.

width of the chaotic layers around the two main resonances one gets ε = 1.2.
These attempts are summarized in Fig. 6.2 and indicate that the accuracy of
the criterion is improved when more and more resonant perturbation terms
are considered.

From the discussion above, we can sketch the global dynamical behavior
of a two-degree of freedom system as a function of the perturbation parameter
ε as done in Fig. 6.3. The figure shows on the x axis the ratio ω1/ω2 of the
frequencies of q1 and q2 and on the y axis the size of the perturbation. The
resonances are located at rational values of the frequency ratio, and therefore
are represented by vertical dashed lines in the plot. The solid curves show the
amplitude of each considered resonance, measured in terms of the frequency
ratio. The latter is obtained as follows: in the integrable single resonance
model one computes the values p+ and p− of the action at the apex of the
upper and lower separatrix (for instance p1 = ±2

√
ε for the q̇1 = 0 resonance

in the Hamiltonian (6.1)), and then shows the values of the unperturbed fre-
quency ratio in p+ and p−. Because the size of the coefficients of the resonant
harmonics increase with the size of the perturbation and the widths of the
resonances scale as the square roots of such coefficients, the resonance am-
plitudes in Fig. 6.3 have a typical V shape. As a consequence, if the size of
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the perturbation is smaller than a threshold value (the latter being in gen-
eral a function of the frequency ratio), the resonances do not overlap, and
KAM tori are expected to exist among the resonances. The orbits cannot pass
from one resonance to another and are therefore confined in the action space.
Conversely, above the threshold, resonances overlap and KAM tori disappear.
The motion can therefore pass from one resonance to the other, and the fre-
quency ratio evolves with time following a sort of random walk: the width of
the steps of the walk is approximately given by the resonance amplitudes, and
the timescale for one step is of the order of the typical period of libration of
the resonant critical angle. In this book, we will refer to this phenomenon as
Chirikov diffusion. By the word diffusion, we do not imply that the evolution
of the frequency ratio strictly follows a diffusion equation, but simply that it
has macroscopic variations, revealing transport in the action space.

It should be noted that Fig. 6.3 has been drawn only for resonances up to
some finite order, while in principle resonances of every order should be con-
sidered. However, as one can see from the figure, the widths of the resonances
rapidly decrease with the resonance order. This comes from the fact that the
coefficients of the resonant harmonics decrease exponentially with the order
of the considered resonances, while the mutual distance among resonances of
order K decreases as 1/K. As a consequence, high-order resonances play a
negligible role for what concerns global resonance overlapping. The resonances
that may overlap are of order smaller than some threshold value. This is a
general fact also for systems with more than two degrees of freedom, so we
will come back to this important point in Section 6.3.

6.1.1 Heteroclinic intersections

As we have seen above, the Chirikov criterion for the transition to global chaos
is very attractive and intuitive; unfortunately it is a very heuristic argument
and a complete rigorous theory does not yet exist. The idea of resonance
overlapping can be founded on the concept of heteroclinic intersection. This
is a very precise mathematical concept: it is the intersection of the stable and
the unstable manifolds of two different resonances (contrary to the homoclinic
intersection discussed in Chapter 4, which is between the stable and the unsta-
ble manifolds of the same resonance). Unfortunately, it is much more difficult
to study heteroclinic intersections than homoclinic intersections. Homoclinic
intersections can be studied in the framework of perturbation of the integrable
case, where the stable and the unstable manifolds coincide. Conversely, het-
eroclinic intersections between different resonances cannot be studied using
perturbation theory, because an integrable approximation which takes into
account both resonances does not exist, at least in the generic case. The
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Figure 6.4: Homoclinic and heteroclinic intersections between the two main
resonances of the standard map, for several values of the parameter ε. See
text for comments.
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portrait is indeed very complicated; up to now, only numerical computations
can give us a clear view of what happens. Remember in fact from Chapter 4
that one can numerically compute the stable and the unstable manifolds of
hyperbolic periodic orbits. Figure 6.4 shows how heteroclinic intersections oc-
cur between the manifolds of the two main resonances of the standard map.
Panel (a) is done for ε = 0.314 for which the dynamics is quasi-integrable:
the stable and the unstable manifold of each of the two resonances seem to
coincide at the resolution of the picture. Panel (b) is for ε = 0.942. The
resonances are still well separated; the homoclinic tangle of each resonance is
now visible near the hyperbolic equilibrium points of the two resonances. On
panel (c) (ε = 1.632) the lobes of the stable and the unstable manifolds of the
two resonances are now very close, but still don’t intersect, at least for what
can be seen on the figure (the manifolds have infinite length, but evidently
only a finite part of them can be computed and plotted). In this and in the
following panels only the unstable manifold of the resonance at p1 ∼ 0, and
the stable one of the resonance at p1 ∼ 2π are plotted, otherwise the portrait
would be too confused. On panel (d) (ε = 1.696) the lobes finally intersect
transversally in what is called the heteroclinic point. One can apply the same
reasoning done in Chapter 4 for the homoclinic points, in order to show the
existence of infinite heteroclinic points and of a heteroclinic tangle. Unfor-
tunately, on the pieces of manifold computed here, the multiple heteroclinic
intersections and the heteroclinic tangle cannot yet be seen. They are more
and more evident on the successive images (panels (e) and (f)) obtained for
ε = 2.198 and ε = 3.14.

It is interesting to compare the threshold value found here for heteroclinic
intersections, i.e. εH ∼ 1.66, with the real threshold value for the transition
to global chaos, i.e. εG = 0.9716 (the threshold for the disruption of the
golden torus), and with the critical value provided by the Chirikov criterion,
i.e. εC = 2.47. Notice that εH ≫ εG because we take into account only the
two main resonances, neglecting all the higher-order resonances in between;
if we had looked for heteroclinic intersections of the complete resonant chain,
we would have found a critical value much closer to the real one (see Olvera
and Simo, 1987). Alternatively, one should compute the stable and the un-
stable manifolds of the two main resonances on their infinite length, which is
evidently impossible. Conversely, εH ≪ εC since the Chirikov criterion takes
into account only the unperturbed resonance amplitude, neglecting mutual
perturbations and the width of the homoclinic lobes. The computations illus-
trated in Fig. 6.4 show how complicated is the real portrait of the dynamics
and one can imagine how difficult it would be to describe these phenomena in a
rigorous mathematical way; it is therefore not surprising that a complete the-
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oretical basis of the Chirikov criterion and of the Chirikov model of diffusion
has not been provided up to now.

6.2 More than two degrees of freedom

Understanding the global dynamics of systems with more than two degrees
of freedom is much more difficult than in the two-degree of freedom case.
The geography of resonances, namely the relative location of the resonances
in the frequency space, is in fact much more complicated. In the three-degree
of freedom case, for instance, resonance locations can be represented on the
plane with coordinates ω1/ω2 and ω1/ω3, where ω1, ω2, ω3 are the frequencies
of the system. All possible lines with rational slope on such a plane represent
resonances of multiplicity 1 (see Section 1.10 for a definition of multiplicity),
and form what is usually called the resonance web or Arnold web. It is then
evident that, differently from the two-degree of freedom case, resonant lines can
intersect, the intersection points corresponding to resonances of multiplicity 2.
Because of these intersections, resonance overlapping always occurs (at least
locally in the vicinity of resonances of multiplicity larger than 1) so that the
extension of the Chirikov criterion is not straightforward. Moreover, we know
from Chapter 3 that the existence of KAM tori does not prevent transport
in action space. As a consequence, while in two degrees of freedom only two
situations occur – globally stable, where resonant motion is confined by KAM
tori; and globally unstable, caused by resonance overlapping – in more than
two degrees of freedom the dynamical behavior is more complicated.

Nevertheless, for small enough perturbations, Nekhoroshev (1977, 1979)
has achieved a rigorous result of practical global stability of multidimensional
systems.

6.2.1 The Nekhoroshev theorem

The Nekhoroshev theorem concerns quasi-integrable, n-degree of freedom
Hamiltonians of type H(p,q) = H0(p) + εH1(p,q), where p,q are action–
angle variables defined in a domain D ≡ G × Tn; G (space of actions) is a
domain of Rn and Tn (space of angles) is the n-dimensional torus. In the
following we denote by G − ∆ the set of points p which are contained in G
together with a neighborhood of radius ∆. With these premises, the Nekhoro-
shev theorem can be stated in the following form:

Let H(p,q) = H0(p)+ εH1(p,q) be analytic in D ≡ G ×Tn, with G ⊂ Rn

open and bounded. Consider the matrix C(p) defined by Cij(p) =
∂2H0
∂pi∂pj

(p),



6.2. MORE THAN TWO DEGREES OF FREEDOM 115

and assume the convexity hypothesis:

C(p)v · v 6= 0 ∀p ∈ G and ∀v ∈ Rn \ 0 . (6.2)

Then, there exist positive constants ε∗, α, β, a and b such that for any ε < ε∗
one has

‖p(t)− p(0)‖ ≤ ∆ ≡ αεa ,

for all p(0) ∈ G −∆ and for all |t| ≤ T (ε), where

T (ε) = β

(

ε∗
ε

) 1
2

exp

(

ε∗
ε

)b

. (6.3)

A few comments are in order. The Nekhoroshev theorem does not exclude
the possibility of chaotic motions. Indeed, the actions p can possibly change
in a chaotic way: the theorem just states that these changes are bounded
by a quantity ∆ up to time T . Slow drifts can force the actions to change
more than ∆ with respect to the initial conditions only after a time larger
than T , as sketched in Fig. 6.5. The important point is that the stability
time T grows exponentially with respect to ε∗/ε. Therefore, as soon as ε is
somewhat smaller than the threshold ε∗, the stability time becomes extremely
long and can possibly exceed the physical lifetime of the system (for instance
the age of the Solar System), thus providing a result of practical stability. We
stress that such an important stability result is achieved uniformly for every
initial condition p,q with p in G − ∆. Obviously, orbits closer than ∆ to
the borders of the action domain are excluded, since they can escape from G
in a short time. Concerning the hypotheses of the theorem, we remark that
it is crucial to deal with analytic Hamiltonians. For reasons which will be
explained below, one should expect that differentiable Hamiltonians have a
stability time T which is a power of ε∗/ε, instead of having an exponential
dependence. The role of the convexity condition (6.2) will also be explained
below; it is worth mentioning that this condition can be weakened, using a
more technical condition called steepness (Nekhoroshev, 1979), the discussion
of which goes beyond the scope of this book.

The Nekhoroshev theorem is much more than the celebrated long time
stability result reported in the statement above: it proves the existence of a
specific structure of the phase space from which the stability result is derived.
However this fact is usually hidden in the proof of the theorem, thus receiving
little attention. In order to bring this structure into light, we sketch in the
following the basic construction of the Nekhoroshev theorem.

As we have seen in Chapter 2, the harmonics εck(p) exp(ιk · q) in the
perturbation εH1 can be reduced to higher order in ε by means of the Lie
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2∆
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T ~ exp (1/ε)

Figure 6.5: The Nekhoroshev theorem: whatever the initial conditions, the
actions may evolve chaotically, but the time T required to change by more than
a quantity ∆(ε) is exponentially long in 1/ε. If the perturbation parameter
ε is small, the Nekhoroshev theorem therefore gives a result of “practical”
stability, the time T being longer than the physical lifetime of the system
under consideration. Reprinted from Fig. 1 of Morbidelli and Guzzo (1996),
with permission from Kluwer Academic Publishers.

transforms only away from the corresponding resonances k · ω = 0. Near the
resonance the harmonic can’t be removed and must be kept in the resonant
normal form. Since resonances are dense in the action space, in any given
open subset of G an infinite number of harmonics cannot be removed from
the perturbation. This fact prevents in general the integrability of the system
(Poincaré, 1892). The idea of Nekhoroshev is to consider resonances only up
to a threshold order K.

This approach is very important. Indeed, on one hand, the number of
resonances up to a given order is finite, and so each open subset of the space
of actions contains only a finite number of resonant lines, as in Fig. 6.6. On the
other hand the analyticity of the Hamiltonian implies that the neglected terms,
corresponding to resonances of order larger than K, have a size not exceeding
exp(−Kσ) (for some positive σ). It will be shown that the threshold K can be
chosen as large as 1/εb (with some positive b < 1), so that the neglected terms
turn out to be exponentially small in 1/εb. This will be a key point to obtain
a stability time T (ε) that depends exponentially on 1/εb, as in (6.3). Note
that if the Hamiltonian is only r times differentiable (instead of analytic), one
expects that some of the neglected terms are of size K−r, i.e. 1/εrb. As a
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a) b)

Figure 6.6: Sketch of the geometric construction of the Nekhoroshev theorem
for a three-degree of freedom system in the frequency plane of coordinates
ω1/ω3 and ω2/ω3. The three bold lines denote the locations of three resonances
of multiplicity 1 and form a mesh of the Arnold web. The points where
these resonances cross each other correspond to the locations of resonances of
multiplicity 2. See text for discussion. Reprinted from Fig. 2 of Morbidelli
and Guzzo (1996), with permission from Kluwer Academic Publishers.

consequence, one would obtain a stability time T (ε) that is not larger than
∼ 1/εrb.

For the sake of simplicity, we now restrict our attention to the three-degree
of freedom case. Moreover, for a given value of the Hamiltonian, we represent
the resonant structure of the system on the frequency plane of coordinates
ω1/ω3 and ω2/ω3, where ω = gradpH0. These choices allow us to draw in
Fig. 6.6 nice explanatory pictures. Remember that in the frequency plane the
resonances are represented by straight lines with rational slopes.

We first define a nonresonant domain, as the set of frequencies which are
far enough from all resonances up to order K. In Fig. 6.6a it is the discon-
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nected domain, bounded by the dotted lines. More precisely, it is defined as
the set of frequencies ω such that |k ·ω| > √

ε for all k with |k| ≤ K.1 In the
nonresonant domain, one can construct the Birkhoff normal form, eliminating
all harmonic terms in the perturbation εH1 of type e

ιk·q with |k| ≤ K. Indeed,
by construction, all these terms are nonresonant in such a domain. The re-
sulting Hamiltonian depends only on the new actions, apart from a remainder
RK , made (essentially) of harmonic terms of order larger than K, which are
exponentially small. Therefore, neglecting at most exponentially slow diffu-
sion forced by RK , one can conclude that the frequencies of the system don’t
change with time in the nonresonant domain.

As a second step, we consider the single resonance domains, bounded by
the dashed lines in Fig. 6.6b, which are characterized by the presence of only
one resonance of order smaller than K. One can then construct a single
resonance normal form, eliminating all nonresonant terms of order smaller
than K. Then one reduces the Hamiltonian to having only one resonant term
(of order |k| ≤ K) and a remainder RK made of terms of order larger than
K, which is, again, exponentially small. Neglecting the remainder, such a
Hamiltonian is still integrable but depends on one resonant angle, so that
the actions (and, by consequence, the frequencies) are no longer fixed. They
change, driven by the resonant harmonic, along what is usually called the fast
drift direction, sketched in Fig. 6.6b by an arrow. The convexity hypothesis
(6.2) guarantees that the resonant motion is bounded, as in the case of the
pendulum. In fact, for a convex Hamiltonian, one can prove that the fast drift
direction is transversal to the resonant line. Therefore, following indefinitely
the fast drift direction, the motion would enter the nonresonant domain. But
this is impossible, because in the nonresonant domain the frequencies are fixed,
as explained above. On the other hand, transversal motion with respect to
the fast drift direction can be forced only by the nonintegrable remainder RK ,
so that it is exponentially slow. This slow motion is usually called Arnold
diffusion. Also the separatrix splitting is caused by the remainder RK , so
that its amplitude is at most exponentially small (Neishtadt, 1984).

As a third step, we consider the double resonance domains, centered around
the resonance crossings (the resonances of multiplicity 2) bounded by the light
continuous lines in Fig. 6.6c. In such domains, the resonant normal form has
two independent resonant terms of order smaller than K. Then, the resonant
normal form is generically nonintegrable, and one expects that these domains

1Recall from Chapter 4 that the size of a resonance is proportional to the square root of
the coefficient of the resonant harmonic (ε in this case); therefore, in the definition of the
nonresonant domain, one must exclude a strip of width

√
ε around the considered resonant

lines.
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are characterized by strongly chaotic motions and that frequencies can move
in any direction of the plane around the resonance crossing. However, again
this chaotic motion is bounded. Indeed, if frequencies moved far enough from
the double resonance point, they would enter either the nonresonant domain
or one of the single resonance domains. But this is impossible, since in the
nonresonant domain frequencies are fixed, and in the single resonance domains
frequencies can change only along the fast drift direction.

In conclusion, neglecting the exponentially small remainder RK , for each
initial condition, the motion is confined within one of the resonance domains.
As a consequence, frequencies (and actions) can change by at most a quantity
equal to the radius of the double resonance domains (in n degrees of freedom
the worst case corresponds to the domains constructed around resonances of
multiplicity n − 1). It can be proven that this radius is proportional to εa

for some positive a < 1, (a decreasing with increasing number of degrees of
freedom).

Moreover, in order to have a consistent picture as in Fig. 6.6, the num-
ber of resonances of order smaller than K must not be too large, otherwise
there wouldn’t be a place for the nonresonant domain, and the construction
of Fig. 6.6 would be impossible. The fact that the largest resonance domains
are of order εa gives an upper bound of type 1/εb on the choice of K, as
anticipated above.

Finally, we take into account the exponentially small remainder RK . It is
evident that this remainder can force diffusion in every direction of frequency
space, but only with exponentially small speed. Then the result concerning
bounded motion, deduced neglecting RK , will be true in principle only up to
exponentially long times.

The scheme for the proof of the Nekhoroshev theorem sketched in this
section is described with all mathematical details in Pöschel (1993). The
reader can consult the papers by Nekhoroshev (1977), Benettin et al. (1985).
and Lochak (1992) for alternative approaches.

6.2.2 Nekhoroshev structure

The construction of the Nekhoroshev theorem can be iterated in order to
explore the dynamical structure of the system also for what concerns reso-
nances of order larger than Nekhoroshev’s threshold K ∼ 1/εb (Morbidelli
and Giorgilli, 1995b).

Indeed, in the nonresonant domain defined above (denoted hereafter by
GK), after the elimination of the resonances up to order K, in the new action–
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Table 6.1: Scheme of iteration of the Nekhoroshev theorem. The first column
gives the number of iterations N ; the second the size ̺ of the connected
components of the domain of definition of the Hamiltonian; the third the size
of the perturbation ‖H1‖; the fourth the cut-off order K of the considered
resonances; the fifth the Nekhoroshev stability time TS ; the sixth the size
̺K of each connected component of the nonresonant domain; and the last
one gives the size of the remainder RK of the normal form constructed on
the nonresonant domain. The iteration consists in applying the Nekhoroshev
theorem subsequently on the nonresonant domain defined at the previous step,
i.e. substituting columns 6 and 7 into columns 2 and 3. Powers of ε are not
indicated

N ̺ ‖H1‖ K TS ̺K ‖RK‖
1 1 ε 1/ε exp(1/ε) ε exp−1(1/ε)
2 ε exp−1(1/ε) exp(1/ε) exp2(1/ε) exp−1(1/ε) exp−2(1/ε)
3 exp−1(1/ε) exp−2(1/ε) exp2(1/ε) exp3(1/ε) exp−2(1/ε) exp−3(1/ε)
. . . . . . . . . . . . . . . . . . . . .
n exp−n+2(1/ε) exp−n+1(1/ε) expn−1(1/ε) expn(1/ε) exp−n+1(1/ε) exp−n(1/ε)
. . . . . . . . . . . . . . . . . . . . .

angle variables p′,q′ the Hamiltonian has the form:

H ′(p′,q′) = H′
0(p

′) + ε′H′
1(p

′,q′) , with ε′H′
1(p

′,q′) ≡ RK(p′,q′) . (6.4)

This is again an autonomous convex system, but the new perturbation is ex-
ponentially small with respect to the original one, because ε′ ∼ exp(−1/εb).
Then, applying the Nekhoroshev theorem to this Hamiltonian (i.e. consider-
ing resonances up to a new cut-off K ′ ∼ 1/ε′b ∼ exp[b/εb]) one proves the
global stability of motion in GK for superexponentially long times, namely
up to T ∼ exp[exp(1/εb)]b. Moreover, one finds a new nonresonant domain
GK ′ , characterized by the absence of resonances up to order K ′. On GK ′ one
can introduce new action–angle variables so as to transform the Hamiltonian
into the sum of an integrable part and a remainder RK ′ , the latter super-
exponentially small. This procedure can be iterated, and it is proved to be
convergent to a set of invariant KAM tori of large volume (Giorgilli and Mor-
bidelli, 1997). The fact that, at each step of the iteration, the nonresonant
domain is fragmented into smaller and smaller pieces never prevents the appli-
cation of the Nekhoroshev theorem: indeed the most relevant parameter, i.e.
the ratio between the size of the perturbation and the size of each connected
component of the domain, decreases at each step. The iteration procedure of
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b)a)

Figure 6.7: Panel a: Sketch of the Nekhoroshev structure. The resonances
of a given order cross over at resonant nodes but do not overlap: there is
always a nonresonant domain within each mesh of the resonance web. This
picture repeats at every scale, i.e. looking subsequently to resonances with
increasing order. Panel b: resonances of some order overlap. The nonresonant
domain cannot be defined. Invariant tori are destroyed. Motion can pass from
one resonance to another. As in Fig. 6.6, the representation of the resonant
structure is sketched here on the frequency plane for a three-degree of freedom
system. Reprinted from Fig. 3 of Morbidelli and Guzzo (1996), with permission
from Kluwer Academic Publishers.

the Nekhoroshev theorem is summarized in Table 6.1.

In conclusion, the global picture that we obtain in the light of the Nekhoro-
shev theorem and of its successive iterations is the one sketched in Fig. 6.7.
When the perturbation parameter ε is sufficiently small the Nekhoroshev the-
orem can be applied. The dynamics is structured (Fig. 6.7a). Resonances of a
given order cross over at resonant nodes, in correspondence to the resonances
of higher multiplicity, in the neighborhood of which one can find well-defined
chaos, but resonances do not completely overlap, in the sense that there is
always a nonresonant domain in each mesh of the resonance web. Moreover,
this scenario is true at every scale, i.e. looking successively at resonances of
increasing order. The core of this structure is the set of invariant KAM tori,
which in this view is the nonresonant domain in the limit where the num-
ber of iterations of the Nekhoroshev theorem is pushed to infinity. We will
say hereafter that a dynamical system characterized by such a structure is a
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Nekhoroshev system.

The inverse situation is the one sketched in Fig.6.7b. At some order,
resonances overlap. There is no place for a nonresonant domain, and invariant
tori no longer exist. The overlapping of resonances allows orbits to pass from
one resonance to another, in a chaotic “fast” (Chirikov-like) diffusion. The
phase space is affected by large-scale chaos. Since the width of single resonant
domains scales as

√
ε this situation happens if ε is not sufficiently small.

6.2.3 Superexponential stability of KAM tori

From Table 6.1, comparison between the size ̺ of the nonresonant domain
and its stability time TS , at each order n of the iteration of the Nekhoroshev
theorem, suggests that the time required to escape from the vicinity of a KAM
torus is superexponentially long with the inverse of the initial distance from
the torus.

This can also be proven in a simple direct way (Morbidelli and Giorgilli,
1995a). As shown in Section 3.2, starting from the Kolmogorov normal form,
in the neighborhood U̺ of radius ̺ of a KAM torus one can construct an
optimal Birkhoff normal form, whose remainder has size ε̺ ∼ exp[̺−1/(τ+1)].
The Hamiltonian in U̺ is therefore written as H(I,ϕ) = H0(I)+ ε̺R(I,ϕ). If
H0(I) satisfies the hypotheses of the Nekhoroshev theorem, applying the latter
one proves that the time required to escape from U̺, starting from U̺ − ε̺, is
proportional to exp[1/εb̺] = exp{exp[b/̺1/(τ+1)]}.

This improves the result on the stability of KAM tori already discussed in
Section 3.2, and stresses the importance that KAM tori have in structuring
the dynamics of Hamiltonian systems with any finite number of degrees of
freedom.

6.3 Exploring the dynamical structure of a given
system

At the light of Section 6.2.2, the correct attitude for approaching the investi-
gation of a given dynamical system is to search for an answer to the following
questions: has the system the Nekhoroshev structure? In the negative case,
at which order do resonances overlap?

Unfortunately, it is not an easy task to answer these questions in an an-
alytic way. This can be understood with the following qualitative argument,
inspired by the work of Arnold (1963b). The width of a resonant domain scales
as the square root of the coefficient of the corresponding resonant harmonic,
i.e. scales with the order K of the resonance as

√
ε exp(−Kσ); the number



6.3 EXPLORING THE DYNAMICAL STRUCTURE 123

Figure 6.8: The relative volume VK filled by all resonances of order K, as
given by formula (6.5). In the first picture, ε is small, so that for any K
the volume VK is always smaller than the volume of the phase space (here
normalized to 1). Therefore resonances cannot globally overlap; invariant tori
exist and the system has the Nekhoroshev structure. In the second and third
pictures, the volume VK is larger than 1 for some K. Therefore resonances
must overlap, and invariant tori cannot exist. The order at which resonances
globally overlap depends on ε. If ε is very large (second picture), the order is
small; otherwise (third picture) the order can be very large, close to the one
corresponding to the maximum of VK . Reprinted from Fig. 4 of Morbidelli
and Guzzo (1996), with permission from Kluwer Academic Publishers.

of resonances of order K grows as 2nKn−1, n being the number of degrees
of freedom. Therefore, the relative volume of the phase space covered by all
resonances of order K is

VK ∼ 2n
√
εKn−1 exp(−Kσ) . (6.5)

The volume VK has a maximum value for K = (n−1)/σ, and decays exponen-
tially for larger K. Figure 6.8 plots VK as a function of K, for different values
of ε. If ε is small, the volume covered by resonances of order K is smaller, for
every K, than the volume of the full phase space (Fig. 6.8a). This implies
that, at all orders, resonances cannot overlap completely, and there is some
volume free from resonances where invariant tori can exist; the system has the
Nekhoroshev structure.2 If ε is larger, then for some K the relative volume
VK is equal to one. As a consequence, the resonances of order K must overlap

2Note that, from the rigorous mathematical viewpoint, in order to prove the existence of
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completely, invariant tori cannot exist and the system loses its Nekhoroshev
structure. The minimal order K at which resonances overlap depends on ε.
If ε is very large, this can happen at very low order (Fig. 6.8b), but if ε is
smaller, this can happen for K closer to Kmax = (n − 1)/σ (Fig. 6.8c). The
latter can be very large if the number n of degrees of freedom is large or the
parameter of analyticity σ is small. For example, the dynamical system for
a realistic description of the motion of an asteroid has at least 10 degrees of
freedom, and σ can be estimated to be about 0.1, so that global resonance
overlap can be expected at order 100. . .!

Now, the analytic algorithms, in the limit of implementation imposed
by modern technology (algebraic manipulators, seminumerical computations
etc.), allow the investigation of the location and the amplitude of resonances
only up to a very limited order. Therefore, one can conclude whether a given
system has the Nekhoroshev structure only if Kmax is small (small number of
degrees of freedom, large σ). As a matter of fact, all successful applications
of the Chirikov criterion of resonance overlapping (see Contopoulos, 1966;
Chirikov, 1979; Wisdom, 1980) have been achieved on two-degree of freedom
systems, where good results can be obtained at low to moderate order.

The situation is not so desperate if one turns to the numerical exploration
of dynamical systems. The tools illustrated in Chapter 5 allow one to efficiently
detect the resonances and the chaotic zones, so that one can efficiently check
whether the resonances overlap, or leave enough room for the existence of
KAM tori. A nice demonstration of this way to proceed has been given by
Laskar (1993), Kaneko and Konishi (1994) and, more recently, Froeschlé et al.
(2000). Froeschlé et al. studied the three-degree of freedom Hamiltonian

H =
p21
2

+
p22
2

+ p3 + ε

(

1

cos q1 + cos q2 + cos q3 + 4

)

. (6.6)

The unusual dependence on the angles of (6.6) has been cleverly chosen in
order to have, in a compact form, a Hamiltonian whose Fourier expansion has
an infinite number of harmonics. To explore the dynamical structure of this
system, the authors computed the fast Lyapunov exponent (see Section 5.4.1)
for 250,000 orbits, with initial p1 and p2 chosen on a regular grid and initial
phases of the angles equal to zero. Figure 6.9 shows, with a color code, the
value of the FLI as a function of the initial (p1, p2). Let us first focus on the top
left panel, which concerns the case with ε = 0.01. The discontinuities of the

invariant tori one has to show that the sum of the VK , for K ∈ [1,∞), is smaller than 1;
however, since most high-order resonance domains are actually covered by low-order reso-
nance ones, the sum of VK leads to an overestimate of the global resonance volume, so that
it is more intuitive to show in Fig. 6.8 the VK distribution rather than its integral.



6.3 EXPLORING THE DYNAMICAL STRUCTURE 125

Figure 6.9: The dynamical structure of (6.6) for two values of ε and two
different resolutions. The coordinates on each panel are the initial conditions
of the actions p1 and p2 (the initial values of the angles has been set to zero).
The color codes the decimal logarithm of the value of the Fast Lyapunov
Indicator, as a function of the initial conditions. 250,000 orbits have been
studied in each panel. The top panels refer to the case with ε = 0.01, while the
bottom panels are for ε = 0.04. The right panels magnify a region of particular
interest of the action plane. The integration time for the computation of the
FLI is 2000 on the right panels and 1000 on the left panels. See text for
comments. Reprinted from Fig. 2 of Froeschlé et al. (2000), with permission
from the American Association for the Advancement of Science.
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colors relative to the reddish background put in evidence the major resonances
of the system. The resonances appear as straight lines or straight bands,
because the frequencies of q1 and q2 are linear in p1 and p2, so that a resonant
relationship k1q̇1+k2q̇2+k3q̇3 = 0 gives a linear equation k1p1+k2p2+k3 = 0
for p1 and p2. The resonances which appear as bands are those for which
the choice of the initial angles allows the sampling of the regular libration
region inside them. In the opposite case, the resonances appear as individual
yellow lines. The FLI of the librating orbits is typically smaller than the the
FLI of the background nonresonant orbits, so that several bands are colored
in blue. The yellow lines (both those bounding the resonant bands and the
individual ones) show the separatrices or the chaotic regions associated with
the corresponding resonances. In fact, on the separatrices and in the chaotic
regions the motion is highly hyperbolic, so that the value of the FLI is large.

The resonant structure shown in the top left panel of Fig. 6.9 recalls the
representation of Fig. 6.7a, suggesting that, for this value of ε, the system
might have the Nekhoroshev structure. The bottom left panel shows the situ-
ation for a value of ε that is four times larger: the resonant bands are wider,
and more resonant yellow lines are visible, so that the existence of the Nekhoro-
shev structure, at least in the region where |p1| and |p2| are smaller than 0.5,
is more questionable. The real structure of the system appears more clearly if
one increases the resolution of the numerical investigation. This requires the
construction of a finer grid of initial conditions and to integrate the orbits for
a longer timespan, in order to detect weaker chaos and thinner resonances, as
done in the right panels of Fig. 6.9. If the system has the Nekhoroshev struc-
ture, the situation of nonoverlapping of resonances repeats at every resolution
level. Because the relative volume of KAM tori is large, the existence of a
nonresonant domain becomes more evident as one increases the resolution of
the analysis (top right panel). Conversely, if resonances of some order overlap
each other, a sufficiently detailed analysis must reveal the global chaoticity of
the system (bottom right panel). Thus, Fig. 6.9 allows the conclusion that, in
the considered region of the action space the system (6.6) has the Nekhoroshev
structure if ε = 0.01, while it is globally chaotic if ε = 0.04.

This example shows that numerical analysis, coupled with theoretically
based interpretations, is a very powerful way to understand the dynamical
properties of a given system. In modern Celestial Mechanics this kind of ap-
proach is becoming increasingly common (see for instance Chapters 11 and 12).



Chapter 7

SECULAR DYNAMICS OF
THE PLANETS

7.1 Lagrange–Laplace solution

With the basic concepts of the theory of Hamiltonian dynamics outlined in
the previous chapters, it is now possible to study in detail the dynamics in
the Solar System. In this and in the following chapter we study the secular
dynamics; the latter is the dynamics described by the secular normal forms
(see Section 2.5.1), once the remainders are neglected. Of course, the secular
dynamics is an accurate description of the real dynamics only in those regions
where the secular normal form can be constructed, i.e. away from mean motion
resonances, and its accuracy is increasingly better with the order of the secular
normal form.

For simplicity of notation, in the following we will omit all the superscripts
which were used in Section 2.5.1 to stress that the variables appearing in the
secular normal form are the mean modified Delaunay variables, namely those
obtained from the original modified Delaunay variables through the sequence
of Lie series. Moreover, we will refer to the mean orbital elements defined from
the mean modified Dealunay variables, omitting the adjective mean.

The planetary secular normal form does not depend, by definition, on
the mean longitudes of the planets λ1, . . . , λN . As a consequence, the actions
Λ1, . . . ,Λn are constants of motion. The secular system is therefore completely
described by the canonical action–angle variables Pj , Qj , pj , qj (j = 1, . . . , N).
Then, the “main” term H0(Λ1, . . . ,Λn) can be dropped from the normal form
Hamiltonian, which therefore assumes the structure:

H = εH1(P1, . . . , Pn, Q1, . . . , Qn, p1, . . . , pn, q1, . . . , qn; Λ1, . . . ,Λn) , (7.1)
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where for simplicity we have included in εH1 also the terms of the normal form
of higher order in ε; the quantities Λj play the role of constant parameters.

In (7.1) the small parameter ε (the mass of the largest planet relative to
that of the Sun) multiplies the entire Hamiltonian. Therefore, it no longer
plays the role of a perturbation parameter separating an integrable part from
its perturbation, but simply shows that the motion described by the Hamil-
tonian (7.1) is slow, with a natural timescale that is 1/ε longer than Jupiter’s
orbital period. Therefore, in order to study the Hamiltonian (7.1) with the
tools described in Chapter 2, one first has to find an integrable approximation
and a new perturbation parameter – say η – such that, in suitable action–angle
variables p,q, (7.1) can be written as H0(p) + H1(p,q), with H1 of order η
with respect to H0.

The classical way to proceed is the following. Noting that the eccentricities
and the inclinations of the planets are small, and that

Pj ∼
√
aj
e2j
2
, Qj ∼ 2

√
aj sin

2 ij
2
, (7.2)

one expands (7.1) in a Taylor series in
√

Pj,
√

Qj, writing

H(Pj , Qj , pj, qj) =
∑

n≥0

H(n)(Pj , Qj , pj , qj) (7.3)

where H(n) is a polynomial function of
√

Pj ,
√

Qj of degree n. The first
term H(0) of the series (7.3) vanishes, because D’Alembert rules (see Sec-
tion 1.9.3) imply that harmonics of pj, qj with coefficients that do not de-
pend on Pj , Qj cannot exist. Also, all the terms H(n) with odd n van-
ish, because the harmonics of the secular problem – whose general form is
∏

j P
αj/2
j Q

βj/2
j exp[ι

∑

j(mjpj + kjqj)] – must have
∑

j(mj + kj) = 0; this
implies that

∑

j(|mj | + |kj |) is even and therefore that also
∑

j(αj + βj) is
even. As a consequence, the leading term in (7.3) is H(2). Still because of the
D’Alembert rules, the general form of H(2) must be:

H(2) =
N
∑

j=1

N
∑

k=1

[

cj,k
√

2Pj
√

2Pk cos(pj − pk) + dj,k
√

2Qj
√

2Qk cos(qj − qk)
]

,

(7.4)
the coefficients cj,k, dj,k depending only on the constants Λj , namely on the
semimajor axes of the planets. Note that when k = j the terms in the sum
become 2cj,jPj +2dj,jQj . Introducing now the canonical polynomial variables
(1.78), (7.4) becomes:

H(2) =
N
∑

j=1

N
∑

k=1

[cj,k(xjxk + yjyk) + dj,k(vjvk + zjzk)] , (7.5)
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i.e. a quadratic polynomial form. The equations of motion of (7.5) are there-
fore linear and – as all linear differential equations – they are integrable. Thus,
we have identified in H(2) an integrable approximation of the secular Hamil-
tonian (7.1). The terms H(n) with n ≥ 4 will play the role of a perturbation,

their size relative to H(2) being [maxj(
√

Pj ,
√

Qj)]
(n−2) ∼ [maxj(ej , ij)]

(n−2).
As a consequence, while in the original planetary problem (2.39) the natu-
ral perturbation parameter ε is the largest planetary mass relative to that
of the Sun, in the secular problem the natural perturbation parameter η be-
comes the square of the largest value assumed by the planetary eccentricities
or inclinations during the secular evolution.

We now proceed to compute the solution of the equations of motion given
by H(2) – the so-called Lagrange–Laplace solution – and to introduce suitable
action–angle variables that allow one to write H(2) as a function of the sole
actions. For this purpose, we first look for new canonical variables x′j, y

′
j , v

′
j , z

′
j

such that (7.5) can be written as:

H(2) = −
∑

j

[

gj
(x′j)

2 + (y′j)
2

2
+ sj

(v′j)
2 + (z′j)

2

2

]

, (7.6)

where gj and sj are coefficients depending only on the mean semimajor axes
of the planets. Then it will be easy to introduce new action–angle variables
P ′
j , p

′
j , Q

′
j, q

′
j with the inverse of transformation (1.78), to write

H(2) = −
∑

j

[gjP
′
j + sjQ

′
j] . (7.7)

The Hamiltonian (7.5) can be rewritten in matrix form as:

H(2) = x ·Ax+ y ·Ay + v ·Bv + z · Bz, (7.8)

where A and B are symmetric N ×N matrices. Thus, the transformation of
(7.5) into (7.6) is reduced to the simple diagonalization of the matrices A and
B. The latter being symmetric, the diagonalization can be achieved with a
rotation of the vectors. The transformation to the new variables is therefore

x = RIx′ , y = RIy′ , v = RIIv′ , z = RIIz′ , (7.9)

where RI and RII are N × N rotation matrices and x,y,v, z respectively
denote the vectors with components (x1, . . . , xN ), (y1, . . . , yN ), (v1, . . . , vN ),
(z1, . . . , zN ). We finally prove that (7.9) is a canonical transformation: a
linear transformation on the coordinates x = Cx′ is canonical if and only
if the transformation on the momenta has the form y = (CT )−1y′, where
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(CT )−1 denotes the inverse of the transposition of the matrix C (this can be
easily checked directly on the Hamilton equations); in (7.9) the coordinates
and the conjugate momenta are transformed with the same rotation matrix,
but rotation matrices R have precisely the general property that R = (RT )−1.

Once the action–angle variables P ′
j , p

′
j , Q

′
j , q

′
j are introduced and H(2) is

transformed into (7.7), it becomes evident that, if one neglects the pertur-
bation

∑

n≥2H(2n), the actions P ′
j and Q′

j are constants of motion and the
angles p′j and q

′
j move linearly with time, with fixed frequencies −gj and −sj

respectively. By the inverse composition of the performed canonical transfor-
mations, one easily computes the motion of the original action–angle variables
Pj , pj , Qj, qj as a function of time. Then, recalling the relationships (7.2), the
time dependence of the eccentricities, inclinations, longitudes of perihelion and
node of the planets are:

ej cos̟j =
∑N
k=1Mj,k cos(gkt+ βk)

ej sin̟j =
∑N
k=1Mj,k sin(gkt+ βk)

sin
ij
2 cos Ωj =

∑N
k=1Nj,k cos(skt+ δk)

sin
ij
2 sinΩj =

∑N
k=1Nj,k sin(skt+ δk) .

(7.10)

This is usually known as the Lagrange–Laplace solution for secular planetary
motion. The frequencies gk, sk, the coefficients Mj,k, Nj,k and the phases
βk, δk, depend at this level – i.e. considering only the H(2) part of the secular
Hamiltonian – only on the semimajor axes of the planets, but will become func-
tions also of P ′

j , Q
′
j when the perturbation terms H(2n) with n ≥ 2 are taken

into account (see next section). Accurate values will be listed in Tables 7.1,
7.2 and 7.3 below.

One of the nodal frequencies s1, . . . , sN is necessarily equal to zero, as a
consequence of the conservation of total angular momentum. In fact, choosing
an arbitrary orthogonal reference frame, the x and y components of the total
angular momentum vector are:

Cx=
∑N
j=1 µj

√

G(m0 +mj)aj(1− e2j ) sin ij cosΩj ,

Cy =
∑N
j=1 µj

√

G(m0 +mj)aj(1− e2j) sin ij sinΩj ;
(7.11)

Cx and Cy being constants, one of the longitudes of node can be expressed as
a function of the orbital elements of the other planets, namely:

tanΩ̄ =
Cy −

∑

j 6=̄ µj
√

G(m0 +mj)aj(1− e2j ) sin ij sinΩj

Cx −
∑

j 6=̄ µj
√

G(m0 +mj)aj(1− e2j ) cos ij sinΩj
. (7.12)
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Therefore, the system (7.7) can have only N − 1 independent frequencies sk.
By convention, the null frequency is denoted by s5. Therefore, the action Q′

5

disappears from the expression (7.7) ofH(2). Moreover, every termH(2n) in the
expansion (7.3) must be independent ofQ′

5; in fact, ifQ′
5 appeared in one of the

terms – say H(2n̄) – then a new independent frequency q̇′5 = ∂H(2n̄)/∂Q
′
5 would

appear at order n̄, thus violating the conservation of angular momentum.

If the reference frame is chosen such that the x, y plane is orthogonal to
the total angular momentum vector, the constants Nj,5 are equal to zero for
all j. In this case, the x, y plane is called the invariant plane. Otherwise,
the constants Nj,5 are all equal to a value related to the inclination of the
x, y plane relative to the invariant plane. All the other constants Mj,k (for all
k) and Nj,k (for k 6= 5) do not depend on the choice of the reference frame.
Note that from (7.10) if Nj,5 is zero, all the nodes Ωj circulate; conversely, if
the reference frame is chosen sufficiently inclined with respect to the invariant
plane, the nodes Ωj appear to librate. This is precisely the case of Jupiter’s
and Saturn’s nodes, if one chooses the ecliptic reference frame (the x, y plane
coincident with the present Earth’s orbital plane).

In the jargon of Celestial Mechanics, the frequencies gk, sk are often called
the proper frequencies of the k-th planet. In reality, the orbital elements of
each planet depend on all the frequencies g1, . . . , gN , s1, . . . , sN , as formula
(7.10) shows. The jargon is motivated by the fact that in most of the cases
gk and sk are the frequencies with the largest amplitudes in the motion of the
k-th planet, i.e. |Mk,k| = maxj |Mk,j| and |Nk,k| = maxj |Nk,j|. However this
is not true in all cases, as Table 7.2 shows (M7,5 is the maximum of all M7,j ,
i.e. the leading frequency of Uranus’ perihelion is g5).

7.2 Higher-order solutions

In the new action–angle variables P ′
j , p

′
j, Q

′
j , q

′
j the secular Hamiltonian is ready

to be studied with the tools discussed in Chapter 2. For this purpose, the
Hamiltonian H(2)(P

′
j , Q

′
j) and its perturbation

∑

n>1 H(2n)(P
′
j , Q

′
j, p

′
j , q

′
j) must

be respectively identified with H0(p) and εH1(p,q) in (2.1). The value of the
perturbation parameter ε is here equal to η, namely the square of the largest
value assumed by the planetary eccentricities or inclinations during the secular
evolution. In this case, it is not necessary to introduce a cut-off K on the order
of the harmonics to divide the perturbation as in (2.19), the functions H(2n)

with n > 1 already providing a natural partition of H1 in terms of increasingly
higher order with respect to the perturbation parameter. Each function H(2n)

contains only a finite number of harmonics, due to the D’Alembert rules.

To study the secular evolution of the planets it is convenient to construct
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the Birkhoff normal form.1 As shown in Chapter 2, at order n̄, the Birkhoff
normal form is of type:

Hn̄ =
n̄+1
∑

n=1

H̄n̄
(2n)(P

n̄
j , Q

n̄
j ) +R(P n̄j , Q

n̄
j , p

n̄
j , q

n̄
j ) , (7.13)

where P n̄j , Q
n̄
j , p

n̄
j , q

n̄
j are the new action–angle variables introduced through a

sequence of n̄ Lie transforms, and the remainder R contains terms that are at
least of order n̄+ 2 in P n̄j , Q

n̄
j .

Neglecting the remainder term, the solution of (7.13) is simply

P n̄j (t) =P n̄j (0) , pn̄j (t) =
∂
(

∑n̄+1
n=1 H̄n̄

(2n)

)

∂P n̄j
t+ pn̄j (0)

Qn̄j (t) =Qn̄j (0) , qn̄j (t) =
∂
(

∑n̄+1
n=1 H̄n̄

(2n)

)

∂Qn̄j
t+ qn̄j (0) . (7.14)

The motion depends on the initial values P n̄j (0), Q
n̄
j (0), p

n̄
j (0), q

n̄
j (0); the lat-

ter are computed, by inversion of the Lie series, from the initial values of
P ′
j , Q

′
j , p

′
j, q

′
j , which in turn depend on the initial Pj , Qj, pj , qj through the

transformations described in the previous section. Once their initial values
are computed, the motion of P n̄j , Q

n̄
j , p

n̄
j , q

n̄
j is completely determined, and its

image in the original variables can be simply computed by applying again (in
reverse order) all the canonical transformations. At the end of this chain of
transformations, the time dependence of ej cos̟j , ej sin̟j , sin ij/2 cos Ωj ,
sin ij/2 sinΩj turns out to be the sum of two parts. The first part has the
same functional form as the right hand side of (7.10), but with modified val-
ues of the coefficients gk, sk, βk, δk, Mj,k, Nj,k. For instance, the frequencies

gk and sk are modified by respectively −∂
(

∑n̄
n=2 H̄n̄+1

(2n)

)

/∂P n̄k (P
n̄
j (0), Q

n̄(0))

and −∂
(

∑n̄+1
n=2 H̄n̄

(2n)

)

/∂Qn̄k (P
n̄
j (0), Q

n̄(0)); both these terms depend on

P n̄j (0), Q
n̄
j (0). Note however that, because none of the terms H(2n) depends on

Q′
5, q

′
5, the values of s5 and Nj,5 are unchanged. The second part contains new

harmonics that involve integer linear combinations of the frequencies gk, sk.
More specifically, the Birkhoff normal form at order n̄ introduces harmonics
involving combinations of 2n̄+ 1 frequencies.

1With respect to what was explained in Chapter 2, in this case there is the technical
complication that the functions H(2n) are not analytic when one of the actions is equal to
zero, because of the square root terms. However, the D’Alembert rules ensure that the
results of the Poisson brackets of the Lie series can always be expanded in positive power
series of the square roots of the action variables.
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Table 7.1: Planetary frequencies and angular phases. The values of g1, . . . , g4
and s1, . . . , s4 are taken from Laskar (1990); those of g5, . . . , g8 and s6, . . . , s8
are taken from Nobili et al. (1989); frequencies are measured in arcsec/year.
The phases β1, . . . , β8 and δ1, . . . , δ8 are taken from Laskar (1990) and are
computed with respect to the ecliptic reference frame of the year 2000 at the
epoch JD 2451545.0.

k gk βk(
◦) sk δk(

◦)

1 5.5964 112.08 −5.6174 348.60

2 7.4559 200.51 −7.0795 273.25

3 17.3646 305.12 −18.8512 240.20

4 17.9156 335.38 −17.7482 303.75

5 4.2575 30.65 0.0000 107.58

6 28.2455 128.09 −26.3450 307.29

7 3.0868 121.36 −2.9927 320.62

8 0.6726 74.06 −0.6925 203.90

The most accurate analytic theory of the secular motion of the eight planets
of the Solar System is that of Bretagnon (1974). Actually, Bretagnon did not
develop his theory using the Hamilton equations, but his work is equivalent
to computing the secular normal form up to order 2 (i.e. ε2) in the planetary
masses, and then computing the Birkhoff normal form (7.13) of order n̄ = 1,
i.e. taking into account in the equations of motion terms of order two (H(2))
and four (H(4)) in the planetary eccentricities and inclinations. Bretagnon
later (1984) developed a more accurate theory starting from a model that
included also relativistic effects and the perturbations of the Moon on the
inner planets.

Duriez (1979) developed an analytic theory of the secular motion of the
outer planets (Jupiter to Neptune); his approach is equivalent to computing
the Birkhoff normal form up to order n̄ = 2.

Laskar (1985) computed the secular normal form up to order 2 in the plane-
tary masses and degree 6 in eccentricities and inclinations for the full planetary
system (Mercury to Neptune), but then, instead of studying it analytically,
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Table 7.2: CoefficientsMj,k of the Lagrange–Laplace type solution (7.10). The
values with i ≥ 5 and k ≥ 5 are taken from Nobili et al. (1989); the others
are taken from Laskar (1990), when reported, or Bretagnon (1974) otherwise.
All values have been multiplied by 106.

j\k 1 2 3 4 5 6 7 8

1 185444 −27700 1458 −1428 36353 113 623 7

2 6668 20733 −11671 13464 19636 −551 614 11

3 4248 16047 9406 −13159 18913 1506 650 12

4 650 2917 40133 49032 20300 7030 862 20

5 −7 −12 −1 0 44187 −15700 1814 58

6 −6 −12 −7 −7 32958 48209 1511 57

7 2 3 0 0 −37587 −1547 29033 1666

8 0 0 0 0 1881 −103 −3697 9118

resorted to numerical integrations to calculate the frequencies of the motion
(Laskar, 1988), on a time interval of 10 My. In principle, the frequencies
computed by Laskar are more accurate than those computed by Bretagnon,
because he started from a secular normal form containing more perturbation
terms and of which numerical integration gave the ’exact’ solution.

The most accurate computation of the secular frequencies of the outer plan-
ets have been achieved by numerically integrating the full equations of motion
(i.e. avoiding the computation of the secular normal form) by Applegate et al.
(1986) and Nobili et al. (1989). With respect to Laskar’s computation, the
largest discrepancy occurs for the g6 frequency; this discrepancy is believed
to arise from terms of order 3 in the planetary masses, which are missing in
Laskar’s secular normal form.

In Tables 7.1, 7.2 and 7.3 we list what should be the most accurate de-
terminations of the constants entering Lagrange–Laplace formulæ (7.10). The
complete time dependence of the planetary orbital elements, including also the
coefficients of the harmonics involving linear combinations of the frequencies,
can be found in Bretagnon (1974), Laskar (1988, 1990), Nobili et al. (1989).



7.3. CHAOTIC SECULAR MOTION OF THE PLANETS 135

Table 7.3: The same as Table 7.2, but for the coefficients Nj,k. The ecliptic
reference frame for the year 2000 has been used for the computation of Nj,5.

j\k 1 2 3 4 5 6 7 8

1 39957 30169 1678 72261 13772 −139 −1665 −724

2 6716 −4045 −9544 −5759 13772 −60 −959 −663

3 4960 −3431 8760 4024 13772 −1404 −866 −650

4 860 −566 −15421 34689 13772 −4579 −628 −615

5 −11 4 0 −1 13772 3153 −485 −584

6 −14 6 −2 −13 13772 −7858 −394 −564

7 11 −3 0 1 13772 353 8887 543

8 0 0 0 0 13772 38 −1062 5790

7.3 Chaotic secular motion of the planets

To study the long-term behavior of the secular evolution of the planets, Laskar
(1989) numerically integrated for 200 My the equations of motion of his sec-
ular normal form. In order to have an accurate representation of the “real”
motion, he first made empirical corrections to the frequencies g6, g7 and s7 in
H(2), matching the values measured in the numerical integrations of the full
equations of motion of the outer planets. Laskar’s numerical solution of the
secular equations has been later tested against a 3 My integration of the full
equations of motion of the entire Solar System done by Quinn et al. (1991),
which confirmed its excellent accuracy (Laskar et al., 1992b).

Together with the orbital evolution, Laskar (1989) also computed the
largest Lyapunov exponent, which turned out to be ∼ 1/5 My−1, indicating,
as discussed in Chapter 5, that the orbital evolution is chaotic. To confirm
the chaotic nature of the secular dynamics of the Solar System, Laskar (1990)
looked for the resonances responsible for the origin of chaos. For this purpose,
he monitored different combinations, compatible with the D’Alembert rules,
of the angles p′j , q

′
j defined in Section 7.1, looking for those in libration, or

alternating between libration and circulation. Referring to Chapter 4, this
corresponds to looking for the critical angles ϕ1 (see formula 4.2) of the exist-
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Figure 7.1: The evolution of the angles p′1−p′5−q′1+q′2 (top) and 2(p′4−p′3)−q′4+
q′3 (bottom) according to Laskar’s integration of the secular planetary system.
The behavior of these angles reveals that the Solar System is in a secular
resonance of multiplicity 2, thus explaining the chaotic nature of its secular
dynamics. Reprinted from Figs. 2 and 4 of Laskar (1990), with permission
from Academic Press.

ing resonances. Laskar found two independent resonant combinations of the
secular angles, showing that the Solar System is at least in a resonance of mul-
tiplicity 2 (see Chapter 1, Chapter 6). The resonant angles are p′1−p′5−q′1+q′2,
whose corresponding harmonic appears in H(4), and 2(p′4−p′3)−q′4+q′3, whose
corresponding harmonic appears in H(6), namely respectively at order 4 and
6 in the planetary eccentricities and inclinations. Figure 7.1 shows the time
evolution of these two resonant angles. The first one librates during the entire
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integration time;2 note however that the libration amplitude changes signif-
icantly and in an irregular manner, showing that the motion is not on an
invariant curve of libration, but rather in a chaotic zone, so that transitions
to the circulation regime could be expected. In fact these transitions occur in
a longer timespan integration in Laskar (1992). The second resonant angle al-
ternates between libration and circulation, showing the genuine chaotic nature
of its motion. Laskar also showed that the linear combinations of the actions
P ′
j , Q

′
j , canonically conjugate to the two resonant angles, show oscillations in

phases with the librations/circulations of the latter, revealing a pendulum-like
dynamics (actually a very confused one, because of the presence of a double
resonance). The chaos of the Solar System and the behaviors of the resonant
angles has been confirmed through direct numerical integration by Sussman
and Wisdom (1992).

As a further confirmation of the existence of chaos, Laskar applied his
frequency analysis (see Section 5.3) to monitor the time evolution of the fre-
quencies gk, sk of the Solar System. While the numerically measured values
of the frequencies g5, . . . , g8 and s6, . . . , s8 do not have relative changes larger
than 10−4 over 200 My, those of the frequencies g1, . . . , g4 and s1, . . . , s4 typi-
cally have a relative change of the order of several 10−2 (Laskar, 1990). This
shows that chaos acts basically only on the eight-degree of freedom subsys-
tem characterizing the secular motion of the inner planets (Mercury to Mars),
while the subsystem related to the evolution of the outer planets, being weakly
coupled to the first one (the perturbation of the inner planets on the motion of
the outer ones is of order of the mass of the Earth relative to the Sun), shows
only very limited chaotic activity. This led Laskar to conjecture that the outer
planets would evolve on KAM tori if the terrestrial planets did not exist. If
this is very likely to be true for the secular system, it is not the case when
the nonaveraged system is considered, because of the presence of high-order
three-body mean motion resonances (see Chapter 10).

The work of Laskar (1990), however, left open the question about the dy-
namical structure of the secular planetary problem. In the light of Chapter 6,
in fact, it is natural to ask whether the secular system has the Nekhoroshev
structure, the chaotic motion being bounded for times exceeding the age of the
Solar System. To give a partial answer to this question, Laskar (1994) inte-
grated the equations of motion of his secular normal form for 25 Gy (backwards
from 0 to −10 Gy and forward from 0 to 15 Gy). Because of the existence of
chaos, which makes the motion unpredictable on timescales of several times

2Laskar’s integration was a backwards integration, from the present epoch to −200 My;
Hamiltonian dynamics being reversible, backwards integrations and forward integrations are
perfectly equivalent.
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the inverse of the Lyapunov exponent (5 My), the results of these integrations
should be regarded only as representative of possible evolutions; however, as
seen in the simple numerical examples of Chapter 4, numerical integration
may give an indication of the extent of the chaotic region that is reachable
over the integration time. Note moreover that the integrated timespan exceeds
the physical lifetime of the Solar System, which presumably formed ∼ 4.5 Gy
ago and which should last only 5 billion years more, before the Sun evolves
to a red giant star state, and extends its radius up to the Earth’s orbit. The
long timespan was intended to better reveal the dynamical character of the
Hamiltonian secular system. For instance, if a sudden increase of the eccen-
tricity of a planet occurs after 10 Gy, it is plausible that such an event might
happen also on a somewhat shorter timespan, for instance within 5 Gy from
now. Similarly, what the integration shows to happen at negative times could
happen as well in the future.

In order to clearly show the chaotic evolution of each planet and its “diffu-
sion” in the chaotic zone, Laskar adopted the “maximal action method” (see
Section 5.4.4), computing the maximal eccentricity and inclination attained
by each planet during intervals of 10 My. Figure 7.2 shows that the maximal
eccentricity and inclination of the outer planets is constant with time. As
discussed in Section 5.4.4, this reveals that the secular dynamics of the outer
planets is basically regular. The Earth and Venus show coupled irregular
variations of their maximal eccentricities and inclinations, but their values are
confined within a narrow band, showing that, despite their chaoticity, their
orbits should not change much over the age of the Solar System. The same
is not true for Mars and especially for Mercury. Performing a series of nu-
merical integrations with slightly different initial conditions, Laskar showed
that Mercury could intersect the orbit of Venus, potentially colliding with the
latter or being ejected from the Solar System by a series of close encounters.
This result shows that the Solar System is only marginally stable, namely that
there is a small, but nonnull, probability that a dramatic event, such as the
collision between two planets, occurs during its physical lifetime. However,
it should be noted that Laskar’s equations of secular motion, being obtained
through a truncated power expansion in eccentricities and inclinations, could
in principle lose accuracy when large values of the latter are achieved.

The marginal stability of the Solar System fits with our present under-
standing of how the Solar System formed (see Taylor, 1999 for a review). The
aggregation of solid material should have led not only to the formation of
the present planets, but also of several other planetary embryos with masses
that could have reached (especially in the outer Solar System) the Earth’s
mass. This view is supported by modern numerical simulations of planetary
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Figure 7.2: The long-term secular evolution of the solar system. The maximal
eccentricity and inclination attained by each planet during intervals of 10 My
are plotted over a 25 Gy timespan. Preservation of these quantities (as is the
case for the giant planets) reveals regular motion, while temporal variations
show evidence of chaotic evolution. Reprinted from Fig. 1 of Laskar (1994),
with permission from Astronomy and Astrophysics.
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formation (Chambers and Wetherill, 1998; Agnor et al., 1999) as well as by
“evidence” such as the existence of the Moon (presumably issued from the
collision of a martian-sized embryo with the Earth; see Hartman and Davis,
1975; Cameron, 1997) and the obliquity of Uranus (which requires the impact
of an Earth-sized body; Safronov, 1966; Parisi and Brunini, 1996). A solar
system crowded with massive embryos is violently unstable (Chambers et al.,
1996) and evolves, through mutual collisions of embryos or ejections of bodies
on hyperbolic orbits, towards a system characterized by a smaller number of
embryos and a consequent reduced instability. This kind of evolution effec-
tively “stops” when a marginally stable system is achieved. In this scenario,
Mercury would be the last embryo in the Solar System, which hasn’t yet had
its chance to escape from the system or to collide with another planet.

7.4 Spin axes dynamics

An exhaustive description of the dynamics of the spin axes of the planets
goes beyond the purposes of this book. The reader can consult Kinoshita and
Souchay (1990) and Souchay et al. (1999) for detailed and accurate studies.
We discuss here a simplified, but nevertheless highly interesting, representation
of the dynamics of the spin axis of a planet that is achieved when a number
of approximations are introduced, namely:

1) the planet is assumed to be a rigid homogeneous body with principal
momenta of inertia I1, I2, I3 satisfying the relationship I1 = I2 < I3; the
spin axis is identified with direction of I3;

2) all direct perturbations induced by the other planets on the rotational
motion are neglected; only indirect perturbations are considered, i.e. the
changes of the planet’s orbit due to the influence of the other planets;

3) the resulting equations are averaged over the orbital periods, which is
equivalent to constructing a first-order secular normal form.

In a noninertial orthogonal reference frame x, y, z, with x, y plane coincident
with the instantaneous orbital plane of the planet and x axis directed towards
the ascending node Ω of the planet’s orbit, the orientation of the spin axis can
be determined through the angles ε and Λ defined by the relationships

sx = sin ε sin Λ , sy = sin ε cos Λ , sz = cos ε (7.15)

where sx, sy and sz are the components in the x, y, z reference frame of the
unitary vector directed as the spin axis. The angle ε is usually called the
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obliquity of the planet, while the angle ψ = Λ−Ω is called the longitude of its
spin axis. With the simplifications enumerated above, the quantities X = cos ε
and ψ turn out to be canonical action–angle variables, whose evolution is
described by the one-degree of freedom time-dependent Hamiltonian

H(X,ψ, t) =
α

2
(1− e(t))−3/2X2 +

√

1−X2 (A(t) sinψ +B(t) cosψ) (7.16)

(Laskar and Robutel, 1993; Laskar et al., 1993). In (7.16) e(t) is the eccen-
tricity of the orbit of the planet, and A(t), B(t) are time-dependent quantities
related to the inclination and the node of the planet’s orbit relative to its
initial orbital plane, namely

A(t) = 2(q̇+p(qṗ−pq̇))/
√

1− p2 − q2 , B(t) = 2(ṗ−q(qṗ−pq̇))/
√

1− p2 − q2 ,
(7.17)

with p(t) = sin[i(t)/2] sin[Ω(t)], q(t) = sin[i(t)/2] cos[Ω(t)] and i(0) = 0. More-
over

α =
3GM⊙

2a3ν

I3 − I1
I1

(7.18)

where M⊙ is the mass of the Sun, G is the gravitational constant, a is the
semimajor axis of the planet’s orbit (assumed to be fixed) and ν is the spin
rate of the planet (the inverse of the planet’s rotation period). In the case of
the Earth, the influence of the Moon cannot be neglected and, assuming the
latter on a circular orbit on the Earth’s equatorial plane, a term (αM/2)X

2

needs to be added to the Hamiltonian (7.16), where αM is given by expression
(7.18) with the mass of the Moon replacing that of the Sun and the radius of
the Moon’s orbit replacing a.

The Hamiltonian (7.16) is a quasi-integrable one. It is the sum of
a main integrable part (α/2)X2 – or (α + αM )/2X2 in the case of the
Earth – with two perturbation terms: (α/2)[(1 − e2)−3/2 − 1]X2 and√
1−X2 (A(t) sinψ +B(t) cosψ). The latter are respectively proportional to

the square of the eccentricity and to the variation of the inclination relative
to its initial value, of the planet’s orbit. The integrable part tells us that to a
first approximation the obliquity of a planet is constant. The precession rate
ψ̇ of its spin axis (the so-called equinox precession) is proportional to X, so
that it is maximal when the obliquity is zero (X = 1), it is zero when the
obliquity is 90 degrees (X = 0, as is approximately the case of Uranus), and
it changes sign when the obliquity exceeds 90 degrees (the case of Venus).
If the orbit of the planet (and therefore the perturbation terms in (7.16))
are quasi-periodic functions of time with Diophantine frequencies, the KAM
and Nekhoroshev theorems can both be applied to the Hamiltonian (7.16),
provided the perturbations are small enough (see Section 3.1.1 for the KAM
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Figure 7.3: The Fourier spectrum of the term A(t) + ιB(t) entering in (7.16)
in the case of the Earth. Reprinted from Fig. 1 of Laskar et al. (1993), with
permission from Nature, Macmillan Magazines Limited.

theorem and Guzzo and Morbidelli, 1997, for the Nekhoroshev theorem). In
particular, if the eccentricity is constant and A(t) + ιB(t) = β exp[ιωt], (7.16)
reduces to the integrable Hamiltonian

H =
α

2
(1− e2)−3/2X2 + β

√

1−X2 sin(ωt+ ψ) (7.19)

which is often referred to as Colombo’s top from the work of Colombo (1966).
The equilibrium points of (7.19) are called the Cassini states, and are partic-
ularly important for tidally evolving bodies, such as the satellites of Jupiter
(see for instance Gladman et al., 1996).

As discussed in the previous section, for the Solar System the quasi-periodic
time dependence of the orbital elements is a good approximation only for the
outer planets. For instance, Fig. 7.3 shows the Fourier spectrum of A(t)+ιB(t)
for the Earth, according to Laskar’s (1990) solution for the secular orbital mo-
tion. As one sees, the spectrum is continuous, although strongly peaked around
the frequencies of the Lagrange–Laplace linear solution s1, s2, s3, s4 and s6 (see
Section 7.1). The spectra of A(t)+ ιB(t) for all the other planets are shown in
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Laskar and Robutel (1993). Even restricting to the perturbation terms with
coefficients exceeding a threshold value, the large number of frequencies makes
the Hamiltonian (7.16) very complicated. For this reason, to study the dy-
namical behavior of the spin axis of the planets of the Solar System, Laskar et
al. (1993) and Laskar and Robutel (1993) resorted to numerical integrations.
They considered a large set of initial conditions X(0), ψ(0), with ψ(0) = 0 and
initial obliquity ε0 = cos−1X(0) ranging from 0 to 170◦ in steps of 0.1◦; for
each initial condition they integrated the evolution for 18 My, following the
equations given by (7.16) with e(t), A(t), B(t) from Laskar (1990), and for each
evolution they computed the mean frequency of ψ as well as the maximum,
minimum and mean value of the obliquity. As discussed in Chapter 5, the
dependence of all these quantities on the initial condition reveals the regular
or chaotic character of the dynamics.

The left panel of Fig. 7.4 shows the result for the Earth, considering both
the torques α and αM exerted by the Sun and the Moon, and the Earth’s
present spin rate ν = 1/24 h−1. For initial values of the obliquity smaller
than 50◦ (the Earth’s obliquity is 23.3◦) the evolution of the spin axis appears
very regular, the frequency and the obliquity being smooth functions of the
initial ε0. The difference between the minimal and the maximal value of the
obliquity is always very small, showing that the latter has only small-amplitude
oscillations. Note that, strictly speaking, the integrated system does not have
any regular orbit, because the perturbation is not quasi-periodic and therefore
KAM tori cannot exist. Nevertheless, no trace of chaos is detectable, for the
following reasons: for the considered values of ε0, the frequency ψ̇ ranges
approximately from 35 to 55′′/y; because the terms in the perturbation (7.19)
are of type sin(ψ + ωt), the only possible resonances are those with ω in the
range [−55,−35]′′/y; but the terms in the spectrum of A+ ιB with frequency
ω falling in this range have coefficients smaller than 10−9, as can be seen in
Fig. 7.3. As a consequence, the amplitude of the chaotic component of the
motion of X(t), ψ(t) is so small on the considered timescale to be undetectable
with the resolution of Fig. 7.4.

If the initial obliquity is in the interval 55-90◦, the evolution of the spin axis
is violently chaotic. This is because, on the considered range, the unperturbed
frequency ψ̇ ranges from 30′′/y to 0′′/y, and therefore may be resonant with
the main terms in the spectrum of A(t) + ιB(t). The fact that, whatever the
initial condition, the obliquity assumes all the values between approximately
55 and 90 degrees over the considered 18 My timespan, suggests that the main
resonances, with critical angles respectively equal to s6t+ψ, s3t+ψ, s4t+ψ,
s2t + ψ and s1t + ψ, completely overlap each other, giving rise to a uniform
chaotic zone and a rapid Chirikov-like diffusion of the action X over all the
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Figure 7.4: The precession frequency (top) and the maximal, mean and min-
imal obliquity of the Earth’s spin axis (bottom) as a function of the initial
obliquity ε0 of the latter. The left panels refer to the model where the torque
exerted by the Moon is taken into account, while the right panels concern the
case of the Earth without the Moon. See text for discussion. Reprinted from
Figs. 2 and 3 of Laskar et al. (1993), with permission from Nature, Macmillan
Magazines Limited.
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resonance overlapping region (see Chapter 6). For obliquities ε0 exceeding
90◦, the motion of the spin axis becomes again basically regular, because none
of the terms in the spectrum of A(t) + ιB(t) with positive frequency has a
sufficiently large amplitude.

Laskar et al. (1993) also made similar computations to study the dynam-
ics that the Earth’s spin axis would have if the Moon did not exist. For this
purpose, they suppressed the αMX

2 term in the Hamiltonian; moreover, tak-
ing into account that the period of the Earth’s rotation has been increased
with respect to its primordial value by tidal friction raised by the Moon, they
computed α in (7.18) assuming a spin rate ν equal to 1.22 times the present
spin rate, in agreement with what is indicated by the geological records for the
Earth’s rotation frequency 2.5 billion years ago. The right panel of Fig. 7.4
shows the result obtained from this model. For all values of the initial obliquity
ε0 smaller than 80◦, the chaotic character of the dynamics is evident. Only
obliquities larger than 90◦ lead to apparent regular motion. Therefore, chaos
appears over a larger range of initial obliquities than in the case where the
Moon is taken into account. This is simply due to the fact that, for obliquities
in the 0-90◦ interval, the precession frequency ranges only from 0 to 20′′/y if
the Moon’s torque term αMX

2 is not taken into account in the Hamiltonian,
while otherwise it ranges from 0 to 55′′/y (compare the top plots in Fig. 7.4);
on the other hand, quasi-regular motion is possible only for precession frequen-
cies exceeding 30′′/y, in order to avoid resonances with the largest amplitude
terms in the spectrum of A(t) + ιB(t).

Notice that, in the case where the Moon is not taken into account, the
chaotic region is not uniform. In fact, three regions can be distinguished for
initial obliquities respectively in the ranges 0-45◦, 45-60◦ and 60-80◦. For ε0
in the 0-45◦ region, the range of variation of the obliquity over the integration
timespan covers the entire 0-45◦ interval (notice that the minimal and maximal
obliquity do not depend on ε0). The same situation occurs in the 60-80◦ region.
Conversely, in the 45-60◦ region the range of variation of the obliquity covers
only a small interval around the initial value (so that the minimal and the
maximal obliquity are quasi-monotonic functions of ε0). This implies that the
diffusion of the action X is fast in the 0-45◦ and 60-80◦ regions while it is slow
in the middle region. By looking at the values of the frequency of ψ in the
three regions (top plot of the right panel) one realizes that the 0-45◦ region
corresponds to ψ̇ in the range 16-20′′/y, and it is probably due to the strong
overlapping between the two main resonances with critical angles s3t+ψ and
s4t + ψ; similarly, the 60-80◦ region corresponds to ψ̇ in the range 5-10′′/y,
and it is probably due to the strong overlapping between the resonances with
critical angles s1t+ψ and s2t+ψ; conversely, the 45-60

◦ region corresponds to a
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range of ψ̇ such that all the resonant terms in the spectrum of A(t)+ιB(t) have
small amplitudes. This region is therefore a “bridge” between the two main
chaotic regions; on this “bridge” the diffusion is driven by the overlapping
of resonances with smaller widths and it is therefore slower. Crossing the
bridge is possible, but only on timescales longer than the one covered by the
integrations (18 My).

An interesting question is why the same “bridge” does not happen in the
case where the Moon is considered, for which the chaotic region is uniform all
over the 0-30′′/y frequency range. The most plausible answer is the follow-
ing. We know from Section 4.1 that the width of a resonance in the space of
unperturbed frequencies is proportional to

√
βc, where c is the coefficient of

the resonant harmonic and β is the torque. If the Moon is taken into account,
the torque is α + αM , which is greater than the torque α that characterizes
the system when the Moon is not considered; moreover in the first case the
resonances are located at larger values of the obliquity than in the second case,
so that the coefficient of the resonant harmonics c is larger, because it is pro-
portional to

√
1−X2. Therefore, in the case with the Moon the resonances

with critical angles s3t + ψ and s4t + ψ can overlap with those with critical
angles s1t+ψ and s2t+ψ, while in the case without the Moon the resonance
widths are not large enough.

Ward (1982) already concluded – with an analytic study of a system equiv-
alent to (7.16) but which included only a few terms in the Fourier expansion of
A(t) + ιB(t) – that without the Moon the obliquity of the Earth would suffer
oscillations of ±10◦; the results by Laskar et al. (1993) show that the varia-
tions of the Earth’s obliquity would be even more dramatic, also in the case of
a shorter period of rotation. Had this occurred, the Earth’s climate would have
drastically changed on timescales of a few million years, possibly preventing
the development of complex forms of life. Thus, these results seem to imply
that our own existence is correlated with the existence of the Moon, which in
turn is believed to be the result of a fortuitous event in the early history of
the Solar System. In fact, the analogy between the Moon’s composition and
the Earth’s mantle composition suggests that the Moon formed by accretion
of material ejected from the Earth after its core–mantle differentiation (Canup
and Esposito, 1996; Ida et al., 1997). The ejection of a sufficient quantity of
material requires the collision of the Earth with a planetary embryo of mass
comparable to that of Mars. Notice also that none of the other planets (with
the exception of Pluto) have a satellite with a mass ratio comparable to that
of the Earth–Moon system. Celestial Mechanics meets Philosophy!

In reality, the Earth–Moon system has significantly evolved under the effect
of tides over the age of the Solar System: the Moon has slowly increased the
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semimajor axis of its orbit, and the spin and precession rates of the Earth
have both slowed down. The dynamics of the Earth’s spin axis during the
tidal evolution of the Earth–Moon system has been numerically investigated
by Touma and Wisdom (1994a) and by Néron de Surgy and Laskar (1997).

Laskar and Robutel (1993) also explored the dynamical evolution of the
spin axes of the other planets of the Solar System, in a way analogous to that
described for the Earth. For the giant planets, essentially regular solutions
are obtained over a wide range of precession rates and initial obliquities. This
implies in particular that Uranus’ large obliquity (close to 90◦) is not the
result of dynamical evolution, but it is rather the consequence of a collision
with an Earth-mass planetary embryo in the primordial age of the Solar System
(Safronov, 1966; Parisi and Brunini, 1996). The essential regularity of the spin
axes dynamics of the giant planets is due to the simple form of the spectrum of
A(t)+ ιB(t) for these planets, which shows a limited number of well-separated
lines.

Mars’ spin axis, conversely, evolves chaotically, the obliquity ranging from
0 to 60 degrees. This is due to Mars’ precession frequency being close to some
major secular frequencies of its orbit, as first remarked by Ward (1974). The
chaoticity and the amplitude of variation of the obliquity of the Martian spin
axis has been confirmed by Touma andWisdom (1993) through the integration
of the nonaveraged equations of motion.

Venus’ obliquity is presently close to 180◦, and its evolution is regular.
Mercury is locked in the 2/3 spin orbit resonance (its orbital period is 1.5
times longer than its rotation period) and therefore the dynamics of its spin
axis cannot be studied through the averaged Hamiltonian (7.16). A discussion
of the past tidal evolution of the spin axes of these two planets can also be
found in Laskar and Robutel (1993).
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Chapter 8

SECULAR DYNAMICS OF
SMALL BODIES

8.1 The linear integrable approximation

The secular normal form for the dynamics of a small body is formally equiva-
lent to that of the planetary problem (see Section 2.5.1): it is independent of
the mean mean longitudes of the body and of the planets, and depends only
on the mean eccentricities, inclinations, longitudes of perihelion and node. As
in the previous chapter, we will omit all the superscripts that denote that the
variables appearing in the secular normal form are the mean modified Delau-
nay variables. Moreover, we will refer to the mean orbital elements defined
from the mean modified Delaunay variables, omitting the adjective mean.

After dropping the constant term H0(Λ,Λj) from the secular normal form,
the latter can be written

Hsec = εH1(P,Q, p, q, ej ,̟j , ij ,Ωj) (8.1)

where the terms of the normal form of higher order in ε have also been included
in εH1 and ej,̟j , ij ,Ωj denote the eccentricity, the longitude of perihelion,
the inclination and the longitude of node of the j-th planet.

In an attempt to give a realistic description of the secular motion of the
small body, one cannot forget that ej ,̟j , ij ,Ωj slowly change with time, as
shown in the previous chapter. In most applications the planets’ orbital el-
ements are assumed to evolve according to the Lagrange–Laplace solution
(7.10), with the values of the coefficients listed in Tables 7.1, 7.2 and 7.3.
Then, to make the Hamiltonian (8.1) autonomous, one introduces new angles
̟∗
k = gkt + βk and Ω∗

k = skt + δk. Denoting by Λgk and Λsk the conjugate
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actions, one rewrites (8.1) as:

Hsec =
∑

k

(gkΛgk + skΛsk) + εH1(P,Q, p, q,̟
∗
k,Ω

∗
k) . (8.2)

Remember from the previous chapter that s5 is equal to zero and that, when
writing the orbital elements with respect to the invariant plane of the planetary
system, H1 is independent of Ω∗

5.
In principle, one could assume more realistic quasi-periodic time dependen-

cies for the planetary elements, as those given by higher-order normal forms
of the secular planetary problem; this however would not increase the number
of degrees of freedom, and therefore would not change the general form of
(8.2), but would just modify the dependence of H1 on the angles ̟∗

k and Ω∗
k.

Conversely, to preserve the form (8.2) of the secular problem it is essential to
consider only quasi-periodic approximations of the planetary secular motion.
In the previous chapter we have seen that the secular motion of the planets is
in reality not quasi-periodic; this is particularly true for the terrestrial planets.
If one considered that the time dependence of the planetary orbital elements
have continuous Fourier spectra, the secular problem of small-body dynamics
couldn’t be written as in (8.2), because it would not be possible to introduce an
additional degree of freedom for each independent planetary frequency. Luck-
ily, because the Fourier spectrum of the orbital elements of the most massive
terrestrial planets is strongly peaked in correspondence to a discrete set of fre-
quency values, the quasi-periodic approximation of planetary secular motion
can still be considered as a good approximation for a realistic study of the
secular dynamics of small bodies. In fact, Guzzo and Morbidelli (1997) have
shown that a Nekhoroshev-like stability result for the secular motion of the
small body, achieved in the framework of the quasi-periodic approximation
of planetary motion, would not been altered when considering the continuous
spectra of the planetary elements. For this reason, in this chapter the study of
the secular small-body dynamics will be done starting from a secular normal
form of type (8.2).

The Hamiltonian (8.2) is not written in quasi-integrable form, because the
planetary frequencies gk and sk are also of order ε. Thus, as for the plane-
tary secular problem, one needs to find an integrable approximation and to
identify a new small parameter, say η, that controls the size of the perturba-
tion. However, in this case the strategy is not unique, due to the fact that
small bodies exist on a large variety of orbits, some of which have large ec-
centricities and/or large inclinations. Each strategy makes use of a different
integrable approximation and a different small parameter. In this section we
detail the “classical” integrable approximation, which is valid for those small
bodies whose eccentricities and inclinations are of the same order of magnitude
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as the planetary ones. In the next section an alternative strategy, suitable for
the other small bodies, will be discussed.

Recalling that P ∼ √
ae2/2 and Q ∼ 2

√
a sin2(i/2), where e and i denote

the eccentricity and the inclination of the small body, the function εH1 in (8.1)
is expanded in power series of

√
P ,

√
Q and of ej , sin(ij/2). One considers√

P ,
√
Q, ej , sin ij/2 to be of the same order of magnitude, say of order

√
η; in

this way, one can write εH1 =
∑

nH(n), with H(n) of order n in
√
η. Following

the same reasoning as in Section 7.1, one can easily show that, because of the
D’Alembert rules (see Section 1.9.3), all the terms H(n) with odd n or n = 0
vanish. This implies that η is the natural “small parameter” in the resulting
series expansion. Still for the D’Alembert rules, the lowest-order term of the
expansion has the form:

H(2) = −g0P − s0Q+
∑

j[cj ej
√
2P (cos p cos̟j − sin p sin̟j)

+dj sin
ij
2

√
2Q(cos q cos Ωj − sin q sinΩj)] ,

(8.3)

where −g0,−s0, cj , dj are the coefficients of the expansion, which depend only
on the semimajor axes of the small body and of the planets. The choice of
denoting by −g0 and −s0 the coefficients of the linear terms in P and Q has
been done to make the notation of the following formulæ equal to those usually
found in the literature. It is curious to note that, if the secular normal form is
constructed only up to order ε, s0 turns out to be equal to −g0 for all values
of the semimajor axis of the small body; but, if also the terms of order ε2 are
included in the normal form, as in the work by Milani and Knežević (1990),
one generally has s0 6= −g0.

Taking into account the Lagrange–Laplace solution (7.10) for the secular
evolution of the planetary elements, (8.3) becomes:

H(2) = −g0P − s0Q+
∑

j

∑

k[cjMj,k

√
2P (cos p cos̟∗

k − sin p sin̟∗
k)

+djNj,k
√
2Q(cos q cos Ω∗

k − sin q sinΩ∗
k)] .

(8.4)

The Hamiltonian

Hint =
∑

k

(gkΛgk + skΛsk) +H(2) (8.5)

is integrable. In fact, introducing the usual canonical polynomial variables
y =

√
2P cos p, x =

√
2P sin p, z =

√
2Q cos q, v =

√
2Q sin q (x and v are the

new coordinates and y and z the conjugate momenta), the equations of motion
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of (8.5) become

Λ̇gk=
∑

j cjMj,k[y sin̟
∗
k + x cos̟∗

k] , ˙̟ ∗k= gk

Λ̇sk=
∑

j djNj,k[z sinΩ
∗
k + v cos Ω∗

k] , Ω̇∗
k= sk

ẋ = −g0y +
∑

j

∑

k cjMj,k cos̟
∗
k , ẏ = g0x+

∑

j

∑

k cjMj,k sin̟
∗
k

v̇ = −s0z +
∑

j

∑

k djNj,k cos Ω
∗
k , ż = s0v +

∑

j

∑

k djNj,k sinΩ
∗
k .

(8.6)
Using the trivial solutions ̟∗

k = gkt+ βk and Ω∗
k = skt+ δk, the last two lines

in (8.6) become the well-known equations of two decoupled forced harmonic
oscillators, whose general solution is:

x=A sin(−g0t+ α) +
∑

j

∑

k ξj,k sin̟
∗
k

y=A cos(−g0t+ α)−∑j

∑

k ξj,k cos̟
∗
k

v=B sin(−s0t+ β) +
∑

j

∑

k ηj,k sinΩ
∗
k

z=B cos(−s0t+ β)−∑j

∑

k ηj,k cos Ω
∗
k ,

(8.7)

where A,α,B, β are integration constants (depending on the initial conditions)
and

ξj,k =
cjMj,k

gk − g0
, ηj,k =

djNj,k

sk − s0
, (8.8)

are the amplitudes of forced oscillations. Note that the latter become infinite
when the frequency g0 or s0 is equal to one of the planetary frequencies gk
or sk. When this happens, we say that a resonance occurs. Because the
denominators gk − g0 and sk − s0 associated to these resonances appear in
the linear equations of the small body’s secular motion, these resonances are
usually called linear secular resonances or secular resonances of first order.
It is also quite common to denote by νk the resonance g0 = gk and by ν1k the
resonance s0 = sk. The reader might be surprised that the amplitudes (8.8)
become infinite corresponding to these resonances, because in Chapter 4 it was
shown that resonances give pendulum-like dynamics, with bounded oscillation
amplitudes. The divergence of the forced oscillation amplitudes (8.8) is here
an artifact due to the linearity of the equations of motion (8.6) with respect
to the variables x, y, v, z. Remember that these equations are derived from
the Hamiltonian (8.5), where the quadratic terms in the actions P and Q
have not been retained. Similarly, if the torque β/2Î21 had been neglected in
Hamiltonian (4.4), the motion of Î1 would have been unbounded. The accurate
study of the dynamics in secular resonances, which takes into account also the
higher-order terms in the action variables, will be done in Section 8.4.
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We now take advantage of the solution (8.7) to transform (8.5) into a
Hamiltonian that depends only on action variables, under the hypothesis that
no linear secular resonance occurs. We first look for new canonical variables
y′, x′, z′, v′,Λ′

gk
,̟∗′

k,Λ
′
sk
,Ω∗′

k so that (8.5) becomes

Hint =
∑

k

(gkΛ
′
gk

+ skΛ
′
sk
)− g0

x′2 + y′2

2
− s0

v′2 + z′2

2
+ F (̟∗′

k,Ω
∗′
k) . (8.9)

Comparing the time evolution of x, y, v, z,̟∗
k ,Ω

∗
k given by (8.7) with that of

x′, y′, v′, z′,̟∗′
k,Ω

∗′
k given by the Hamiltonian equations of (8.9), it is natural

to choose

x′=x−∑j

∑

k ξj,k sin̟
∗
k , y′= y +

∑

j

∑

k ξj,k cos̟
∗
k

v′=v −∑j

∑

k ηj,k sinΩ
∗
k , z′= z +

∑

j

∑

k ηj,k cos Ω
∗
k

(8.10)

together with ̟∗′
k = ̟∗

k, Ω
∗′
k = Ω∗

k. Then, we just have to define Λ′
gk

and
Λ′
sk

in order to have a canonical transformation. For this purpose, we use the
generating function criterion (see Section 1.6, and equation (1.41) in partic-
ular): the transformation of the variables reported above can be rewritten in
the form of implicit equations x′ = ∂S/∂y′, y = ∂S/∂x, . . . ,Ω∗′

k = ∂S/∂Λ′
sk
, if

one chooses

S(x, y′, v, z′,̟∗
k,Λ

′
gk
,Ω∗

k,Λ
′
sk
) =

∑

k(̟
∗
kΛ

′
gk
+Ω∗

kΛ
′
sk
) + xy′ + vz′

−∑j

∑

k[ξj,k(y
′ sin̟∗

k + x cos̟∗
k)

+ηj,k(z
′ sinΩ∗

k + v cos Ω∗
k)] .

(8.11)

This proves that the transformation is canonical, provided the transformation
from Λgk ,Λsk to Λ′

gk
,Λ′

sk
is given by the equations Λgk = ∂S/∂̟∗

k and Λsk =
∂S/∂Ω∗

k. By construction, the Hamiltonian (8.5) is transformed into the form
(8.9); the function F will be dropped from the Hamiltonian, because it does
not depend of the small body’s variables x′, y′, v′, z′.

It is now sufficient to introduce new canonical action–angle variables
P ′, p′, Q′, q′ through the equations

x′ =
√
2P ′ sin p′ , y′ =

√
2P ′ cos p′ , v′ =

√

2Q′ sin q′ , z′ =
√

2Q′ cos q′

(8.12)
to transform (8.9) into

Hint =
∑

k

(gkΛ
′
gk

+ skΛ
′
sk
)− g0P

′ − s0Q
′ , (8.13)
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i.e. into a Hamiltonian that depends only on the action variables, which is
ready to be used as an integrable approximation for the perturbative study
of the full secular normal form. The new action–angle variables are usually
called linear proper modified Delaunay variables. The elements introduced by
inversion of (1.69) and (1.68), with P ′, p′, Q′, q′ instead of P, p,Q, q, namely:

e′ =

√

1−
[

1− P ′

L

]2
, ̟′ = −p′

i′ =arc cos
[

1− Q′

L−P ′

]

, Ω′ = −q′ , (8.14)

are respectively called the linear proper eccentricity, perihelion longitude, in-
clination and node longitude. From (8.13) it is evident that g0 and s0 are the
frequencies of the linear proper perihelion and node longitudes respectively;
they are therefore called the linear proper frequencies.

8.2 The Kozai integrable approximation

We now look for an integrable approximation of (8.2) which is suitable for small
bodies on orbits with eccentricity and/or inclination that are much larger than
those of the planets. In this case, the actions P and/or Q introduced in (1.69)
are not small, so that it is not reasonable to expand the Hamiltonian in a
power series of

√
2P and

√
2Q as in the previous section. Instead, following

a scheme originally developed by Williams (1969), we expand (8.2) in power
series of only ej and sin ij/2, writing

Hsec =
∑

k

(gkΛgk + skΛsk) +
∑

n≥0

K(n)(P,Q, p, q,̟
∗
k ,Ω

∗
k) , (8.15)

with K(n) of degree n in ej , sin ij/2. The leading term of this expansion is
K(0). In this case the “small parameter” η that characterizes the size of the
perturbation relative to the main part of the Hamiltonian is of the order of
the planetary eccentricities and inclinations (remember that it is of the order
of e2j , i

2
j in the approach based on the linear approximation).

The zero-order term K(0) is independent of the planetary eccentricities
and inclinations, so that – for the D’Alembert rules – it is also independent
of the planetary angles ̟∗

k and Ω∗
k. The D’Alembert rule on the rotational

invariance of the Hamiltonian (rule 2 in Section 1.9.3) implies that in the
Fourier expansion of K(0) only the harmonics exp ι[mp + kq] with m+ k = 0
may have coefficients that are not null; this implies that K(0) depends only
on the argument of perihelion g = q − p. Depending only on one angle, K(0)
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is therefore integrable (see Section 1.8). It is then suitable to reintroduce the
Delaunay variables G,H, g, h (see 1.68) and to identify the Hamiltonian

Hint =
∑

k

(gkΛgk + skΛsk) +K(0)(G,H, g) (8.16)

as the integrable approximation of the secular Hamiltonian (8.2). To write
(8.16) as a function of the sole action variables, as needed in order to study the
secular normal form using the tools of Chapter 2, it is necessary to introduce
new action–angle variables following the recipe of Arnold (see Section 1.9). For
this step, which will be discussed in Section 8.2.3, it is necessary to first study
in detail the dynamics described by the Hamiltonian K(0). This was done for
the first time by Kozai (1962, 1978), so that K(0) is now usually called the
Kozai Hamiltonian.

Because K(0) is independent of h, the action H =
√

a(1− e2) cos i is a
constant of motion. Remember that H is the z component of the small body’s
angular momentum. Going back to the mean elements of the small body a, e
and i, and recalling that a is constant, this implies that the evolution of e and
i, which are functions of the argument of perihelion g, are coupled through
the relationship H =constant. The natural coordinates on a level surface of
H are G and g, or, equivalently, e and g. On such a surface, the evolution of e
(or G) as a function of g follows a level curve of K(0)(G,H, g), where H plays
the role of a parameter (see Section 1.8).

If the normal form is computed only up to order ε and the terms of higher
order in ε are neglected, the practical recipe for the computation of the level
curves of K(0) is very simple. In fact, in this case the normalized Hamiltonian
is just the average of the perturbation in (1.29) over the mean anomalies l and
lj of the small body and of the planets, namely

Hsec = − G
(2π)2

N
∑

j=1

mj

∫ 2π

0

∫ 2π

0

(

1

‖∆j‖
− r · sj

‖sj‖3

)

dl dlj , (8.17)

where the vectors r and sj denote respectively the heliocentric positions of
the small body and of the j-th planet, and ∆j = r − sj; these vectors must
be expressed as functions of the orbital elements. The Kozai Hamiltonian
K(0) is therefore given by (8.17), where the eccentricities and the inclinations
of the planets have been preliminarily set equal to 0. Under the assumption
ej = ij = 0, we know from the argument discussed above that the result of
the double integral in (8.17) is independent of h, and therefore depends only
on a, e, i, g and aj. The values of a and aj are fixed, because the semimajor
axes are constant for the secular Hamiltonian. Moreover, the condition of
being on the selected surface H =constant sets i = arc cos(H/

√

a(1− e2)).
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As a consequence, the value of K(0) is completely determined once e and g are
given. From the technical point of view, the integral over lj in (8.17) can be
analytically computed using the elliptic function K of the first kind. Indeed,
setting the eccentricity ej and the inclination ij of the planet equal to zero,
one has (Williams, 1969, Bailey et al., 1992):

∫ 2π

0

(

1

‖∆j‖
− r · sj

‖sj‖3

)

dlj =

∫ 2π

0

1

‖∆j‖
dlj =

4
√

r2 + a2j

√

1− m

2
K(m) ,

(8.18)
where

m =
4aj
√

x2 + y2

r2 + a2j + 2aj
√

x2 + y2
(8.19)

r is the position vector of the small body, x and y are the coordinates of
its projections on the plane of the planetary orbit, and r = ‖r‖. The integral
over l of (8.17), on the contrary, cannot be analytically computed, but requires
some numerical algorithm (see for instance Piessens et al., 1983). It is simple
to write computer code that calculates K(0) at every point e, g of a grid on
the surface H =constant, and then to plot the level curves of K(0) with some
graphics software.

An analytic approximation of the Kozai Hamiltonian has been given by
Kinoshita and Nakai (1999):

K(0) =
∑

j

mjn
2
j

16(mj +mc)
a2
(

(2 + 3e2)(3 cos2 i− 1) + 15e2 sin2 i cos 2g
)

,

(8.20)
where mc is the mass of the central body and nj is the mean motion of the
j-th perturber. This expression is valid for every value of e and i, but neglects
terms of order (a/aj)

2, which severely limits the possibilities of applications.
The expression (8.20) is useful only to study satellite problems, where the
ratio a/aj is very small.

To analyze the dynamics given by the Kozai Hamiltonian it is convenient
to separate the study into two cases: the asteroidal case, where the semimajor
axis of the small body’s orbit is smaller than that of the main perturber, and
the cometary case, which corresponds to the opposite situation.

8.2.1 Kozai dynamics inside the orbit of the main perturber

Figure 8.1 shows the evolution of e and g given by the Kozai Hamiltonian, on
six surfaces H =constant. The dynamics have been computed for a = 3 AU,
taking into account the perturbations given by the four giant planets, so that it
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well represents a typical asteroidal case. Each surface H =constant in Fig. 8.1
is identified by the (maximal) value of the inclination, corresponding to e = 0,
namely imax = arc cos(H/

√
a). The bounding circle on each panel corresponds

to the maximal value allowed for the eccentricity on the surface H =constant,
i.e. emax =

√

1−H2/a.

Note that, as a general rule, all figures are symmetric with respect to the
axis sin g = 0. This is because the expansion of K(0) in a power series of the
small body’s inclination presents, for the D’Alembert rules, only terms in with
even n; therefore, the Fourier expansion of K(0) must present only harmonics
cos kg with even k. This implies that K(0) is periodic with period π in g.

For a small value of imax (Fig. 8.1a), the level curves of K0 are very close
to circles. This means that the argument of perihelion circulates over 360
degrees, while the eccentricity (and, by consequence, also the inclination) is
almost constant. This shows that the linear integrable approximation of the
secular Hamiltonian (see Section 8.1), which neglects all harmonics in the
perihelion argument, is in this low-inclination case a good approximation of
Kozai’s dynamics.

Increasing the value of imax (Fig. 8.1b), the level curves elongate along the
e sin g axis. The argument of perihelion still circulates, but the eccentricity
oscillates, assuming the maximum value each time that g = 90 or 270 de-
grees; correspondingly, the inclination assumes a minimum value. Above a
critical threshold of imax the structure of Kozai’s dynamics abruptly changes
(Fig. 8.1c). The point e = 0 becomes an unstable equilibrium point; a separa-
trix connects this point to itself and divides the phase space into three parts:
two regions where g librates around either 90 or 270 degrees (i.e. its precession
stops) and one region where g circulates. This dynamical structure is typical
of the integrable resonant case (Chapter 4), so that it is usually referred to
as the Kozai resonance. The Kozai resonance can be regarded as a 1:1 reso-
nance between the precession frequencies of the longitude of perihelion ̟ and
of the longitude of node Ω of the small body. Therefore, in the notation of
Chapter 4, the argument of perihelion g ≡ ̟ − Ω is the critical angle of the
resonance. It is evident that, when the Kozai resonance appears, the classical
integrable approximation (Section 8.1) is no longer a good approximation of
the real secular dynamics.

Figures 8.1d, 8.1e and 8.1f correspond to larger values of imax. The Kozai
resonance becomes stronger, in the sense that the width of the libration regions
increases. The point at e = 0 is always an unstable equilibrium point. As a
consequence, any orbit with initial small eccentricity is forced by the resonant
dynamics to reach a large value of e when g = 90◦ or 270◦. Large eccentricity
implies small heliocentric nodal distance, the latter being the distance from
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Figure 8.1: The Kozai dynamics in the asteroid belt, represented in polar
coordinates e, g. All panels are plotted for a value of the mean semimajor axis
equal to 3 AU. The inclination imax corresponding to e = 0 is shown on the
top of each panel. The dashed curves denote the values of e, g corresponding
to nodal crossing of the orbits of the planets. Adapted from Thomas (1998).
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the Sun when crossing the reference plane, as given by the formula

r± =
a(1− e2)

1± e cos g
(8.21)

where + and − refer respectively to the distance at the ascending and de-
scending node. Therefore, the asteroid must cross, at some point of its secular
evolution, the orbit of the terrestrial planets. In Fig. 8.1c, the dashed curves
denote the set of points e, g that give a node-crossing of the orbit of Mars (sim-
ply plotted by setting r± = 1.5AU in (8.21)); in Fig. 8.1d the corresponding
curves for node-crossing of the orbits of the Earth are also plotted; the curves
denoting node-crossing of Venus and Jupiter are introduced in Fig. 8.1e and
those related to Mercury are visible in Fig. 8.1f. A node-crossing of the orbit
of a planet opens the possibility for close encounters between the planet and
the asteroid, which destabilize the orbit of the latter. The Kozai dynamics
therefore explains why the asteroid belt is depleted at large inclination. From
the mathematical viewpoint, the close encounter corresponds to a true singu-
larity (∆j = 0) of the Hamiltonian (1.29). The analytic construction of the
secular normal form therefore breaks down. It is however possible to show
(Gronchi and Milani, 1998, 1999) that the double integrals defining the Kozai
Hamiltonian in (8.17) are well defined even in the presence of such a singu-
larity. Therefore, the Kozai Hamiltonian can still be used for a first insight
into the secular dynamics of planet-crossing orbits (as will be better seen in
Section 8.2.2).

The value of the critical threshold imax for the appearance of the Kozai
resonance depends on a, and its precise determination can be found in Kozai
(1962). The Kozai dynamics turns out to be very similar to that shown in
Fig. 8.1 for all ratios a/a′ between 0 and 1, where a denotes the semimajor
axis of the small body and a′ that of the main perturber (Jupiter in the
asteroid belt case). The dynamics described above is therefore not specific to
the asteroid belt, but concerns a large variety of systems. For instance, the
Soviet artificial satellite Lunik, initially put on a quasi-polar orbit around the
Earth, crashed to the ground after a few days because the Kozai resonance
generated by the joint Lunar and Solar perturbations forced its eccentricity to
increase so much that the perigee became smaller than the Earth’s radius. In
principle, in any dynamical system that can be described by a restricted three-
body problem, the Kozai resonance causes the instability of the inner body if
its inclination with respect to the outer perturber is large enough. This is true
despite the distance or the mass of the outer perturber: indeed, as an effect
of the degeneracy of the two-body problem, the strength of the perturbation
(ε in formula 8.1) just reflects on the timescale of Kozai’s dynamics, but not
on its effects. However, if other perturbations force the precession of the



160 CHAPTER 8. SECULAR DYNAMICS OF SMALL BODIES

argument of perihelion g, then the the secular Hamiltonian becomes, to a first
approximation,

Hsec = αG+K(0)(G,H, g) (8.22)

where the term α is the forced precession frequency of g given by the additional
perturbations and K(0) is the Kozai Hamiltonian due to the distant perturber.
If K(0) is small with respect to α, then the Kozai resonance disappears, what-
ever the inclination is. An example of this is provided by the satellites of
Uranus. Their orbits being close to the equatorial plane of the planet, these
bodies have an inclination of approximately 90 degrees with respect to the
plane of the Sun’s apparent motion. Therefore, the Kozai resonance gen-
erated by the solar perturbation should force them to fall onto the planet.
However, the precession frequencies of their arguments of pericenter, forced
by the oblateness of the planet and by their mutual perturbations, are large
enough to suppress the Kozai resonance, thus allowing the long-term orbital
stability of the satellites. The same happens for the entire planetary system.
The planets’ orbits are in fact inclined by about 60 degrees with respect to
the Galactic plane. If the Solar System had only one planet, the perturba-
tion given by the over-density of matter on the Galactic plane (the so-called
Galactic tide, see for instance Matese and Whitman, 1992) would periodically
pump the planet’s eccentricity. However, the mutual perturbations among the
planets force – as seen in the previous chapter – nonnegligible precession fre-
quencies of the arguments of perihelion, so that the effect of the Galactic tide
becomes negligible. Conversely, for a body with semimajor axis equal to a few
thousand astronomical units, the precession frequency forced by the planets
becomes very small, and the Galactic tide becomes the dominating gravita-
tional perturbation. In fact, the most credited theory for the origin of the Oort
cloud (the reservoir of long-period comets) invokes Kozai-like dynamics gen-
erated by the Galactic tide as responsible for decreasing the eccentricities of
the bodies that have been scattered by the planets onto orbits with semimajor
axes equal to several 103 AU (see Duncan et al., 1987).

8.2.2 Kozai dynamics outside the orbit of the main perturber

Figure 8.2 is the analog of Fig. 8.1, but has been computed for a small body
with semimajor axis equal to 45 AU, namely exterior to its perturbers (the four
giant planets). At a glance, it is manifest that in the outer Solar System the
Kozai dynamics is very different in comparison with that of the asteroid belt.
When imax is small the argument of perihelion always circulates (Fig. 8.2a) and
the eccentricity does not change in a significant way (the level curves of K(0)

are almost circles), similarly to the asteroid case. However, increasing imax
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Figure 8.2: The same as Fig. 8.1 but for a semimajor axis typical of the Kuiper
belt. The dashed curves denote the values of e, g corresponding to node-
crossing of the outer planets’ orbits. Adapted from Morbidelli and Thomas
(1996).
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(following panels in Fig. 8.2) at low eccentricities the level curves persist to be
quasi-circular. In Fig. 8.2b the dashed curves report the families of values (e, g)
corresponding to node-crossing of the orbit of Neptune. The low-eccentricity
orbits are always protected from encounters with Neptune; conversely, the
circulation of g takes all high-eccentricity orbits to cross the orbit of the planet.
Note that the level curves of K(0) have angular points in correspondence with
the Neptune crossing line: this is because the double averaged function (8.17)
is continuous for ∆j = 0, but not differentiable (Gronchi and Milani, 1998,
1999).

On the surface H =constant corresponding to imax = 40◦ (Fig. 8.2c) the
phase space changes, because a couple of stable equilibrium points are formed
at g = 0◦ and g = 180◦. These equilibria are surrounded by islands where
the argument of perihelion librates. Among all high-eccentricity orbits, only
those in these two islands of libration are protected from encounters with
Neptune. Encounters with Uranus are also possible for very high-eccentricity
orbits (the new dashed curves denote the node-crossing of Uranus’ orbit).
In Fig. 8.2d, the islands of libration are much wider, and orbits with large
amplitude of libration are forced to cross the orbit of Uranus. In Fig. 8.2e the
curves denoting Uranus-crossing orbits cut each island of libration in two parts,
creating four small islands of libration protected from planetary encounters.
At very large eccentricity, also the dashed curves corresponding to encounters
with Saturn appear. Finally, in Fig. 8.2f only two islands of libration at
g = 0◦, 180◦ survive beyond the Uranus-crossing curve. Moreover we note the
formation of two additional islands of librations at g = 90◦, 270◦, bounded by
the curves denoting node-crossing of the orbits of Neptune and Uranus.

All the panels shown in Fig. 8.2 allow the conclusion that, in contrast to
the asteroid belt case, an initially small to moderate eccentricity would not
be increased under the effect of the Kozai resonance, whatever the inclination
is. Thus, small-eccentricity orbits stay protected from planetary encounters.
In fact, in the Kuiper belt there seem to be several bodies with inclinations
much larger than in the asteroid belt. Conversely, the Kozai dynamics is
nontrivial at large eccentricity, providing islands of stable motion protected
from planetary encounters. It is therefore primarily interesting for the secular
evolution of long-period comets. To cover the range of eccentricities typical of
cometary orbits, one has to focus on the surfaces H =constant corresponding
to imax > 60◦. Figure 8.3 presents the level curves of K(0) on these surfaces

using Cartesian coordinates g and X =
√
1− e2. The advantage of these

coordinates is to magnify the high-eccentricity region with respect to the low-
eccentricity region, X being a highly nonlinear function of e.

Figure 8.3a corresponds to the same surface illustrated in Fig. 8.2f, so
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Figure 8.3: Kozai dynamics in the Kuiper belt, for very large eccentricities
and inclinations. The y scale is linear in X =

√
1− e2 to magnify the large

eccentricity region of the phase space. Panel (a) is plotted for the same value of
imax of panel (f) in Fig. 8.2. Reprinted from Fig. 5 of Thomas and Morbidelli
(1996), with permission from Kluwer Academic Publishers.
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Figure 8.4: The Kozai dynamics computed for the values of the semimajor axis
and imax of the Sun-grazing comet Ikeya–Seki. Superposed is the evolution of
the comet computed by numerically integrating the full equations of motion,
over a timespan of 480,000 y. Reprinted from Fig. 8 of Thomas and Morbidelli
(1996), with permission from Kluwer Academic Publishers.

that the reader can establish a direct correspondence between the two coor-
dinate systems. In Fig. 8.3b also the curves corresponding to node-crossing
of the orbit of Jupiter are marked. Each of the big islands of libration at
g = 0◦, 180◦ is broken into three islands by the curves of node-crossing of
Saturn’s and Jupiter’s orbits. Each island is protected from planetary en-
counters. In Fig. 8.3c, the two upper islands at g = 0◦(180◦) are destroyed
and only the third island below the Jupiter-crossing curves survives. But the
curves denoting node-crossing of the orbits of Neptune and Uranus become
closer, so that this surviving island is now smaller than in panel b. Conversely
a new island forms, still below the Jupiter-crossing curves but with g = 90◦

(270◦), and it becomes larger with increasing value of imax. Indeed in Fig. 8.3d,
corresponding to imax = 86◦, the island at g = 90◦ (270◦) dominates the phase
space, while that at g = 0◦ (180◦) almost disappears.

The features of the Kozai dynamics illustrated in Figs. 8.2 and 8.3 are
typical of the outer Solar System and do not change qualitatively with the
semimajor axis of the small body. This is quite intuitive. The appearance
and disappearance of the islands is dictated by the position of the curves
denoting node-crossing of planetary orbits. Thus, increasing the semimajor
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axis, the same situation simply repeats at larger eccentricity and at the same
inclination, i.e. for a larger value of imax.

As first pointed out by Bailey et al. (1992), the libration islands at
g = 90◦, 270◦ visible in Fig. 8.3d could be responsible for the origin of many
Sun-grazing comets, as well as of the comets that collide with the Sun like
those that are frequently discovered by the Soho satellite. The latter are
long-period comets with extremely large eccentricities, so that their perihelion
distances are of the order of the Sun’s radius. They are expected to have
reached their current eccentricities by following half a libration cycle in one
of the two main islands of Fig. 8.3d. As an example, Fig. 8.4 shows the case
of the Sun-grazer 1965VIII Ikeya–Seki, one of the most magnificent comets of
the XXth century: the panel shows the Kozai dynamics corresponding to the
present orbital elements of the comet (a = 91.6 AU, e = 0.9999, i = 141.86◦,
g = 69.05◦) and the arrow denotes the position of the comet in g,X coor-
dinates; superposed, the past and future evolutions of the comet are shown,
as resulting from an accurate numerical integration of the full equations of
motion covering 480,000 y. As one sees, the numerically computed evolution
basically follows the level curves of the Kozai Hamiltonian; the agreement is
not perfect because the first-order secular normal form is a rough approxima-
tion of the real motion, these comets being strongly perturbed when passing
through the planetary system; moreover the Kozai Hamiltonian misses the
secular dynamical effects due to planetary eccentricities and inclinations. A
detailed discussion of the pertinence of the Kozai Hamiltonian to describe
the long-term evolution of long-period comets can be found in Thomas and
Morbidelli (1996); nevertheless, Fig. 8.4 shows that the simple analytic com-
putation of the Kozai’s dynamics is enough to understand the origin of the
comet’s Sun-grazing state.

Michel and Thomas (1996) have shown that a Kozai dynamics similar to
that shown in Fig. 8.2c characterizes the motion of the asteroids with moder-
ate inclination, and semimajor axes slightly larger than those of the Earth or
Venus. The libration islands around g = 0◦, 180◦ are important because they
(temporarily) protect these asteroids from close encounters with the terrestrial
planet. One should not be surprised that in these cases the Kozai dynamics
looks like that discussed in this section: in fact, for these values of semima-
jor axes and inclinations, the Earth (or Venus) becomes the main perturber,
predominating over Jupiter’s gravitational field. Only at large inclination do
Jupiter’s gravitational perturbations become predominant, and the Kozai’s
dynamics looks again as in Fig. 8.1d.

The Kozai Hamiltonian for the Centaurs objects, which have semima-
jor axes in the outer planetary region (5–30 AU) has been studied in detail
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by Gronchi and Milani (1999); as for the long-period comets, the dynamics
presents several libration islands, determined by the planet-crossing curves.

8.2.3 Action–angle variables for the Kozai Hamiltonian

The Kozai Hamiltonian being integrable, it is possible to introduce suitable
Arnold action–angle variables in order to transform K(0) into a Hamiltonian
depending only on the new actions. As discussed in Section 4.2, different
sets of action–angle variables need to be introduced in the regions where g
circulates or librates, the transformation to the new variables being singular
on the separatrix of the Kozai resonance.

Because the action H is a constant of motion for the Kozai Hamiltonian,
one of the two Arnold actions, say J2, is H itself. For the computation of the
other action, say J1, the cycles used in the Arnold–Liouville theorem are those
identified by the level curves of K(0). Therefore one has:

J1 =
1

2π

∫ 2π

0
G(K(0),H, g)dg , (8.23)

for a circulation cycle and

J1 =
1

2π

[∫ gmax

gmin

G+(K(0),H, g)dg −
∫ gmax

gmin

G−(K(0),H, g)dg

]

, (8.24)

for a libration cycle. In the above formulæ G(K(0),H, g) denotes the depen-
dence of G on g, along the cycle characterized by the values of the constants
H and K(0); G

+ and G− denote respectively the upper and lower part of the
cycle in the case of libration, and gmin, gmax are the extreme values assumed
by g during the libration.

Concerning the new angles ψ1 and ψ2, canonically conjugate to J1 and
J2, Arnold’s theory shows that they are linear functions of time, whose time
derivatives are equal respectively to the frequency of circulation/libration of g
and to the frequency of h averaged over a period of g. The introduction of the
new action–angle variables in the full secular normal form is done as explained
in Section 4.2; the integrable approximation (8.16) becomes

Hint =
∑

k

(gkΛgk + skΛsk) +K(0)(J1, J2) . (8.25)

For the cycles which intersect a planet-crossing curve, the introduction
of the new action–angle variables can still be done in principle. In fact, the
cycle is (artificially) well defined, so that the integral defining J1 can be com-
puted; the frequencies of the angles g and h are infinite on the planet-crossing
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curves, but their mean values are still finite, when averaged over the cycle
(Gronchi and Milani, 1998, 1999). However, the Hamiltonian written in the
new variables is not analytic for all the values of J1, J2 that correspond to
planet-crossing cycles. In fact, in reality the body will have a strongly chaotic
motion, due to close encounters with the planet.

8.3 Proper elements

As discussed in the Introduction, the usual plot of the distribution of the as-
teroids with respect to their osculating semimajor axis, eccentricity and incli-
nation (Fig. 2) shows that some regions of the belt are more densely populated
than others. However, because the osculating elements continuously change
under the perturbations of the planets, the mutual distances of the asteroids
in the space of osculating a, e, i change on the timescale of the orbital preces-
sions; it is therefore difficult to conclude anything about the significance of
these regions of apparent overdensity. However, for the asteroids which evolve
on regular orbits, i.e. on KAM tori, it is possible in principle to introduce
action–angle variables such that the actions are constants of motion. In the
space of these actions, the distribution of the asteroids would be invariant with
time, so that its analysis could provide important information on the structure
of the asteroid belt (see Section 8.3.1).

The computation of the action variables that are constant on KAM tori
is beyond all practical possibilities, but fortunately it is possible to compute
– through the construction of low-order Birkhoff normal forms – actions whose
amplitudes of temporal oscillations are much smaller than those of the oscu-
lating elements. These actions can be considered as quasi-constants of motion
for practical astronomical purposes. The first step for the computation of
these actions is to construct the secular normal form, as already explained in
Section 2.5.1, which allows one to identify in the mean semimajor axis the first
approximate constant of motion. The second step is to construct a Birkhoff
normal form of first order for the secular Hamiltonian (8.2). This step is
detailed in the present section.

From the previous sections, we know that there are two possible integrable
approximations of the secular Hamiltonian. The construction of the Birkhoff
normal form depends on the chosen integrable approximation, but the formal
scheme is the same in both cases. Therefore, in the following we will generically
denote by H0 the integrable approximation, which can be either (8.13) or
(8.25); moreover by I1, I2, ϕ1, ϕ2 we will denote the action–angle variables
introduced for the integrable approximation, namely P ′, Q′, p′, q′ for the linear
approximation and J1, J2, ψ1, ψ2 for the Kozai approximation. Finally, by H1



168 CHAPTER 8. SECULAR DYNAMICS OF SMALL BODIES

we will generically denote the term of lowest order in the perturbation, i.e. H(4)

for the approach based on the linear approximation, or K(1) for the one based
on Kozai’s approximation. In the linear approximation, the frequencies of the
small body’s longitudes of perihelion and node depend only on its semimajor
axis; to have a more realistic approximation, we include in H0 the terms of
H1 that are independent of the angles. In this way, H0 becomes nonlinear,
while the average of H1 over all angles becomes equal to zero. In the Kozai
approximation, H0 is already nonlinear and H1 has zero average over the
angles, so that we do not need to perform any modification. In conclusion, we
deal with a Hamiltonian of type

H = H0(I1, I2,Λgk ,Λsk) +H1(I1, I2, ϕ1, ϕ2,̟
∗
k,Ω

∗
k) (8.26)

where H1 is small (say of order η) with respect to H0 and has zero average
over the angles, and H0 has the form

H0(I1, I2,Λgk ,Λsk) =
∑

k

(gkΛgk + skΛsk) +W0(I1, I2) . (8.27)

The function W0 is nonlinear in I1, I2, so that the frequencies ω1 = ∂W0/∂I1,
ω2 = ∂W0/∂I2 are functions of I1, I2. Remember that the Hamiltonian (8.26)
depends parametrically on the value of Λ (the quasi-constant action defined
when computing the secular normal form; see Section 2.5), that is on the small
body’s mean semimajor axis.

To compute the Birkhoff normal form, H1 is first expanded in a Fourier
series of the angles, as:

H1 =
∑

j,l,m,n

cj,l,m,n(I1, I2) exp [ι(jϕ1 + lϕ2 +m ·̟∗ + n ·Ω∗)] , (8.28)

where̟∗ and Ω∗ denote vectors with components ̟∗
k and Ω∗

k respectively, the
index k ranging over the considered number of planetary frequencies. In the
approach based on the linear approximation, (8.28) contains only the terms of
degree 4 in eccentricities and inclinations, so that, for the D’Alembert rules,
it has only a finite number of harmonics; in the approach based on the Kozai
approximation, the Fourier series on ϕ1 (i.e. ψ1) is infinite, so that one has
to introduce some truncation on |j| in order to retain in H1 only a finite
number of terms. A seminumerical technique (see Lemâıtre and Morbidelli,
1994) allows one to work without explicit Fourier expansion in the angles, so
that the truncation on |j| is not needed. We will use here the explicit Fourier
expansion for simplicity of explanation.

As shown in Chapter 2, the first-order Birkhoff normal form is obtained
using the Lie series: new variables I ′1, I

′
2, ϕ

′
1, ϕ

′
2 are introduced with a trans-

formation of type (2.6), with generating Hamiltonian χ given as a solution of
equation (2.10). Using the expansion (8.28), χ can be written as:
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χ =
∑

j,l,m,n

−ι cj,l,m,n(I
′

1, I
′

2)

m · g+ n · s + jω1(I ′1, I
′

2) + lω2(I ′1, I
′

2)
exp [ι(jϕ′

1
+lϕ′

2
+m·̟∗+n·Ω

∗)] ,

(8.29)

where g and s are the vectors of planetary frequencies gk and sk respectively.
The construction of the normal form fails if one of the denominators in (8.29)
is close to zero; when this occurs, we say that there is a secular resonance
among the planetary frequencies and the small body’s frequencies. Because
the approch based on the linear approximation and the one based on the
Kozai approximation define perturbations H1 that have different Fourier ex-
pansions, the sets of secular resonances that prevent the construction of the
first-order normal form are different in the two approaches. Similarly to what
was discussed for the secular normal form (see Fig. 2.1), to guarantee that the
denominators in (8.29) are not smaller than

√
η, the values of I1 and I2 of the

small body must differ by at least O(
√
η) from the solutions of the equations

m · g + n · s+ jω1(I1, I2) + lω2(I1, I2) = 0 . (8.30)

Once χ is determined, the values of I ′1, I
′
2, ϕ

′
1, ϕ

′
2 that correspond to the

values of I1, I2, ϕ1, ϕ2 of the asteroid can be computed to first order as:

I1 =I
′
1 + {I ′1, χ} = I ′1 − ∂χ

∂ϕ′

1
(I ′1, I

′
2, ϕ

′
1, ϕ

′
2,̟

∗,Ω∗)

I2 =I
′
2 + {I ′2, χ} = I ′2 − ∂χ

∂ϕ′

2
(I ′1, I

′
2, ϕ

′
1, ϕ

′
2,̟

∗,Ω∗)

ϕ1=ϕ
′
1 + {ϕ′

1, χ} = ϕ′
1 +

∂χ
∂I′1

(I ′1, I
′
2, ϕ

′
1, ϕ

′
2,̟

∗,Ω∗)

ϕ2=ϕ
′
2 + {ϕ′

2, χ} = ϕ′
2 +

∂χ
∂I′2

(I ′1, I
′
2, ϕ

′
1, ϕ

′
2,̟

∗,Ω∗) .

(8.31)

However, these equations are in implicit form, because the generating function
χ depends on the new variables. The solution of (8.31) is therefore computed
by iterations, starting from I ′1 = I1, I

′
2 = I2, ϕ

′
1 = ϕ1, ϕ

′
2 = ϕ2. If the deriva-

tives of χ are small, the iterative method converges, and the solution values
of I ′1, I

′
2, ϕ

′
1, ϕ

′
2 are called the proper actions and angles of the asteroid. The

frequencies ω1(I
′
1, I

′
2), ω2(I

′
1, I

′
2) are the proper frequencies. Conversely, in the

proximity of a secular resonance, where one of the denominators in (8.29)
is small (typically smaller than

√
η), the derivatives of χ are large and the

iterative method generally fails to converge.
The actions I ′1 and I ′2 (when computable) are precisely the new approx-

imate constants of motion of the asteroid that we were looking for, at the
beginning of this section. Instead of looking at the distribution of the asteroid
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in the space of the quasi-invariant actions Λ, I ′1, I
′
2, one usually prefers to first

introduce more directly understandable quantities, called the proper elements,
i.e. values of the semimajor axis, eccentricity and inclination related to the
quasi-invariant actions. This is done as follows. The proper semimajor axis is
identified with the mean semimajor axis, namely with ap = Λ2/(GM⊙), where
G is the gravitational constant and M⊙ is the mass of the Sun. Then, in
the approach based on the linear approximation, one assumes that the linear
proper actions P ′, Q′ are equal to the values of the proper actions I ′1, I

′
2 (which

is true on average) and computes the proper eccenticity and inclination using
(8.14). In the approach based on the Kozai approximation, one assumes that
the actions J1 and H of the Kozai Hamiltonian are equal to the values of
the proper actions I ′1, I

′
2, thus identifying a specific cycle of eccentricity and

inclination as a function of the argument of perihelion g; then one chooses as
proper eccentricity and inclination some values of e and i that, together with
ap, unequivocally identify that cycle: for instance the values of e and i on the
cycle when g = 0 or g = 90◦, or alternatively the average of e and i over the
cycle.

Hirayama (1918) was the pioneer of the linear approximation approach for
the computation of proper elements: he used a secular normal form to first
order in the mass of Jupiter, of which he considered only the linear part (thus
skipping the computation of the Birkhoff normal form). Later Yuasa (1973)
developed a more complete theory of asteroid secular motion, based on a sec-
ular normal form to second order in the mass of Jupiter, and retaining all the
terms up to degree 4 in the eccentricities and inclinations. However Yuasa
never used his theory to explicitely compute the asteroids’ proper elements.
This was done by Milani and Knežević (1990, 1992, 1994), who made Yuasa’s
theory more sophisticated and introduced the method based on the first-order
Birkhoff normal form, explained in this section. In their most advanced algo-
rithm Milani and Knežević (1994) took into account the perturbations given
by Jupiter and Saturn, and computed the secular normal form to order 2 in
the planetary masses, retaining all terms up to degree 4 in the eccentricities
and inclinations; moreover they included terms accounting for the corrections
of the asteroid’s proper frequencies due to the terrestrial planets; for Jupiter’s
and Saturn’s orbital elements, they assumed the linear Lagrange–Laplace the-
ory, including all the terms related to the four giant planets’ secular system,
completed by the major terms coming from a nonlinear secular theory of plan-
etary motion.

The approach based on the Kozai Hamiltonian was first introduced by
Williams (1969). Williams did not work in the framework of Hamiltonian
formalism, but his algorithm for the computation of proper elements is basi-
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Figure 8.5: Time evolution of the proper elements of the asteroid 1021 Flam-
mario. The labels e and I denote the proper eccentricity and proper inclination
computed using Milani and Knežević’s algorithms; ex, Ix are the proper eccen-
tricity and inclination computed using Lemâıtre and Morbidelli’s algorithm,
defined as the values of e and i when g = 0 on the Kozai cycle identified by
the value of the proper actions; ey, Iy are the same as ex, Ix, but defined
as the values of e and i when g = 90◦ on the Kozai cycle. For this asteroid
(inclination ∼ 15.5◦) the accuracy of the different sets of proper elements – de-
fined as the root mean square of their dispersion with respect to their average
value – is comparable. Reprinted from Fig. 2 of Knežević et al. (1995), with
permission from Astronomy and Astrophysics.

cally equivalent to that explained above; in particular his secular equations
are equivalent to those arising from a secular normal form computed up to
first order in the mass of Jupiter. Lemâıtre and Morbidelli (1994) revisited
Williams’ algorithm in the framework of Hamiltonian theory, thus introduc-
ing the procedure based on the use of Arnold’s action–angle variables for the
Kozai Hamiltonian, explained in this section. Moreover, they started from a
secular normal form computed up to second order in the planetary masses,
and took into account also the perturbations of Saturn on the small body. For
Jupiter’s and Saturn’s orbital elements they assumed Lagrange–Laplace linear
theory with forcing frequencies g5, g6, g7, s6, s7, s8, plus the leading nonlinear
term with frequency 2g6 − g5.

The accuracy of proper elements has been tested using numerical integra-
tions: a number of asteroids have been integrated over several million years,
and, at each output time, their proper elements have been computed. In prin-
ciple, the proper elements should be constants of motion, so that their values
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should be the same at every output time; in reality, the values of the proper
elements oscillate with time (see Fig. 8.5), due to the terms that have not been
taken into account in the low-order normal forms used for their computation.
Therefore, the accuracy of the proper elements is measuread as the root mean
square (rms) of their dispersion with respect to their average value over the
entire integration timespan. For the asteroids with low eccentricity and incli-
nation which are not close to secular resonances the accuracy of Milani and
Knežević’s proper elements is excellent: the rms of the proper eccentricity
and of the sine of the proper inclination are typically much smaller than 10−3

(Milani and Knežević, 1994). However, the accuracy degrades for asteroids
with larger eccentricity and/or inclination; this is because their Hamiltonian
is a truncated power series expansion in e and i, and because the linear ap-
proximation assumes that e and i are constant during the precession of the
argument of perihelion, which is a coarse approximation for bodies not too far
from the Kozai resonance (see Fig. 8.1). For bodies with i ∼ 15 degrees, the
rms of Milani and Knežević’s proper elements become of order 5 × 10−3 for
the eccentricity and 10−3 for the inclination, i.e. comparable to the typical
accuracy of the proper elements by Lemâıtre and Morbidelli (see Knežević et
al., 1995, and Fig. 8.5). The accuracy of the latter is basically the same for all
asteroids, whatever their eccentricity and inclination, because no expansion is
done in powers of e and i and because the Kozai dynamics is accurately taken
into account. In principle, Lemâıtre and Morbidelli’s proper elements can be
computed also for asteroids librating inside the Kozai resonance, but this fact
has little importance for practical applications because only a very limited
number of these asteroids are known. However, the proper elements com-
puted by Lemâıtre and Morbidelli never achieve the best accuracy of those by
Milani and Knežević, because the quadratic and cubic terms in the planetary
eccentricities and inclinations (i.e. K(2),K(3)) are not taken into account.

8.3.1 Asteroid families

Figure 8.6 finally shows the distribution of the asteroids with respect to the
proper semimajor axis, inclination and eccentricity computed by Milani and
Knežević. Several regions of overdensity are immediately evident. A rigor-
ous analysis of the asteroid distribution with respect to the proper a, e and
i has been done with two independent classification methods by Zappalà et
al. (1990) and Bendjoya et al. (1991), leading to similar results (Zappalà et
al., 1995): there are 32 regions of statistically significant overdensity in the
distribution of the asteroids with proper inclination smaller than 17.5 degrees.
There is a general consensus that these regions of overdensity are the result
of the break up of a parent body due to collision with another (generally
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Figure 8.6: The distribution of 12,487 asteroids in the proper element space.
a′, e′ and i′ denote here the values of the proper semimajor axis, eccentricity
and inclination computed by Milani and Knežević. Reprinted from Fig. 1 of
Zappalà et al. (1995), with permission from Academic Press.
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Figure 8.7: The same as Fig. 8.6, but only the members of the 32 identified
families are plotted. Reprinted from Fig. 12 of Zappalà et al. (1995), with
permission from Academic Press.
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smaller) asteroid: for this reason they are generally called asteroid families.
The asteroid families identified with statistical reliability with proper inclina-
tion smaller than 17 degrees are shown in Fig. 8.7. At larger inclination, six
more families have been identified using the proper elements by Lemâıtre and
Morbidelli by Forzoni Accolti (1995): three are in the Hungaria region (the
region populated by the asteroids with a ∼ 1.9 AU, i ∼ 22◦), two are in the
Phocea region (a ∼ 2.35 AU, i ∼ 24◦), and the last one is associated with the
large asteroid 2 Pallas (a = 2.77 AU, e = 0.23, i = 34.8◦ in Fig. 2).

The high accuracy of Milani and Knežević’s proper elements allows as-
tronomers to study in detail the distribution of the asteroids inside the family,
thus reconstructing the velocity field that characterized the ejection of the
fragments from their parent body (Cellino et al., 1999). This in turn allows
one to deduce several properties of the collisional physics of asteroids, namely
for a range of sizes and impact velocities that are orders of magnitude larger
than those characterizing laboratory experiments.

8.4 Secular resonances

The locations of secular resonances are simply computed as the sets of the
actions Λ, I1, I2 such that the frequencies of the integrable Hamiltonian (8.27)
satisfy relationships of the type (8.30), with coefficients m,n, j and l such
that the corresponding harmonics exp ι(jϕ1 + lϕ2 +m ·̟∗ + n ·Ω∗) satisfy
the D’Alembert rules and effectively appear in the Fourier expansion of the
perturbation. In the approach based on the linear approximation, the use of
(8.27) to locate linear secular resonances is done with some abuse. In fact,
in the presence of linear resonances, one of the amplitudes (8.8) of the trans-
formation (8.7) is infinite, so that (8.27) cannot be constructed following the
perturbation approach described in Section 8.1. In this cases, the integrable
“approximation” (8.27) is defined by simply neglecting all harmonic terms in
H(2) and H(4).

Once the values of the actions Λ, I1, I2 corresponding to a secular reso-
nance are determined, the related values of semimajor axis, eccentricity and
inclination are computed as for the proper elements case.

In the asteroid belt, the location of secular resonances has been computed
by Milani and Knežević (1990, 1992, 1994), following the approach based on
the linear approximation, and by Williams and Faulkner (1981) and subse-
quently by Morbidelli and Henrard (1991a), following the approach based on
the Kozai approximation. Figure 8.8 shows Milani and Knežević’s result: the
location of secular resonances is given with respect to proper semimajor axis
and inclination, for a value of the proper eccentricity fixed equal to 0.1; only
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Figure 8.8: The location of secular resonances and their estimated width for
proper eccentricity equal to 0.1. Only the secular resonances whose corre-
sponding harmonics appear in H(2) or H(4) are shown. Reprinted from Fig. 5
of Milani and Knežević (1990), with permission from Kluwer Academic Pub-
lishers.

the linear resonance g−g6 and the resonances whose corresponding harmonics
appear in the main perturbation term H(4) are represented. The location of
the resonances for other values of the proper eccentricity can be found in the
above-quoted Milani and Knežević papers. In the authors’ notation, g and s
are respectively the frequencies of the longitudes of perihelion and node which
should be identified with −ω1 and −ω2 in the notation of formula (8.30).1 For
each resonance, the central curve shows the exact location, where the corre-
sponding relation (8.30) is precisely satisfied, while the two curves on each side
show the locations where the same frequency combination is equal to ±1′′/y, in
the case of the g−g6 resonance, or ±0.5′′/y, in the case of the other resonances.
These arbitrary values have been chosen to give a qualitative indication of the
widths of the resonances. Note that the resonances appear to accumulate and
assume a vertical location close to the 3:1 mean motion resonance, approxi-

1The reader should not confuse the argument of perihelion and the frequency of the
longitude of perihelion, which are both denoted by g in this chapter, but always in a different
context.
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Figure 8.9: The location of secular resonances for proper eccentricity equal to
0.1 and outside of the Kozai resonance. Only the secular resonances whose
corresponding harmonics appear in K(1) or K(2) are reported. The resonance
enumeration is the following: 1: g = g5 (ν5); 2: g = g6 (ν6); 3: s = s6 (ν16);
4: g + s = g5 + s6; 5: g + s = g6 + s6; 9: 2g = g5 + g6; 10 g − s = g5 − s6;
11: g − s = g6 − s6. Here, g and s are the proper frequencies of the longitude
of perihelion and of the longitude of node of the asteroid, to be identified
respectively with ω1 + ω2 and ω2 in the notation of (8.30). The dotted bands
denote the regions close to the main mean motion resonances where the secular
normal form is singular. Reprinted from Fig. 9 of Morbidelli and Henrard
(1991a), with permission from Kluwer Academic Publishers.

mately at 2.5 AU. This is an artifact of the computation method: the secular
normal form, in fact, is singular at the location of mean motion resonances
because of the presence of the small denominators introduced in (2.41) for the
elimination of the corresponding harmonics. The appropriate way to compute
the location of secular resonances inside/close to mean motion resonances will
be explained in Chapter 11.

Figure 8.9 shows the location of secular resonances according to Morbidelli
and Henrard (1991a), which is computed over a more extended range of incli-
nations, thanks to the fact that in the approach based on the Kozai approx-
imation the computation of the asteroid’s secular frequencies does not lose
accuracy at large i. All resonances whose corresponding harmonics appear in
the perturbation terms K(1) and K(2) are shown. As in Fig. 8.8, the computa-
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tion is done for a proper eccentricity equal to 0.1; here, proper eccentricity and
inclination are defined as the values of e and i assumed when the argument
of perihelion is equal to zero, on the cycle defined by the Kozai Hamiltonian.
The location of secular resonances is computed with reference to the secular
normal form of order 2 in Jupiter’s mass; the results are therefore improved
with respect to those by Williams and Faulkner (1981), who worked in an
equivalent way, but starting from a secular normal form that was computed
only to first order in Jupiter’s mass. The dotted bands around 2.5, 2.8 and
3.3 AU denote “forbidden regions” where the secular normal form is singular
due to the presence of the 3:1, 5:2 and 2:1 mean motion resonances, respec-
tively. Figure 8.9 concerns only orbits that are outside of the Kozai resonance,
for which the argument of perihelion circulates; however, the approach based
on the Kozai approximation also allows the computation of the location of sec-
ular resonances in the regions where the argument of perihelion librates, inside
the Kozai resonance. There, the asteroid’s longitude of perihelion precesses
in the opposite direction with respect to the planets’ longitudes of perihelia,
so that low-order secular resonances involving the perihelia cannot exist; as
a consequence, only the s − s6 resonance has been found inside the Kozai
resonance by Morbidelli and Henrard (1991a).

Michel and Froeschlé (1997) extended Morbidelli and Henrard’s computa-
tion to the low-eccentricity orbits in the inner Solar System (0.5–2 AU region)
which do not intersect the orbits of the terrestrial planets. Moreover they
devoted their attention also to the resonances with the terrestrial planets’ sec-
ular frequencies, usually neglected in asteroid belt computations. The inner
Solar System turns out to be crowded with these resonances, which play a
nonnegligible role in the dynamical evolution of near-Earth asteroids (NEAs)
(Michel, 1997).

Comparing Fig. 8.9 with the left panel of Fig. 2, it is evident that the
distribution of the asteroids is sculpted by the main secular resonances. The
g − g6 resonance (also called the ν6 resonance) bounds the distribution of the
principal population of the asteroids in the belt, while the groups of Hungaria
and Phocea (respectively a ∼ 1.9 AU., i ∼ 22◦ and a ∼ 2.35 AU, i ∼ 24◦)
seem to be confined also by the g−g5 (ν5) and s−s6 (ν16) resonances. As will
be detailed below, this is a consequence of the large eccentricity or inclination
variations that these resonances may force, eventually destabilizing the aster-
oid’s motion; the ν5, ν6 and ν16 resonances have therefore created large gaps in
the asteroids’ distribution. Conversely, comparison between Figs. 8.8 and 2b
reveals that the main belt is crossed by several secular resonances of higher
order, but which do not seem to affect the asteroids’ distribution. Actually,
Fig. 8.8 reminds us of the Nekhoroshev structure sketched in Fig. 6.7a, where
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Figure 8.10: The location of the linear secular resonances in the Kuiper belt
for proper eccentricity equal to 0.1. Adapted from Fig. 5 of Knežević et al.
(1991), with permission from Academic Press.
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resonances cross each other at resonant nodes, but do not completely overlap.
This structure suggests that asteroids in nonlinear secular resonances, despite
of their possible chaotic motion, should be “stable” for very long times. In
fact, Milani and Knežević (1990, 1992, 1994) have numerically integrated over
several million years the evolution of a number of asteroids in these secular
resonances, without observing macroscopic drift of their proper elements. The
example case is that of the asteroid 221 Eos, in the g + s− g6 − s6 resonance:
this asteroid is the parent body of one of the most populated families, of which
several members share its same chaotic behavior due the presence of the reso-
nance; however the family is still very compact and easily identifiable, because
of the absence of macroscopic diffusion. The concept of “practical” stability,
introduced by Nekhoroshev theory, finds in the Eos family an enlightening
practical example.

In the Kuiper belt, the location of secular resonances has been computed
by Knežević et al. (1991), following the same approach used by Milani and
Knežević for the asteroid belt (but including also the perturbations of Uranus
and Neptune on the small bodies). In this case, the results are expected to be
valid over a larger range of inclinations than in the asteroid belt, because the
Kozai resonance never appears at low eccentricity, as seen in Fig. 8.2. Fig-
ure 8.10 shows the resulting location of the linear secular resonances. The ac-
cumulation of the perihelion resonances around 36.5 AU, 39.5 AU and 47.5 AU
is an artifact of the singularities of the secular normal form that are due to
the presence of the 3/4, 2/3 and 1/2 mean motion resonances with Neptune.
Apart from these singular situations, three regions in the Kuiper belt are
mostly affected by secular resonances: The 40–42 AU region is affected by the
g − g8 (alias ν8), s− s7 (ν17) and s− s8 (ν18) resonances; the region at about
36 AU is crossed by the g − g7 (ν7) and ν17 resonances; in addition, in the
region between 36.5 and 39.5 AU both the ν8 and ν18 resonances are present
for inclinations between 10 and 15 degrees. The outer part of the Kuiper
belt, beyond 42 AU, does not present any linear secular resonance: there, the
precession frequencies of the orbits of the Kuiper belt objects are slower than
those of all the outer planets, so that only higher-order resonances could be
found.

The location of secular resonances in the regions among the giant planets
has also been determined by Knežević et al. (1991); the corresponding figures
can be found in that paper.

8.4.1 Secular resonant dynamics

The dynamics of bodies in secular resonances can be analytically studied by
constructing the resonant normal form, following the approach explained in
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Section 2.3.1. For this purpose, it is more suitable to follow the approach
based on the Kozai approximation. In this section we will concentrate on the
case of secular resonances of first order, which are those whose corresponding
harmonics appear in the first-order perturbation term K(1).

We start from the Hamiltonian (8.26) which, in the case of the Kozai
approach, can be written as:

H =
∑

k

(gkΛgk + skΛsk) +K(0)(J1, J2) +K(1)(J1, J2, ψ1, ψ2,̟
∗
k,Ω

∗
k) , (8.32)

where J1, ψ1, J2, ψ2 are the action–angle variables for the Kozai Hamiltonian,
introduced as explained in Section 8.2.3. Remember that the angle ψ2 is
“close” to the longitude of node h of the small body; the angle ψ1 is “close” to
the argument of perihelion g in the case where the latter circulates; conversely,
ψ1 is related to the angular position relative to the libration center in the case
where g librates in the Kozai resonance. The frequencies of ψ1 and ψ2 are
respectively ω1 = ∂K(0)/∂J1 and ω2 = ∂K(0)/∂J2. Because of the D’Alembert
rules, the perturbation K(1) must have Fourier expansion:

K(1) =
∑

k,l

[cl,k(J1, J2) cos(lψ1 + ψ2 −̟∗
k) + dl,k(J1, J2) cos(lψ1 + ψ2 − Ω∗

k)] .

(8.33)
In the case where the argument of perihelion circulates, in (8.33) the coeffi-
cients cl,k with even l and dl,k with odd l are equal to zero. In these variables,
the harmonic related to the g − gk resonance is cos(ψ1 + ψ2 −̟∗

k), while the
harmonic related to the s− sk resonance is cos(ψ2 − Ω∗

k).
To fix notation, let us consider a body that is close to a single resonance

whose related harmonic is cos(l∗ψ1 + ψ2 − ̟∗
k∗
). The case where the body

is close to a single resonance with harmonic cos(l∗ψ1 + ψ2 − Ω∗
k∗
) is trivially

analogous. As shown in Section 2.3.1, the first-order resonant normal form is
constructed using the Lie series: new variables J ′

1, ψ
′
1, J

′
2, ψ

′
2,Λ

′
gk
,Λ′

sk
(called

semiproper) are introduced by a transformation of type (2.6), with generating
Hamiltonian χ given as the solution of the equation

K(1) + {K(0), χ} = cl∗,k∗(J
′
1, J

′
2) cos(l∗ψ

′
1 + ψ′

2 −̟∗
k∗) . (8.34)

This gives

χ =
∑

(k,l)6=(k∗,l∗)

cl,k(J
′
1, J

′
2)

lω1(J ′
1, J

′
2) + ω2(J ′

1, J
′
2)− gk

sin[lψ′
1 + ψ′

2 −̟∗
k]

+
∑

k,l

dl,k(J
′
1, J

′
2)

lω1(J ′
1, J

′
2) + ω2(J ′

1, J
′
2)− sk

sin[lψ′
1 + ψ′

2 −Ω∗
k] , (8.35)
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where none of the denominators is close to zero, by the assumption that the
body is not close to any resonance, other than the considered one. Note
that, because the generating Hamiltonian χ does not depend on Λ′

gk
,Λ′

sk
, the

planetary angles ̟∗
k and Ω∗

k are not changed by the transformation.
To first order (i.e. neglecting the higher-order terms introduced by the Lie

series), the Hamiltonian in the new variables is reduced to

H =
∑

k

(gkΛ
′
gk

+ skΛ
′
sk
) +K(0)(J

′
1, J

′
2) + cl∗,k∗(J

′
1, J

′
2) cos(l∗ψ

′
1 + ψ′

2 −̟∗
k∗) .

(8.36)
Because this Hamiltonian is independent of ̟∗

k (k 6= k∗) and Ω∗
k, the conjugate

actions are constants of motion. Then, dropping the constant terms
∑

k 6=k∗ Λ
′
gk

and
∑

k skΛ
′
sk
, and introducing the new canonical variables

S =J ′
2 , σ = l∗ψ

′
1 + ψ′

2 −̟∗
k∗

C =J ′
1 − l∗J

′
2 , ψ′

1

Λ̃gk∗=Λ′
gk∗

+ J ′
2 , ̟∗

k∗
,

(8.37)

the Hamiltonian becomes

H = K(0)(S,C)− gk∗S + cl∗,k∗(S,C) cos σ , (8.38)

where also the constant term gk∗Λ̃gk∗ has been omitted. The Hamiltonian
(8.38) is trivially integrable, since it depends only on one angle. Note that
(8.38) has the same form as (4.2), i.e. the standard form for an integrable single
resonance normal form. The angle σ is the critical angle of the considered
secular resonance.

At this point, the recipe to compute the resonant evolution of a body is
conceptually simple. From the initial action–angle variables J ≡ (J1, J2),ψ ≡
(ψ1, ψ2) of the body, one first computes the values of the semiproper action–
angle variables J′ ≡ (J ′

1, J
′
2),ψ

′ ≡ (ψ′
1, ψ

′
2) by iteratively solving the implicit

equations J = J′ + {J′, χ(J′,ψ′)}, ψ = ψ′ + {ψ′, χ(J′,ψ′)}, with χ given by
(8.35), similarly to what is done in (8.31) for computing the proper action–
angle variables of nonresonant asteroids. Then, using (8.37) one computes the
values Sb, σb, Cb of S, σ and C for the body. These are used as initial conditions
for computing the evolution according to the integrable Hamiltonian (8.38).
To obtain a global view of the resonant dynamics in the S, σ plane on which
the body evolves, one can simply plot on the surface C = Cb the level curves
of (8.38); in this diagram, the evolution of the body is represented by the
level curve passing through the point Sb, σb. In practical applications, it is
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often preferable to represent the dynamics in variables that are more directly
readable than the actions S and C. For this purpose, for every value of S and C
one computes the semiproper actions J ′

1, J
′
2 using the inverse of (8.37) and then

defines semiproper eccentricity and inclination in a way analogous to that used
to relate the proper actions to the proper eccentricity and inclination. More
precisely, one assumes that the actions J1 and H of the Kozai Hamiltonian
are equal to the values of the semiproper actions J ′

1, J
′
2, thus identifying a

specific cycle of eccentricity and inclination as a function of the argument of
perihelion g; then the semiproper eccentricity and inclination may be defined
as the values of e and i on the cycle when g = 0. Of course, the evolution
of the semiproper eccentricity and inclination represents just the skeleton of
the real evolution of the body: the body’s e and i oscillate with respect to
the semiproper eccentricity and inclination, due to the effects of the Kozai
dynamics and of all the nonresonant terms in K(1) that have been averaged
out in the construction of the resonant normal form.

Although simple in principle, the above sketched procedure is technically
complicated. Thus, Nakai and Kinoshita (1985) and Yoshikawa (1987), who
were the first to study the dynamics in the ν16 and ν6 secular resonances,
introduced a number of simplifications. First, instead of introducing Arnold
action–angle variables for the Kozai Hamiltonian as in Section 8.2.3, they sim-
ply averaged K(0)(G,H, g) over the argument of perihelion g. In the notation
of this chapter, this is equivalent to reducing the transformation (8.23) to the
identity J1 = G, which is an accurate approximation only for small eccen-
tricities and inclinations, where the cycles of the Kozai Hamiltonian in polar
coordinates G, g are close to circles. Second, they computed the average of K(1)

over the nonresonant harmonics without computing the generating Hamilto-
nian χ. Therefore, they identified the semiproper actions J ′

1, J
′
2 with J1, J2, i.e.

with the Delaunay actions G,H. This approximation was motivated by the
fact that the authors were not interested in computing the secular evolution
of specific asteroids, but rather aimed to explore the general dynamical prop-
erties of the resonances. Third, in the work of Yoshikawa (1987) the secular
normal form was expanded in a power series of the eccentricity and inclination
of the asteroid, and truncated to degree 4. We do not detail here the results
obtained by Nakai and Kinoshita and by Yoshikawa, for which the reader can
directly consult the original papers. Recall that their results are quantita-
tively accurate only for small to moderate eccentricities and inclinations. In
some cases, also qualitative differences with the real dynamics can occur: for
instance in Yoshikawa’s theory the libration center of the ν6 resonance at large
inclination turns out to be rotated by 180 degrees with respect to the real one,
as discussed by Morbidelli and Henrard (1991b).
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The approximations introduced by Nakai and Kinoshita and by Yoshikawa,
have the merit of showing a general property of secular resonances that oth-
erwise does not appear evident in the action–angle formalism detailed in this
section. By identifying J ′

1, J
′
2 with G,H, it turns out from (8.37) that for

perihelion secular resonances of type g − gk = 0 (which correspond to l∗ = 1)
one has S = H and C = G−H, while for nodal resonances of type s− sk = 0
(which correspond to l∗ = 0 and Ω∗

k replacing ̟∗
k) one has S = H,C = G.

Recalling that G−H ∼ i2 and that both the semimajor axis and C are con-
stant, this implies that perihelion resonances preserve the inclination and force
a change in the eccentricity, while nodal resonances keep e constant and force
the evolution of the inclination. Of course, this holds only when the identifi-
cation J ′

1 = G, J ′
2 = H is a good approximation, i.e. for small eccentricities

and inclinations.

The approach detailed in this section was introduced and applied without
simplification by Morbidelli (1993a). Figure 8.11 shows an example concern-
ing the asteroid 945 Barcelona, in the ν5 resonance (semimajor axis equal
to 2.64 AU). The panel on the left shows the global picture of the dynam-
ics on the surface C = Cb, with Cb being the value of C for Barcelona.
The dynamics is illustrated in the coordinates x = esp cos σ5, y = esp sinσ5,
where esp is the semiproper eccentricity and σ5 is the critical resonant an-
gle, namely σ5 = ψ′

1 + ψ′
2 − ̟∗

5 in the notation of (8.37). The black dot
corresponds to the present position of Barcelona. As one sees, the portrait
of the resonant dynamics is very similar to that of a pendulum in polar co-
ordinates, shown in Fig. 4.1b. In particular, one recognizes a stable equi-
librium point at σ5 = 0, surrounded by banana-shaped curves, which rep-
resent the librations in polar coordinates. According to the diagram and to
the present position of Barcelona, the asteroid is expected to librate around
σ5 = 0, its semiproper eccentricity passing from approximately 0.15 to 0.2.
It is very instructive to compare this theoretical result with a numerical in-
tegration, such as that done by Scholl and Froeschlé (1990) and shown in
the two panels on the right side of Fig. 8.11. The top and bottom pan-
els show respectively the forward and backward integrations, both for 1 My.
The coordinates are ΨJ

1 = [2(1 −
√
1− e2)]1/2 cos(̟ − ̟J) ∼ e cos(̟ − ̟J),

ΨJ
2 = [2(1−

√
1− e2)]1/2 sin(̟ −̟J) ∼ e sin(̟ −̟J), where e,̟,̟J are re-

spectively the osculating eccentricity, the longitude of perihelion of the asteroid
and the longitude of perihelion of Jupiter. The forward and backward numer-
ical integrations show banana-shaped “bands”, which are essentially made of
an “epicyclic” motion superposed on an almost semicircular arc of evolution.
The “epicycles” are associated with the precession of the argument of perihe-
lion g, i.e. to the Kozai dynamics. The semiproper eccentricity esp used to
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Figure 8.11: Left: the dynamical portrait of the ν5 secular resonance, com-
puted for the values of semiproper actions of the asteroid 945 Barcelona. The
black dot denotes the present position of the asteroid; the coordinates are ex-
plained in the text. Right: the future (top) and past (bottom) evolution of
the asteroid according to Scholl and Froeschle (1990). See text for discussions.
Reprinted from Fig. 1 of Morbidelli (1993a), with permission from Academic
Press.

represent the secular resonant motion in the left panel corresponds to the value
of e when g = 0, i.e. to the minimal value of the eccentricity on each “epicy-
cle”. Therefore, one should compare the expected evolution of Barcelona in
the esp, σ5 plane with the inner edge of the “bands” drawn by numerical simu-
lation on the ΨJ

1 ,Ψ
J
2 plane. Doing so, one sees that the forward and backward

integration each correspond roughly to half of a libration cycle in the ν5 reso-
nance, and that Barcelona cuts the ΨJ

2 = 0 axis approximately at esp = 0.15
in the forward integration and esp = 0.2 in the backward integration, in very
good agreement with the result obtained through the computation of the sec-
ular resonant normal form. Note that in the numerical simulation the total
variation of the osculating eccentricity is between 0.15 and 0.4, and that most
of it is due to the Kozai dynamics, not to the ν5 resonant dynamics. In re-
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Figure 8.12: The dynamical portrait of the ν16 secular resonance, inside the
Kozai resonance, computed for the values of semiproper actions of the asteroid
2335 James. The black dot denotes the present position of the asteroid. The
coordinates are explained in the text. Reprinted from Fig. 5 of Morbidelli
(1993a), with permission from Academic Press.

ality, the amplitude of variation of the eccentricity forced by the ν5 secular
resonance is in general quite limited (∼ 0.05 in this case). This is due to the
fact that, in the semimajor axis range corresponding to the asteroid belt, the
coefficient of the harmonic cos(ψ′

1 + ψ′
2 − ̟∗

5) is small, because it vanishes
and changes sign for a value of the inclination (∼ 30◦) that is close to that
characterizing the location of the ν5 resonance (see Morbidelli and Henrard,
1991b). The general scarcity of asteroids corresponding to the ν5 resonance
is therefore related more to the Kozai dynamics (responsible for the general
depletion of the asteroid belt at large inclination by pumping the eccentricity
to planet-crossing values), rather than to the ν5 resonance itself.

The perturbation approach discussed in this section is valid also for study-
ing the dynamics of secular resonances inside the Kozai resonance, i.e. for or-
bits with librating argument of perihelion. As an example, Fig. 8.12 is drawn
for the asteroid 2335 James (a ∼ 2.12 AU), which is in the ν16 resonance
inside the Kozai resonance. The secular resonant dynamics is represented in
polar coordinates: the radius is the semiproper inclination isp, here defined as
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the minimal value assumed by the inclination over the Kozai libration cycle
(corresponding to one of the two intersections of the cycle with the g = 90◦

axis); the angle is the critical one of the ν16 resonance, rotated by 180 de-
grees, namely σ16 = ψ′

2 − Ω∗
6 + π (the phase π has been added so that σ16

is close to the difference Ω− ΩJ between the osculating longitudes of node of
the asteroid and of Jupiter; see formula 7.10 and Table 7.3). The black dot
in Fig. 8.12 denotes the present position of the asteroid in these coordinates.
The level curves of the secular resonant normal form (8.38) are plotted only
in the region of libration of the argument of perihelion, and they are cut when
they encounter the Kozai separatrix. As one sees from the plot, the asteroid
James librates around σ16 = 0, its semiproper inclination passing from ap-
proximately 37 to 42 degrees. Its librational curve hits the Kozai separatrix at
isp ∼ 37◦, σ16 = 0, so that the asteroid may escape from the Kozai resonance,
its argument of perihelion starting to circulate.

As shown in Fig. 8.9, the ν16 resonance is present in the asteroid belt also
outside of the Kozai resonance; in this region its amplitude is much larger
than inside the Kozai resonance and, as first shown by Nakai and Kinoshita
(1985), it may exceed 15 degrees. Moreover, the stable libration center of the
ν16 resonance is at σ16 = 180◦, i.e. rotated by 180 degrees with respect to
the Kozai resonant case of Fig. 8.12. The absence of asteroids between the
Hungaria and the Phocea groups (see Fig. 2) can be explained by the presence
of the ν16 resonance. In fact, asteroids in this location would suffer oscillations
of their inclinations that are large enough to take them to interact either with
the ν6 resonance (at lower inclination) or with the ν5 and Kozai resonances
(at higher inclination), thus subsequently increasing their eccentricity up to
at least Mars-crossing values.

In long-term numerical integrations (Froeschlé et al., 1991), the asteroid
2335 James shows fascinating chaotic behavior. It alternately enters and ex-
its the Kozai resonance: when outside of the Kozai resonance, it is at the
same time in both the ν5 and the ν16 secular resonances, σ16 librating around
180 degrees; when inside the Kozai resonance, the asteroid is no longer in ν5
(recall that this resonance cannot occur for orbits with librating argument of
perihelion) but it is still in the ν16 resonance, and σ16 librates around 0◦. The
transitions through the Kozai separatrix are repeatedly forced by the large os-
cillations of the inclination caused by the ν16 resonance. It is curious to know
that the asteroid protagonist of this secular resonant dance has been named
after James Williams, the pioneer investigator of asteroid secular dynamics.

The perturbation scheme explained in this section has also been used by
Michel (1997) to study the dynamics in the secular resonances with the terres-
trial planets’ frequencies in the inner Solar System (a < 2 AU). Because the
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ν3 and ν4 resonances – as well as the ν13 and ν14 resonances – may overlap,
Michel computed a secular resonant normal form retaining the harmonics re-
lated to both resonances. Then, he numerically computed the Poincaré section
of the resulting nonintegrable Hamiltonian in order to measure the extent of
the chaotic zone. He found that the perihelion resonances can easily trans-
port bodies from initially circular orbits to planet-crossing orbits and vice
versa, while the nodal resonances can force changes of about 10 degrees in the
inclination. Both phenomena are important to understand the evolution of
near-Earth asteroids and their present orbital distribution.

Concerning the Kuiper belt, the amplitudes of the secular resonances ν7,
ν8, ν17 and ν18 have been computed by Morbidelli et al. (1995a) through
simplified models similar to Yoshikawa’s and Nakai and Kinoshita’s. Their
results are in agreement with the numerically computed evolution and show
that bodies on initially planar and circular orbits with semimajor axes in the
ranges 35–36 AU and 40–42 AU are forced to cross the orbit of Neptune in a
timescale of several 107 y. This behavior was first pointed out by Holman and
Wisdom (1993) with numerical integration.

8.4.2 The anomalous case of the ν6 resonance

We now separately discuss the case of the ν6 resonance, which is, for its dy-
namical properties, by far the most important secular resonance in the asteroid
belt.

Starting from Froeschlé and Scholl (1986), numerical simulations of real
and fictitious asteroids have shown that the ν6 resonance, unlike all other
perihelion resonances, is able to pump the eccentricity of resonant bodies to
values exceeding ∼ 0.8. Farinella et al. (1994) showed for the first time that
for some bodies in the ν6 resonance the eccentricity increases up to unity. In
these cases, the perihelion distance decreases to zero, so that the asteroids
are forced to collide with the Sun. Figure 8.13 gives an example of this phe-
nomenon: notice that the eccentricity of the body increases from 0 to 1 in
an apparently regular manner, on a timescale of order 1 My. The large ec-
centricity attained by ν6 resonant bodies, which makes them planet-crossers
or Sun-grazers, explains why the location of the resonance corresponds to a
region that is almost completely depleted of asteroids.

The ν6 resonance has such a large effect on the eccentricity because it has
an unusual dynamical structure, which is different from that of the typical
pendulum-like models (4.4) obtained for all other resonances.

The reason for this difference can be understood in a qualitative way by
looking at the top panel of Fig. 8.14, which reproduces the location of the
ν6 resonance on the (a, e) plane for different values of the inclination, as first
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Figure 8.13: The evolution of the asteroid 1992 SZ in the ν6 resonance, result-
ing from the numerical integration of the full equations of motion. Reprinted
from Fig. 1 of Farinella et al. (1994) with permission from Nature, Macmillan
Magazines Limited.

computed by Williams and Faulkner (1981). The striking feature is that, at
least in the inner asteroid belt (a < 2.5 AU), the location of the ν6 resonance
is described by almost vertical lines; more specifically, for given inclination
and semimajor axis, the resonance occurs for all values of the eccentricity.
This situation is very atypical: for comparison, the bottom panel of Fig. 8.14
shows the equivalent plot for the location of the ν5 resonance. Remember
that a perihelion secular resonance pumps the eccentricity, keeping approxi-
mately constant the inclination; therefore, a body evolving in the ν6 resonance,
whose eccentricity increases under the resonant action, never leaves the exact
resonant location, so that its eccentricity can grow indefinitely.

From the mathematical point of view, this situation is indicative of a loss
of convexity of the resonant normal form Hamiltonian (8.38). We have already
dicussed in Chapter 6 the role of convexity for the confinement of resonant
motions, in the context of Nekhoroshev theory. More specifically, a nonconvex
resonant normal form is a Hamiltonian of type (4.2) such that the coefficient
β of its local expansion (4.3) is equal to zero. This implies that the frequency
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Figure 8.14: Top: the location of the ν6 resonance with respect to proper
semimajor axis and eccentricity, labeled by the corresponding values of the
proper inclination. Bottom: the same, but for the ν5 resonance. The solid
curves reproduce the original computation by Williams and Faulkner (1981),
while the dashed curves are drawn using more accurate values for the planetary
proper frequencies g6 and g5. Reprinted from Figs. 5 and 6 of Morbidelli and
Henrard (1991a), with permission from Kluwer Academic Publishers.
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of the resonant angle is equal to zero for every value of its conjugate action
(respectively ϕ1 and Î1 in 4.3). This is precisely what happens for the ν6 reso-
nance, where – for the appropriate values of semimajor axis and inclination –
the frequency of the resonant angle σ6 = ψ1 + ψ2 − ̟∗

6 is equal to zero for
every value of the eccentricity, i.e. of the conjugate action S, as indicated by
the vertical lines in the top panel of Fig. 8.14. As a consequence of β = 0,
in the approximation given by the local expansion (4.3) the action Î1 would
escape to infinity for most of the initial conditions (as can be easily seen by
plotting the level curves of the Hamiltonian 4.4). However, when Î1 increases
too much, the local expansion (4.3) is no longer a good approximation of the
real motion. The latter critically depends on the functional form, for large
values of Î1, both of H0 and of the coefficient of the resonant harmonic in
the complete normal form (4.2). In other words, nonconvex resonant normal
forms do not have a generic dynamical portrait, in contrast to convex resonant
normal forms which all give pendulum-like motion. They therefore need to be
studied from case to case.

Figure 8.15 gives an example of the dynamical structure of the ν6 res-
onance. The various panels show the level curves of the secular resonant
normal form Hamiltonian (8.38) for different values of the constant of motion
C. The coordinates are x = esp cos σ6, y = esp sinσ6, equivalent to those used
in Fig. 8.11 for the ν5 resonance. The plots have been limited to the region
esp ≤ 0.65, for technical difficulties in computing an accurate secular resonant
normal form for larger values of the semiproper eccentricity. Panel b is drawn
for a value of C corresponding to the fake asteroid with mean orbital elements
a = 2.3488 AU, e = 0.1802, i = 15.105◦, ω = 242.81◦, Ω = 138.750◦ ; the black
dot denotes the present position of this fake asteroid in these x, y coordinates.
According to the level curves, the semiproper eccentricity of this asteroid is
expected to oscillate approximately between 0 and 0.5, while the resonant an-
gle σ6 librates around 180◦, behavior confirmed by numerical simulation of the
full equations of motion (see Morbidelli, 1993a). Notice that the level curves
indicate the presence of an unstable equilibrium point at x ∼ −0.6, y = 0
and of a separatrix, which surrounds the closed cycles centered on the sta-
ble equilibrium point (the latter located at x ∼ −0.27, y = 0). Outside of
the separatrix the level curves are open: every initial condition in this region
leads to a semiproper eccentricity exceeding 0.65. From the shape of the level
curves, it is reasonable to expect that the eccentricity may increase to much
larger values than 0.65, possibly attaining the threshold e = 1. Actually, the
evolution of the eccentricity shown in Fig. 8.13 is compatible with a diagram
like Fig. 8.15b and with a body that initially evolves on a closed cycle near
the separatrix (so that its eccentricity attains a first maximal value of ∼ 0.4)
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Figure 8.15: Dynamical portraits for the ν6 resonance at a ∼ 2.35 AU and
different values of the inclination. See text for explanations. Reprinted from
Fig. 12 of Morbidelli (1993a), with permission from Academic Press.
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Figure 8.16: Left: dynamical portrait for the ν6 resonance for a body with the
same orbital elements as 6 Hebe, except the inclination, increased to 18.7◦.
The coordinates are x = esp cos σg, y = esp sinσ6 and the black dot denotes
the present position of the body. Right: the evolution of the same body
as computed by numerical integration of the full equations of motion. The
coordinates are x = e cos(̟ −̟∗

6), y = e sin(̟ −̟∗
6), where e and ̟ are the

osculating eccentricity and perihelion longitude of the body. Reprinted from
Fig. 11 of Morbidelli (1993a), with permission from Academic Press.

and then crosses the separatrix joining one of the open level curves, so that its
eccentricity first decreases to 0 and then increases to 1. The behavior of the
resonant angle (top panel of Fig. 8.13) confirms this interpretation.2 The fact
that the body passes from one level curve to another, crossing the separatrix,
should not surprise us. Remember from Chapter 4 that the single resonant
normal form has a well-defined separatrix because it is integrable, but the re-
mainder of the normal form generically breaks the integrability and splits the
separatrix, thus creating a small chaotic zone; orbits in the chaotic zone do not
follow exactly a level curve of resonant normal form, but alternate between
the libration and the circulation regions.

Figure 8.15c is drawn for a value of C corresponding to the same asteroid
of panel b, but with inclination increased to 15.6 degrees. The stable and

2Note that Fig. 8.13 shows the angle ̟ − ̟S instead of σ6, where ̟S is the longitude
of perihelion of Saturn. The angle ̟ − ̟S has large oscillations around σ6 on a timescale
of ∼ 5 × 104 y, because ̟S = ̟∗

6 + f(̟∗

k), where f is a function of all planetary secular
perihelion frequencies (see formula 7.10).
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unstable equilibrium points that characterized the dynamics in panel b have
disappeared, and all level curves are open. This implies that, whatever the ini-
tial condition on this panel, the eccentricity is pumped by the resonance well
beyond 0.65. Finally, panels a and d show the resonant portraits for values of
C corresponding respectively to i = 14.1◦ and i = 17.1◦ of the considered as-
teroid. For these values of inclination, the asteroid is respectively significantly
below and above the exact location of the secular resonance. The dynamics is
characterized by the existence of only one stable equilibrium point, displaced
from the center x = 0, y = 0 of the diagram. All orbits cycle around the sta-
ble equilibrium, the semiproper eccentricity periodically oscillating between a
minimal and a maximal value. On most cycles, the resonant angle σ6 circu-
lates over the [0, 360] degrees interval; its time derivative is positive in panel a
and negative in panel d, as the frequency of the longitude of perihelion of an
asteroid is respectively faster/slower than the planetary secular frequency g6
for orbits below/above the ν6 resonance. Decreasing the asteroid’s inclination
below the value corresponding to panel a or increasing it above the one corre-
sponding to panel d (i.e. moving further from the resonance) the dynamical
portrait would not change significantly with respect to those shown in these
panels. In fact, there would always be a stable equilibrium point, slightly dis-
placed from e = 0. This can be easily realized by taking into account the sole
forcing terms with k = 6 in the linear equations of motion (8.6).

The diagrams shown in Fig. 8.15 cannot be considered as typical of the ν6
resonance for every value of the semimajor axis. Because of the nonconvexity
of the normal form, the phase portrait of the resonance may critically depend
on the semimajor axis. As an example, Fig. 8.16 shows the level curves of
the secular resonant normal form for an asteroid with mean elements a =
2.43, e = 0.20, i = 18.7◦, ω = 239◦, Ω = 139◦. As one sees, the diagram
looks very different from any of those in Fig. 8.15. This is not an artifact
of the computation of the secular resonant normal form. In fact, the right
panel of Fig. 8.16 shows the evolution of the asteroid computed in osculating
coordinates by numerical integration of the full equations of motion, which
well matches the level curve passing through the present position of the body
in semiproper coordinates. As already discussed for the asteroid Barcelona,
the level curve of the secular resonant normal form just traces the skeleton of
the real secular dynamics: the evolution in osculating coordinates oscillates
around the guiding level curve, because of all the nonresonant harmonics that
have been averaged out in the construction of the secular resonant normal
form.
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Chapter 9

MEAN MOTION
RESONANCES

9.1 A simple integrable approximation

This chapter is the first of a series devoted to mean motion resonances. Mean
motion resonances constitute one of the most complicated aspects of the dy-
namics in the Solar System. They are different from the standard resonances
described in Chapter 4, because Solar System dynamics is degenerate, namely
it is characterized by the existence of both fast angles – associated with the or-
bital motions of the bodies – and slow angles – associated with the precessional
motions of their orbits. In the study of the secular dynamics in Chapters 7
and 8, the degeneracy was removed by averaging over all fast angles. In the
case of mean motion resonances this averaging is prevented by the resonant
relationship, as discussed in Section 2.5. We therefore have to fully cope with
degeneracy.

In this chapter we study the structure of the resonances between the mean
motions of two bodies. We will concentrate on the case of an asteroid in
resonance with one planet, because no two-body resonances are known among
the planets of our Solar System. In the next chapter we will investigate the
resonances among the mean motions of several bodies, and in Chapter 11 we
will finally study the secular dynamics inside the mean motion resonances of
low order.

A mean motion resonance (also often called commensurability) between
an asteroid and the ̄-th planet occurs when kn − k̄n̄ ∼ 0, where k and k̄
are positive integers, n̄ is the mean motion frequency of the ̄-th planet and
n = 1/Λ3 is the mean motion frequency of the asteroid. The starting point
for the study of a mean motion resonance is the normal form developed in

195
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Section 2.5.2. The mean motion resonant normal form Hamiltonian reads:

HMMR = H0(Λ,Λ̄) + εH1(Λ, P,Q, p, q, k̄λ̄ − kλ, ej ,̟j , ij ,Ωj) . (9.1)

With respect to (2.45), for simplicity of notation, the terms of the normal form
of higher order in ε have been included in εH1 and all the superscripts that
denote that the variables appearing in the normal form are the semimean mod-
ified Delaunay variables have been omitted. Conversely, we have emphasized
that the normal form Hamiltonian depends on the mean eccentricities, peri-
helia, inclinations and nodes of all planets (ej ,̟j , ij ,Ωj with j = 1, . . . , N).
With respect to the secular normal form (8.1), HMMR depends also on the
mean longitudes of the asteroid and of the ̄-th planet (λ, λ̄), so that Λ and
Λ̄ are not constant and the main term

H0(Λ,Λ̄) = − 1

2Λ2
+ n̄Λ̄ (9.2)

cannot be dropped.
To study the dynamics of (9.1) we expand H1 in a power series of the

planetary eccentricities and inclinations as in Section 8.2 and, for the moment,
we consider only the leading term H0

1 of this expansion, which is independent
of ej and ij . Because of the D’Alembert rules (see Section 1.9.3) its Fourier
expansion has the form:

H0
1 =

∑

m,s,r

cm,s,r(Λ, P,Q) exp [ι(m(k̄λ̄ − kλ) + sp+ rq)] (9.3)

with m, r, s integer numbers such that m(k̄−k)−s−r = 0. The Hamiltonian
H0 + εH0

1 is not integrable, because (9.3) contains two independent combina-
tions of the different angles, contrary to what happened in the secular problem
(where k = k̄ = 0). Note however that the D’Alembert rules also imply that,
for small inclinations i of the asteroid, the coefficients cm,s,r are proportional
to Qr/2, with Q ∼ i2/2. Therefore, if we restrict to the planar case i = 0 the
harmonics with r 6= 0 in (9.3) have null coefficients, so that the Hamiltonian
H0 + εH0

1 is integrable as it depends only on the angle k̄λ̄ − kλ+ (k̄ − k)p
and on its multiples. We therefore consider the Hamiltonian

HPC = H0(Λ,Λ̄) + εH0
1(Λ, P, k̄λ̄ − kλ+ (k̄ − k)p;Q = 0) (9.4)

as an integrable approximation of the resonant normal form (9.1). Notice that
HPC is in fact the Hamiltonian of the mean motion resonant normal form in
the framework of the so-called planar circular restricted problem, where the
asteroid and the planets are assumed to move on the same plane, and the
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orbits of the planets are circular. The planar circular restricted problem is
only a quite crude approximation of the real dynamics, as we will see in this
and in the following chapters, but nevertheless it is the suitable integrable
approximation for the development of a perturbation study of the real mean
motion resonant dynamics.

The D’Alembert rules also ensure that, for small eccentricity e of the as-
teroid, the coefficient of the leading harmonic exp ι[k̄λ̄ − kλ + (k̄ − k)p] is
proportional to P |k̄−k|/2, with P ∼ e2/2. Therefore, mean motion resonances
of type kn − k̄n̄ = 0 have leading harmonics whose coefficients decay expo-
nentially with |k̄ − k|. For this reason, astronomers call |k̄ − k| the order
of the resonance. This generates confusion with the order of the harmonic
defined by mathematicians (related to the general decay of the coefficients in
Fourier series, and adopted throughout this book), which in this case would
be k+ k̄. To eliminate the ambiguity, we will hereafter refer to |k̄− k| as the
eccentricity order of the resonance. In reality, both astronomers and math-
ematicians are correct in their motivations, as the coefficients of the leading
harmonics of mean motion resonances decay as a quantity proportional to
exp (−|k̄ − k|) exp [−(k + k̄)].

To study the dynamics of Hamiltonian (9.4) – and, later, of its perturbation
(9.1) – we first introduce the following set of canonical action–angle variables:

S =P , σ =
k̄λ̄−kλ+(k̄−k)p

(k̄−k)

N =
k̄−k
k Λ + P +Q , ν =

−k̄λ̄+kλ
(k̄−k)

Sz =Q , σz =
k̄λ̄−kλ+(k̄−k)q

(k̄−k)

Λ̃̄ =Λ̄ +
k̄
k Λ , λ̃̄ = λ̄ .

(9.5)

It is easy to check, using the Poisson bracket criterion (see Section 1.6), that
the above transformation is canonical. The angle σ is called the critical angle
of the mean motion resonance. The reason for which σ is not simply defined
as k̄λ̄−kλ+(k̄−k)p is profound: the coefficients of the resonant harmonics
exp ιm[k̄λ̄−kλ+(k̄−k)p] are proportional to Sm|k̄−k|/2 ∼ em|k̄−k|, for small
S. If σ is defined as in (9.5), the resonant harmonics are exp ι[m(k̄−k)σ]. As
a consequence, the Hamiltonian has a property analogous to that given by the
fourth D’Alembert rule (see Section 1.9.3), which allows the introduction of
canonical Cartesian variables x =

√
2S sinσ, y =

√
2S cos σ in order to remove

the singularity at S = e = 0. In turn, the Hamiltonian is periodic in σ, with
period 2π/|k̄ − k|.

Note that the transformation (9.5) is singular for k̄ = k, i.e. for the 1/1
resonance, which occurs when the asteroid and the planet share the same orbit
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Figure 9.1: Level curves of N , as defined by (9.5) for the 2/1 resonance with
Jupiter (panel a) and for the 1/2 resonance with Neptune (panel b). The
values of N increase from left to right in panel (a) and from right to left in
panel (b). The vertical dashed lines mark the unperturbed locations of these
resonances.

(as for the Trojan asteroids). The 1/1 resonance therefore requires a specific
formalism, which will be developed in Section 9.1.2

In the new variables the Hamiltonian (9.4) turns out to be:

HPC = H0(Λ̃̄, N, S, Sz) + εH0
1(S, (k̄ − k)σ,N, Sz) , (9.6)

where, from (9.2),

H0 = − (k̄ − k)2

2k2(N − S − Sz)2
+ n̄

[

Λ̃̄ −
k̄

(k̄ − k)
(N − S − Sz)

]

. (9.7)

It is then evident that Λ̃̄, N and Sz are constants of motion for HPC. Thus the
term n̄Λ̃̄ can be dropped from (9.6). Remember that Sz (i.e. Q) has been
set equal to 0 to obtain the Hamiltonian of the planar problem; therefore,
the interesting part of the dynamics concerns only the variables S and σ
and depends parametrically on the value of N . We can therefore represent
the dynamical structure of the resonance by plotting the level curves of the
Hamiltonian (9.6) on the S, σ plane, for different values of N .

At this point, it is useful to keep in mind the relationship between the
actions S,N and the orbital elements a, e. The relationship N =constant
defines a curve in the semimajor axis vs eccentricity plane. Figure 9.1 shows
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these curves in the case of interior resonances (k̄ > k; left panel) and in the
case of exterior resonances (k̄ < k; right panel). Therefore, the motion of
S on a curve N =constant produces coupled oscillations of a and e. In the
unperturbed problem (ε = 0), the exact resonance occurs for those values of
S such that σ̇ = ∂H0/∂S = 0, namely for:

S = N − k̄ − k

(k2k̄n̄)1/3
, i.e. L =

√
a =

(

k

k̄

1

n̄

)1/3

, ∀e . (9.8)

The unperturbed location of the resonance is represented by the vertical
dashed line in Fig. 9.1.

The dynamical portrait of the mean motion resonances of first order in the
eccentricity (|k̄ − k| = 1) was computed long ago (Poincaré, 1902a, 1902b;
Message, 1966; Schubart, 1964, 1968; Henrard and Lemâıtre, 1983). Figure 9.2
shows how the typical dynamical portrait of a resonance with k̄ = k + 1
changes, as a function of N . If N is small enough, the corresponding curve
N =constant in Fig. 9.1 does not cross the line denoting the unperturbed
location of the resonance. The resulting dynamics on the S, σ plane presents
only one stable equilibrium point at σ = 0 close to the coordinate center
S = 0 (the distance from the center decreases with N); no unstable equilibria
and no separatrices are visible (top panels). The situation changes when N
is equal to a threshold value N∗ (middle left panel). One of the level curves
shows an angular point at σ = π; the dynamics being regular (there are
no singularities in the equations of motion) the angular point must be an
unstable equilibrium point, and the level curve passing through this point is
the separatrix connecting the unstable equilibrium to itself (see Chapter 4).
For N > N∗, the dynamical portrait is again different (middle right panel).
Now a third equilibrium point appears, also at σ = π but stable, and the
separatrix originating from the unstable point now presents two loops. This
is a typical portrait of a resonance when the action–angle variables are used
as polar coordinates, as shown in Fig. 4.1. With increasing value of N beyond
the threshold N∗, the stable equilibrium at σ = 0 and the unstable equilibrium
migrate to larger values of S, while the stable equilibrium at σ = π approaches
the center S = 0 (bottom panels). As explained in Section 4.1, the reason for
which the coordinate center S = 0 is never an equilibrium point is that the
coefficient of the leading resonant harmonic exp ισ is proportional to

√
S.

Because of this specific property, for the resonances of first eccentricity order
we need to distinguish between the resonant region and the libration regions.
As sketched in Fig. 9.3, the resonant region is – properly speaking – that
enclosed by the separatrices that surround the stable equilibrium at σ = 0
(the shaded area in the top panels). When the separatrices do not exist (as
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Figure 9.2: Phase portraits of an interior resonance of first order in the ec-
centricity, for different values of N . The coordinates are

√
2S cos σ ∼ e cos σ

on the horizontal axis and
√
2S sinσ ∼ e sinσ on the vertical axis. See text

for comments. Reprinted from Figs. 6 and 7 of Henrard and Lemâıtre (1983),
with permission from Kluwer Academic Publishers.
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Figure 9.3: Distinction between resonant regions and libration regions for
resonances of first order in the eccentricity, for two values of N . The shaded
areas show the resonant regions on the top panels, and the libration regions in
the bottom panels. See text for the definition of these regions. Reprinted from
Figs. 2 and 3 of Henrard and Lemâıtre (1983), with permission from Kluwer
Academic Publishers.

in the top panels of Fig. 9.2), the resonant region does not exist. Conversely,
the libration regions are the sets of orbits on which σ librates around either
0 or π (the shaded areas in the bottom panels). As one sees, in some cases
resonant orbits may have a circulating σ, while orbits with librating σ can be
nonresonant. In this case, in fact, the geometrical concept of libration does
not have a real dynamical significance. Historically, the orbits with σ librating
around π are called apocentric librators, because the stable equilibrium at
σ = π corresponds to a periodic orbit on which the asteroid is at aphelion
every time that it is in conjunction with the resonant planet (p = λ+ π when
λ = λ̄). Despite their libration, these orbits are dynamically equivalent to
circulating orbits in a pendulum.

The portrait of the dynamics of exterior resonances of first order in the
eccentricity (k = k̄+1) is equivalent to that of Fig. 9.2, but with σ rotated by
180 degrees. The 1/2 resonance (k = 2, k̄ = 1) constitutes the only exception.
In the latter, for N larger than some threshold, inside the resonant region the
equilibrium point at σ = π becomes unstable, and two new stable equilibria
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Figure 9.4: Phase portrait of the 1/2 resonance with Neptune, showing islands
of asymmetric libration. The bold curves show the separatrices that originate
from the unstable equilibria at σ = 0 and σ = π. Adapted from Thomas
(1998).

appear in a symmetric position with respect to the horizontal axis (Fig. 9.4).
A separatrix, connecting the unstable equilibrium at σ = π to itself, surrounds
the two stable equilibria. As a consequence, in the resonant region we distin-
guish between symmetric and asymmetric librators: the symmetric librators
are the orbits with σ librating around π, in the region bounded by the sepa-
ratrix generated by the unstable equilibrium point at σ = 0; the asymmetric
librators have σ librating around some different value, and are in one of the
two islands bounded by the separatrix generated by the unstable equilibrium
point at σ = π. The reason for the appearance of the asymmetric libration
regions is the following. Because of the specific values of the coefficients c1
and c2 at the location of the 1/2 resonance, the harmonic c2S exp ι2σ in the
perturbation H0

1 starts to dominate over the “leading” harmonic c1
√
S exp ισ,

for S large enough. Remember from Fig. 9.1 that, at the resonance location,
the value of S increases with N ; as a consequence the asymmetric librations
must appear for N sufficiently large. The existence of asymmetric librations
was first noted by Message (1958) and then further investigated by Schubart
(1964) and Beaugé (1994) and we refer to these papers for further details.
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Figure 9.5: Phase portraits of a resonance of second order in the eccentricity,
for different values of N . The coordinates are

√
2S cos σ ∼ e cos σ on the

horizontal axis and
√
2S sinσ ∼ e sin σ on the vertical axis. See text for

comments. Reprinted from Fig. 1 of Lemâıtre (1984), with permission from
Kluwer Academic Publishers.
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Figure 9.6: Phase portraits of an exterior resonance of third order in the
eccentricity, for different values of N . The coordinates are

√
2S cos σ ∼ e cos σ

on the horizontal axis and
√
2S sinσ ∼ e sinσ on the vertical axis. See text for

comments. Reprinted from Fig. 4 of Lemâıtre (1984), with permission from
Kluwer Academic Publishers.
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Figure 9.7: Phase portraits of a resonance of fourth order in the eccentricity,
for different values of N . The coordinates are

√
2S cos σ ∼ e cos σ on the

horizontal axis and
√
2S sinσ ∼ e sin σ on the vertical axis. See text for

comments. Reprinted from Fig. 7 of Lemâıtre (1984), with permission from
Kluwer Academic Publishers.

The dynamical portraits of resonances of eccentricity order larger than one
have been illustrated by Lemâıtre (1984). Figures 9.5 refers to interior reso-
nances of order 2 in the eccentricity (k̄ = k + 2). For N smaller than some
threshold, the coordinate center S = 0 is a stable equilibrium point around
which all other orbits circulate (top panels). Increasing N a first bifurcation
occurs when the center S = 0 becomes unstable and two stable equilibria
appear at 90 and 270 degrees (middle panels). A separatrix connecting the
origin to itself surrounds the stable equilibria, delimiting two resonant regions,
where σ librates. For N larger than a second threshold value, the dynamical
portrait changes again. The center S = 0 is stable, while two unstable equi-
libria exist at σ = 0, π. The separatrix now originates from these equilibria;
the resonant regions are still those where the orbits librate around 90 or 270
degrees. Exterior resonances have exactly the same dynamical portrait, with
the exception of the 1/3 resonance, where the equilibria at 90 and 270 de-
grees become unstable for N larger than some threshold, and two new stable
equilibria appear in a symmetric position with respect to the vertical axis,
inside each resonant region (see Beaugé, 1994). As for the 1/2 resonance, we
call asymmetric librators the orbits that librate around one of these stable
equilibria.
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Figure 9.6 refers to exterior resonances of order 3 in the eccentricity
(k = k̄ + 3), with the exception of the 1/4 resonance, which again exhibits
asymmetric librations. The dynamical portrait of interior resonances of order
3 in the eccentricity is like that of Fig. 9.6, but with σ rotated by 180 degrees.

Finally, Fig. 9.7 shows the dynamical portrait of resonances of order 4 in
the eccentricity. Interior and exterior resonances share the same portrait, with
the exception of the 1/5 resonance which has asymmetric librators.

9.1.1 Phase protection from planetary collisions

In the previous section, we have seen that in interior resonances the unstable
equilibria are located at σ = σm = π[1 + 2mk̄/(k̄ − k)], where m is an
integer in the range [0, k̄ − k). Note that, when σ = σm, one has p = λ + π
whenever λ̄ = λ + 2mπ. In words, on the unstable equilibria the asteroid is
at aphelion in correspondence to one of the k̄ − k different conjunctions with
the resonant planet. Conversely, in exterior resonances unstable equilibria are
located at σ = σm = 2mk̄π/(k̄ − k), and correspond to orbits on which the
asteroid is at perihelion when one of the conjunctions with the resonant planet
occurs. Therefore, unstable equilibria always correspond to the resonant orbits
that give the closest possible approach between the asteroid and the resonant
planet. Because of their libration, resonant orbits avoid this configuration of
closest approach.

This property is important when the eccentricity is large, because in this
case the closest approach may correspond to a physical collision with the
planet. In fact, when the value of N is such that the eccentricity of the
unstable equilibria is equal to ā/a− 1 for interior resonances, or 1− ā/a for
exterior resonances (a and ā are the semimajor axes of the asteroid and of the
resonant planet respectively) the unstable equilibria correspond to orbits that
collide at aphelion (or perihelion) with the resonant planet. When N is larger
than this value, the dynamical portrait of the resonance typically looks like
the one shown in Fig. 9.8, computed for the 5/6 resonance with Neptune. The
bold curve denotes the set of points e, σ that correspond to a collision with
the planet. This curve is computed by setting r = ā and f +̟ = λ̄, where
r and f are the heliocentric distance and the true anomaly of the asteroid,
given in (1.5), which can be easily expressed as functions of N,S and σ. All
orbits that cross this curve will undergo collisions or very close encounters
with the planet. Note that the resonant orbits, because of their libration
around σ = π, all avoid intersecting the collisional curve. The mean motion
resonance therefore provides to the resonant orbits a phase protection from
collisions. Pluto (the largest object known in the Kuiper belt) is the most
famous example of this property. It is in 2/3 resonance with Neptune, and
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Figure 9.8: A phase portrait of the 5/6 resonance with Neptune; the bold
curve denotes the set of points (e, σ) for which a collision with the planet can
occur. Only the librational trajectories that do not intersect this curve may
be dynamically stable. Adapted from Thomas (1998).

penetrates inside Neptune’s orbit. However the libration of σ never allows it
to cross the collisional curve, so that every time that Pluto crosses Neptune’s
orbit, it is always far from Neptune’s position. This kind of ballet between
Pluto and Neptune is believed to have been stably ongoing since the primordial
phases of the Solar System.

In Fig. 9.8 one can also notice that the equilibrium point at σ = 0◦, usually
unstable for exterior resonances of first order in the eccentricity, is now stable.
A small region of stability surrounds this point, bounded by the collisional
curve. For increasing values of N (i.e. for larger eccentricity of resonant orbits)
the region of stability around the equilibrium at σ = 0 increases in size, while
that around the equilibrium at σ = π shrinks. It should be finally remarked
that a mean motion resonance provides protection only from close encounters
with the resonant planet; as a consequence, all orbits must eventually become
unstable if the eccentricity is large enough to intersect nonresonant planets’
orbits.
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Figure 9.9: Phase portrait of the 1/1 resonance with Jupiter for a value of N
corresponding to e = 0.

9.1.2 The case of the 1/1 resonance

In order to study a 1/1 resonance with a planet, we need to modify the choice of
the resonant variables done in (9.5), which are singular when k̄ = k. Suitable
canonical variables for this resonance are the following:

S =Λ , σ = λ− λ̄
N =P , ν = p
Sz =Q , σz = q

Λ̃̄ =Λ̄ +Λ , λ̃̄ = λ̄ .

(9.9)

Once these variables are introduced, the study of the 1/1 resonance’s dynamics
can be done as explained above for the other resonances.

Figure 9.9 shows the portrait of the 1/1 resonance with Jupiter for N = 0
(i.e. e = 0); for a better view of the dynamics, we use a = S2, instead of
S, as the radial coordinate. There are two points where the Hamiltonian has
a polar singularity: the center of the coordinates a = 0, and the point at
σ = 0, a = 5.2. The first one corresponds to the location of the Sun; the
quasi-circular trajectories around it represent quasi-keplerian heliocentric or-
bits, whose semimajor axis is only slightly perturbed by the resonant planet
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Figure 9.10: Phase portrait of the 1/1 resonance with Jupiter for a value of
N corresponding to e = 0.2 at a = 5.2 AU.

as a function of σ. The second point corresponds to the position of Jupiter,
which is fixed in these coordinates. In addition to these two points, five equi-
librium points are visible in the figure: the well-known Lagrangian points. The
two denoted by L4 and L5 are stable, and form two equilateral triangles with
the positions of the Sun and the planet. The librations around these points
are usually called tadpole librations, and are equivalent to the asymmetric
librations existing in the exterior mean motion resonances of type 1/m (i.e.
k̄ = 1, k ∈ N; see for instance Fig. 9.4). These librations are delimited by
a separatrix connecting the unstable equilibrium L3 to itself. The Greek and
Trojan asteroids follow tadpole librations. Also visible in Fig. 9.9 is a large
region of libration around σ = π, bounded by the separatrices that originate
at the two other unstable equilibria, L1 and L2. The orbits in this region
are usually called horseshoe librators, and are equivalent to the symmetric
librators discussed for Fig. 9.4.

The separatrices that originate at L1 do not coincide with those that origi-
nate at L2; but because they are very close to each other, this is hard to see in
Fig. 9.9. On the other hand, these separatrices cannot mutually intersect, be-
cause the mean motion resonant normal form for the planar circular problem
is integrable.
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The separatrix connecting L1 to itself bounds a small region of libration
around a = 5.2, σ = 0. These trajectories orbit around the planet, in a
satellite-type motion. Because σ̇ must be positive when a≪ ā, the trajecto-
ries at the center of Fig. 9.9 must circulate around the origin in a counterclock-
wise motion. Then, by continuity, the horseshoe librations must be clockwise,
and the satellite-type trajectories around Jupiter must be counterclockwise.
Jupiter’s rotation around its spin axis is also counterclockwise, so that the
satellite-type trajectories are said to be prograde. The mean distance of L1

and L2 from the planet is called the Hill’s radius and is equal to ā(ε̄/3)
1/3,

where ε̄ is the mass (in solar units) of the planet.

Figure 9.10 shows the resonant portrait of the 1/1 resonance for a value
of N corresponding to orbits with e = 0.2 at 5.2 AU. We again recognize
two stable equilibria (now slightly offset with respect to σ = ±60◦), centers
of tadpole librations. The latter are bounded by a separatrix that originate
at the unstable equlibrium at a ∼ 5.2 AU, σ = 180◦. The new feature with
respect to Fig. 9.9 is the bold curve surrounding the point a = 5.2 AU, σ = 0◦,
which denotes the set of a, σ for which a collision with the planet can occur.
This curve has been computed as explained in Section 9.1.1, and is analogous
to that shown in Fig. 9.8. Because for this value of N the collision curve
bounds a region of radius larger than the Hill’s radius, the unstable equlibria
denoted by L1 and L2 in Fig. 9.9 have disappeared, as well as their associated
separatrices.1 As a consequence, the maximal amplitude of horseshoe libra-
tions is now dictated by the position of the collision curve. Well inside the
collision curve, there are again trajectories that librate around the position of
Jupiter (a = 5.2, σ = 0) in a stable satellite-type motion. By continuity with
the direction of motion of σ on the orbits that cross the collision curve (σ̇ > 0
on the orbits with a < 5.2 AU and σ̇ < 0 on those with a > 5.2 AU), the
librations around Jupiter are now clockwise, i.e. retrograde with respect to
Jupiter’s spin. Retrograde satellites are therefore characterized by large helio-
centric eccentricity,2 while prograde satellites may have only small heliocentric
eccentricity.

9.2 Mean motion resonance overlapping

In Chapter 6 we have seen the importance of the concept of resonance over-
lapping to understand the global stability or instability of a given dynamical

1For a value of N corresponding to a more moderate eccentricity, the radius of the region
bounded by the collision curve would be smaller than the Hill’s radius, and the two unstable
equilibria at σ = 0◦ would persist, corresponding to the so-called Lyapunov orbits.

2Which should not be confused with the planetocentric eccentricity.
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system.
To check the possible overlapping of mean motion resonances we need to

compute the width of each resonance in the semimajor axis vs. the eccentricity
plane. This is done as follows. As shown in Section 9.1, on each surface
N =constant, the separatrices (when they exist) typically intersect the axis
σ = σstab twice, where σstab is the value of σ of the stable equilibrium point,
at the center of the resonant region. Denote by S1(N) and S2(N) the values of
S of these two intersection points (i.e. the minimal and maximal values of S
attained on the separatrices). Then, compute the images (a1(N), e1(N)) and
(a2(N), e2(N)) of these two points on the (a, e) plane, by inversion of (9.5)
and (1.69), namely by using the formulæ:

a =

[

k

k̄ − k
(N − S)

]2

, e =

[

1−
[

1− k̄ − k

k

S

N − S

]2
]1/2

. (9.10)

Finally, connect all the points (a1(N), e1(N)) obtained for increasing values of
N ; do the same for the points (a2, e2). The two curves so obtained represent
the sections of the separatrices of the resonance at σ = σstab. Equivalently,
denote by Sstab(N) the value of S for the stable equilibrium, and compute its
image (astab(N), estab(N)), thus obtaining a curve representing the family of
the stable equilibrium points, parametrized by N . Figure 9.11 shows these
curves for the 2/1 and for the 3/1 resonances with Jupiter in the asteroid belt.
Also plotted are some curves N =constant. As we have seen in Section 9.1,
in the integrable approximation of the planar circular problem each resonant
orbit shows a coupled oscillation of a and e on a curve N =constant; the two
extremes of this oscillation, achieved when σ = σstab, lie symmetrically on
each side of the family of stable equilibria and within the separatrices. The
larger the amplitude of libration of σ, the closer to the separatrices are the
two extremes of such oscillation. Notice that in both cases the width of the
resonance increases with the eccentricity; this is because the coefficients of the
resonant harmonics are proportional to some positive power of e.

In the case of the 2/1 resonance, one of the two separatrices does not
reach e = 0 (Fig. 9.11a). This is because in mean motion resonances of first
order in the eccentricity, when the separatrix first appears (see the middle-left
panel of Fig. 9.2), it already crosses the axis σ = σstab at e > 0. The second
feature of these resonances is that, along the family of stable equilibria, a→ 0
when e → 0 (for exterior resonances a → +∞ when e → 0); conversely, for
resonances of larger eccentricity order, the family of stable equilibria hits the
e = 0 axis for some definite value of a (Fig. 9.11b).

The recipe described above for the determination of the resonance’s width
cannot be applied for those resonances and those values of N that exhibit
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Figure 9.11: Separatrices (bold lines) and families of stable equilibria (solid
light lines) for the 2/1 resonance (panel a) and 3/1 resonance (panel b) with
Jupiter. Some level curves of N are also shown dashed.

asymmetric librations, as well as for eccentricities above the planet-crossing
curve. In the first case, the width of the resonance is defined by the separatrix
that bounds the symmetric librations (see Fig. 9.4). The minimal and maximal
values of S on this separatrix are not attained when σ = σC , the latter being
the center value of symmetric librations. This makes the computation of
S1(N) and S2(N) somewhat more complicated. However, for many practical
purposes, one can approximate S1 and S2 by the values of S on the separatrix
when σ = σC , the difference with the real values being generally small. In the
second case, that is for those values of N such that the collision curve appears
on the S, σ portrait and there is no well-defined separatrix (Fig. 9.8), the width
of the resonance is defined by the trajectory of largest librational amplitude
that does not cross the collision curve. S1 and S2 are the minimal and maximal
values of S on this trajectory. Because the largest libration amplitude of the
noncollisional resonant orbits decreases with increasing N , the widths of mean
motion resonances appear to decrease with increasing eccentricity, above the
planet-crossing curve ā = a(1± e).

The first systematic computation of the widths of mean motion resonances
in the asteroid belt was done by Dermott and Murray (1983). They studied all
the mean motion resonances with Jupiter of type n/nJ = (2m+ 1)/m, (2m −
1)/m, (3m + 1)/2m – where nJ is the mean motion of Jupiter and m is an
integer – that are located between 2.4 and 4 AU, and the 8/3 resonance at
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Figure 9.12: Distribution of the osculating elements of the asteroids known
in 1983 with 2.4 < a < 4.0 AU The solid lines represent the libration widths
associated with the main mean motion resonances with Jupiter. In the region
of resonance overlap, the libration widths of the 2/1 and 3/2 resonances are
represented by dashed lines. Reprinted from Fig. 5 of Dermott and Murray
(1983), with permission from Nature, Macmillan Magazines Limited.

2.7 AU (Fig. 9.12). These resonances are those of largest width in the consid-
ered semimajor axis range. With respect to the recipe explained above, a few
simplifications have been made by the authors in order to make the computa-
tions easier. First, for the 2/1 and the 3/2 resonances (the only resonances of
first order in the eccentricity among those studied) the width has been com-
puted referring to the libration regions, rather than to the resonant region,
as done conversely in Fig. 9.11a. This allows the definition of the “resonance
borders” down to small eccentricity, but with values of semimajor axis which
tend respectively to 0 and to infinity as e → 0. Second, they expanded the
Hamiltonian in a power series of the eccentricity and retained only the lead-
ing term; by doing so, they lost the information on how the collision curve
with Jupiter modifies the resonant dynamics, and missed the fact that the
resonant region, protected from planetary encounters, shrinks with increasing
eccentricity above the planet-crossing limit. Nevertheless, these approxima-
tions have only limited importance for practical purposes, so that Dermott
and Murray’s study remains the key reference on the subject. As can be seen
in Fig. 9.12, the mean motion resonances overlap at large eccentricity, roughly
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for Q > 4.2 AU, where Q = a(1 + e) is the aphelion distance of the asteroid.
As seen in Chapter 6, when resonance overlapping occurs, only the central
part of the resonances might be expected to host regular motion (the resonant
islands), while all the rest of the phase space is globally chaotic. In particular
nonresonant regular orbits cannot exist. Only below the threshold for resonant
overlapping is the asteroid motion expected to be globally stable, in the frame-
work of the restricted circular planar problem. Chaotic motion can exist, close
to the separatrices of the resonances, but the absence of resonance overlap-
ping guarantees the local confinement of the motion, as sketched in Fig. 6.3.
Figure 9.12 also plots the osculating semimajor axis and eccentricity of the
asteroids known at the time of the study. One notes that the vast majority of
the asteroids are located in the regions in between the various mean motion
resonances. The mean motion resonant regions are associated with substantial
gaps in the asteroid distribution, with the exceptions of the 3/2 resonance and
of the 1/1 resonance (the latter located outside of the semimajor axis range
covered by the plot). This result confirms the original intuition by Kirkwood
(1866), who first noticed the nonuniform distribution of the asteroids, on the
basis of the first 91 discoveries. The mean motion resonant regions where
asteroids are absent are usually called Kirkwood gaps. On the basis of the
restricted planar circular problem, the existence of these gaps cannot be un-
derstood, because resonant librations are stable. The origin of these gaps will
be explained in Chapter 11, when the secular dynamics inside mean motion
resonances is studied in the framework of a realistic model of the planetary
system. Notice that in Fig. 9.12 a few asteroids seem to be inside the reso-
nances, although close to the resonance borders. Most of these asteroids are
actually nonresonant; they appear to be within the separatrices of a resonance
because their osculating elements correspond to a value of σ that is different
from that used to compute the resonance borders (i.e. σ = σstab). If their
orbital elements were integrated until the condition σ = σstab is matched, the
resulting values of a and e would put these asteroids outside of the resonant
borders in the representation of Fig. 9.12. A consistent computation of the
distance of the asteroids from the borders of mean motion resonances will be
developed in Section 9.4.

The analytic computation of the widths of mean motion resonances in the
Kuiper belt has been done by Morbidelli et al. (1995a). Figure 9.13 shows
the separatrices of the main resonances with Neptune and with Uranus up to
50 AU. The resonances appear to overlap close to the line q = aN = 30 AU,
where q = a(1 − e) is the perihelion distance of the small body and aN is the
semimajor axis of Neptune. Note that for q < 30 AU the widths of the resonant
regions shrink with increasing eccentricity, for the reasons explained above in
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Figure 9.13: The location and the width of mean motion resonances with
Neptune (Nn/nN) and Uranus (Un/nU) in the Kuiper belt between 32 and
50 AU. The two bold solid curves correspond to q = a(1 − e) = 30 AU and
q = 19.2 AU, which are respectively the thresholds for Neptune-crossing and
Uranus-crossing orbits. The bold dotted curve corresponds to q = 35 AU. See
text for description. Reprinted from Fig. 1 of Morbidelli et al. (1995a), with
permission from Academic Press.

this section. These resonant regions are the only regions with q < 30 AU that
are expected to host regular motion, on the basis of the restricted planar cir-
cular problem. Conversely, all nonresonant orbits should be chaotic because
they undergo Neptune’s encounters. For q somewhat larger than 30 AU, con-
versely, the bodies do not cross the orbit of Neptune and for q > 35 AU the
mean motion resonances appear well separated, so that the motion is expected
to be globally stable, still in the framework of the planar circular problem. The
widths of the regular regions in mean motion resonances with Neptune have
also been numerically determined by Malhotra (1996), by computing Poincaré
sections of the planar circular restricted problem. The widths reported by
Malhotra are slightly smaller than those reported in Fig. 9.13, because they
exclude the chaotic regions that exist in correspondence to the separatrices of
the resonant normal forms.



216 CHAPTER 9. MEAN MOTION RESONANCES

An important, but not well quantified, fraction of the bodies in the Kuiper
belt librate in the 2/3 resonance with Neptune, similarly to Pluto, and are
therefore called Plutinos. One other body is believed to be in 3/4 resonance.
Conversely, it is not clear yet if the bodies with semimajor axis between 40 and
50 AU are preferentially located within or outside mean motion resonances;
the conjectured existence of the equivalent of the Kirkwood gaps in the Kuiper
belt has not been established yet.

9.2.1 Threshold for overlapping in the vicinity of the planet

In Fig. 9.13 one can notice that the resonances of first order in the eccentricity
(1/2, 2/3, 3/4, 5/6, . . .) constitute a sequence that accumulates approaching
Neptune; in fact, it is easy to see, using Kepler’s law relating the orbital
period to the semimajor axis, that the distance between the locations of the
resonances of type k − 1/k and k/(k + 1) is equal to:

∆a = ā

∣

∣

∣

∣
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k
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2
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∼ 2ā/(3k
2) for k → +∞ , (9.11)

where ā is the semimajor axis of the resonant planet. On the other hand,
the widths of these resonances do not appear to shrink substantially with the
distance to Neptune. This suggests that the resonances of first order in the
eccentricity may completely overlap, for k large enough, giving rise to a chaotic
region close to the planet that essentially extends down to eccentricity equal
to 0. This fact was first shown by Wisdom (1980), who also computed that
the threshold on k for the overlap is proportional to ε−2/7, where ε is the mass
of the resonant planet. This result holds for both interior and exterior mean
motion resonances of first order in the eccentricity.

The derivation of Wisdom’s result requires the computation of the width
of resonances of type |k̄−k| = 1, as a function of k. The width depends on the
value of N ; as shown in Fig. 9.2, if N is small enough the stable equilibrium
point is very close to e = 0 so that the oscillation of the semimajor axis and the
eccentricity along a libration cycle becomes negligible. However, the values of
N for which this happens correspond to values of a at e = 0 which are very
different from the unperturbed location of the resonance ares, given by Kepler’s
law. Therefore, a reasonable choice is to set the value of N such that a = ares
corresponding to e = 0. From (9.8) this happens for N = 1/[k2(k + 1)n̄]

1/3

for interior resonances and N = −1/[k2(k − 1)n̄]
1/3 for exterior resonances.

Let’s focus now for simplicity on interior resonances. From (9.6) and (9.7),
after expansion in a Taylor series of

√
S, the first terms of the Hamiltonian

are:

HPC = − S

k2N3
− 3S2

2k2N4
+ (k + 1)n̄S + εc

√
S cosσ , (9.12)
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where all terms independent of S and σ have been dropped, and only the first
harmonic has been retained; c is a numerical coefficient, approximately equal
to

√
2(k+1)/π[2K0(2/3)+K1(2/3)], where K0 and K1 are the modified Bessel

functions (Murray and Holman, 1997). With the choice of N given above, the
linear terms in S annihilate. Then, (9.12) has a unique (stable) equilibrium
point at σstab = 0, Sstab = (εck2N4/6)2/3, which is ∼ ε2/3k−2/3 (substitute
the dependence of c and N on k). The existence of a stable equilibrium
point offset from S = 0 forces the action S to have oscillation of amplitude
δS ∼ 2Sstab. The coupled oscillations of the semimajor axis will therefore have
amplitude (from the definition of N in formula 9.5) δa = 2

√
aδΛ = 2

√
akδS.

As a consequence, the semimajor axis oscillation due to the resonance, for the
considered value of N , is proportional to ε2/3k1/3. Finally, remembering the
mutual spacing in the semimajor axis between the resonances of first order in
the eccentricity (9.11), one gets that resonance overlapping is possible starting
from k ∼ ε−2/7.

From Kepler’s law, the resonance of first order in the eccentricity with
k ∼ ε−2/7 occurs for a semimajor axis a such that |a − ā|/ā ∼ ε2/7. This
implies that the chaotic region extends on both sides of the planet over a
relative semimajor axis interval that is proportional to ε2/7.

9.2.2 Overlapping of resonances with different planets

Mean motion resonances with two different planets can also overlap each other.
This is in fact quite common, because quasi-resonant relationships exist among
the giant planets. For instance, Jupiter and Saturn are close to the mutual 5/2
mean motion resonance. As a consequence, the n/m mean motion resonances
with Jupiter is located close to the 5n/2mmean motion resonance with Saturn.
A similar case happens for the resonances with Uranus and with Neptune
(these two planets are close to the mutual 2/1 resonance). A Laplace resonance
is a particular case of overlapping mean motion resonances, which occurs when
the two perturbers are exactly resonant with each other. Laplace resonances
do not occur in asteroid or Kuiper belt dynamics (because the planets are
not exactly resonant among themselves), but are quite common in satellite
systems. The most famous Laplace resonance occurs for the Galilean satellites,
where Europa is simultaneously in the 1/2 resonance with Io and in the 2/1
resonance with Ganymede.

When the two concerned resonances have a comparable width, an effective
way to study the consequences of their overlapping is to consider the planar
bicircular problem. The Hamiltonian of this problem is obtained from (2.38),
taking into account only the two resonant planets and assuming them on
coplanar and circular orbits. The inclination of the small body is also assumed
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to be 0. For the D’Alembert rules, the Hamiltonian depends only on the angles
λ, p, λj1 and λj2 (the last two angles being the mean longitudes of the resonant
planets), and thus has effectively 4 degrees of freedom. The resonant normal
form (see Section 2.5.2) in this case retains from the perturbation only the
harmonics that depend solely on the resonant angles, namely k′λ − kj1λj1 +
(k′−kj1)p for the kj1/k′ resonance with planet j1 and k

′′λ−kj2λj2+(k′′−kj2)p
for the kj2/k

′′ resonance with planet j2. All short periodic terms are averaged
out in the construction of the normal form.

The first step for the study of the averaged bicircular problem is to find
a set of canonical variables, such that two of the new angles are the critical
angles of the two resonances. In the case where kj1 6= k′ and kj2 6= k′′ the
good variables are:

Σ1 =
(kj1−k

′)(kj2−k
′′)

k′′(kj1−k
′)−k′(kj2−k

′′)

(

Λ + k′′

kj2−k
′′P
)

, σ1 =
kj1λj1−k

′λ

kj1−k
′ + p

Σ2 =
(kj2−k

′′)(kj1−k
′)

k′(kj2−k
′′)−k′′(kj1−k

′)

(

Λ + k′

kj1−k
′P
)

, σ2 =
kj2λj2−k

′′λ

kj2−k
′′ + p

Λ̃j1 =Λj1 −
(

1 + k′

kj1−k
′

)

Σ1 , λ̃j1 = λj1

Λ̃j2 =Λj2 −
(

1 + k′′

kj2−k
′′

)

Σ2 , λ̃j2 = λj2 .

(9.13)

If one of the two resonances is a 1/1 resonance (say kj1 = k′), the good
variables are instead:

Σ1 =Λ+ k′′

kj2−k
′′P , σ1 = λ− λj1

Σ2 =P , σ2 =
kj2λj2−k

′′λ

kj2−k
′′ + p

Λ̃j1 =Λj1 + Λ + k′′

kj2−k
′′P , λ̃j1 = λj1

Λ̃j2 =Λj2 −
kj2

kj2−k
′′P , λ̃j2 = λj2 .

(9.14)

The reader can check that both transformations are canonical, using the Pois-
son bracket criterion (see Section 1.6). In these new variables, the averaged
Hamiltonian of the planar bicircular problem depends only on the angles σ1
and σ2. Therefore, it is evident that the problem has effectively only two de-
grees of freedom. Thus the dynamics can be easily explored using Poincaré
sections. Because both angles σ1 and σ2 can alternately circulate and librate, it
is advisable to compute the section on the angle k′′(kj1 −k′)σ1−k′(kj2 −k′′)σ2
(or k′′σ1 − k′(kj2 − k′′)σ2, if kj1 = k′) which typically circulates in a fixed
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Figure 9.14: The dashed region shows the initial (a, e) that give unstable
motion in the averaged bi-circular problem, with harmonics related to the
1/1 resonance with Saturn and the 2/5 resonance with Jupiter. The initial
value of the critical angle of the 2/5 resonance with Jupiter is π, while the
initial value of the critical angle of the 1/1 resonance with Saturn is the one
(dependent on e) that characterizes the center of tadpole librations in the
integrable approximation where Jupiter is not taken into account. Courtesy
of D. Nesvorný.

direction.3

Perhaps, the most interesting application of this approach is to the study
of the overlap between the 1/1 resonance with Saturn and the 2/5 resonance
with Jupiter. The two resonances have comparable width, if the eccentricity of
the asteroid is about 0.1. De la Barre et al. (1996) claimed that this overlap is
responsible for the absence of Saturn’s Trojans. The shaded region in Fig. 9.14
represents the set of initial conditions in the (a, e) plane that lead to unstable
motion in the integration of the averaged bicircular problem. By unstable
motion we mean here motion that escapes from the domain of definition of
the Hamiltonian, namely that crosses the collision line with one of the planets.

3In fact, this combination of σ1 and σ2 is equal to k′′kj1λj1 − k′kj2λj2 + [k′′(kj1 − k′)−
k′(kj2 − k′′)]p. Because λj1 and λj2 are not exactly resonant their linear combination cir-
culates with time. On the other hand, the motion of p is typically too slow to change the
direction of the motion. This is of course not true for a Laplace resonance.



220 CHAPTER 9. MEAN MOTION RESONANCES

As one sees, the orbits at the center of Saturn’s tadpoles region (a ∼ 9.5 AU)
with e > 0.12 are unstable. These orbits would be stable if only Saturn were
taken into account; therefore their instability must be due to the overlap with
the 2/5 resonance with Jupiter. The orbits with the same semimajor axis but
with initial eccentricity smaller than 0.12 are stable in the bicircular problem.
However, we will see in Section 11.5 that the secular dynamics drives their
eccentricity above 0.12, forcing them to enter the instability region.

As anticipated above, the study of the averaged bicircular problem is suit-
able in the case where the two resonances have comparable width, so that their
overlap leads to strong chaos. But when one resonance is much thinner than
the other, as in the case of the thin 5/1 resonance with Saturn and of the large
2/1 resonance with Jupiter, the effects of the overlap are very subtle, and the
bicircular model may be a too rough an approximation of the real dynamics.
In these cases it is more effective to study the dynamics with a hierarchical
perturbation approach, as explained in Section 11.2.5.

9.3 Resonant multiplets

We now come back to the dynamics of an isolated mean motion resonance,
but we leave the integrable approximation (9.4) studied so far and reintroduce
the terms dropped from (9.1), namely the inclination of the asteroid, and the
eccentricities and inclinations of the planets. For completeness, we also take
into account the secular precession of planetary orbits; for this purpose, as
in Chapter 8, assuming that the planetary elements evolve according to the
Lagrange–Laplace solution (7.10), we introduce new angles ̟∗

j = gjt + βj
and Ω∗

j = sjt + δj , and denote by Λgj and Λsj the conjugate actions (j =
1, . . . , n). To make the Hamiltonian autonomous, the term

∑

j(gjΛgj+sjΛsj ) is
added to the integrable part of the Hamiltonian; remember that the planetary
precession frequencies are slow, so that gj and sj are no larger than ε. With
these settings the mean motion resonant normal form (9.1) can be rewritten
as:

HMMR = H0(Λ,Λ̄,Λgj ,Λsj ) + εH1(Λ, P,Q, p, q, k̄λ̄ − kλ,̟∗,Ω∗) , (9.15)

where ̟∗ and Ω∗ denote vectors with components ̟∗
j and Ω∗

j respectively.
In the expression above one has

H0 = − 1

2Λ2
+ n̄Λ̄ +

∑

j

(gjΛgj + sjΛsj) , (9.16)
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while the perturbation εH1 has Fourier expansion:

εH1 =
∑

m,u,v,s,r

cm,u,v,s,r(Λ, P,Q) exp {ι[m(k̄λ̄−kλ)+u·̟∗+v·Ω∗+sp+rq]} , (9.17)

wherem, r, s are integer numbers and u ≡ (u1, . . . , un) and v ≡ (v1, . . . , vn) are
vectors with integer components, such that m(k̄−k)−s−r+

∑

j(uj+vj) = 0.
The coefficients cm,u,v,s,r depend parametrically on the amplitudes Mj,k, Nj,k

of the planetary secular motion that appear in (7.10).
In the expansion (9.17) we distinguish the harmonics with m = 0 from

those with m 6= 0. The first ones are independent of the fast angles λ and
λ̄ and were already present in the problem of the asteroid’s secular motion,
studied in Chapter 8. They rule over the secular evolution of the asteroid’s
eccentricity and inclination. The terms with m 6= 0 are, properly speaking,
the mean motion resonant harmonics, because they all contain the resonant
combination k̄λ̄ − kλ.

Let us neglect for the moment the secular harmonics (m = 0) and analyze
the structure of the dynamical system that results from the presence of the
sole mean motion resonant harmonics. The system is highly nonintegrable,
because it depends on several independent and quasi-resonant combinations
of the angles.

To study this multiresonant dynamics, we first introduce the angles
σm,u,v,s,r = m(k̄λ̄ − kλ) + u ·̟∗ + v · Ω∗ + sp + rq. Each mean motion
resonant harmonic has for its argument a different angle σm,u,v,s,r. Then, we
consider the Hamiltonians

Hm,u,v,s,r = H0(Λ,Λ̄,Λgj ,Λsj ) + c0 + cm,u,v,s,r cos σm,u,v,s,r (9.18)

where, for simplicity of notation, we have denoted by c0 the coefficient c0,0,0,0,0
and we have emphasized the fact that the Fourier expansion (9.17) contains
only cosine terms. These Hamiltonians play the role of the single-resonance
models used in Chapter 6 to study the interaction among resonances. For each
Hamiltonian Hm,u,v,s,r the exact resonance occurs for σ̇m,u,v,s,r = 0, i.e. for

m

[

k̄n̄ − k

(

1

Λ3
+
∂c0
∂Λ

)]

+ s
∂c0
∂P

+ r
∂c0
∂Q

+
∑

j

(ujgj + vjsj) = 0 . (9.19)

This equation is solved for a value of Λ that depends on the actions P and
Q and also on the indexes m,u,v, s, r; however, because c0, gj and sj are
all of order ε, the solution must be ε-close to Λ = (k̄n̄/k)

1/3, i.e. to the
unperturbed location of the mean motion resonance given by Kepler’s law.
Therefore, we conclude that the mean motion resonance corresponds to a
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Figure 9.15: Sketch of the possible dynamical structures inside a mean motion
resonant multiplet. (a): complete overlap, leading to modulated pendulum-
like dynamics; (b): marginal overlap; (c): separation of the resonances in the
multiplet. The label σϕ generically denotes the angles σm,u,v,s,r of the various
resonances in the multiplet. Reprinted from Fig. 13 of Morbidelli and Guzzo
(1996), with permission from Kluwer Academic Publishers.

multiplet of resonances whose distinct locations are ε-close in the asteroid’s
semimajor axis. This multiplet structure is a specific property of mean motion
resonances and, more generally, of the resonances among the fast angles in a
degenerate system (Guzzo and Morbidelli, 1997).

To compute the width in the semimajor axis of each resonance in the mul-
tiplet we refer again to the corresponding integrable model (9.18); the width
is computed, like in Chapters 4 and 6, as the maximal distance between the
separatrices, and it is of order

√
cm,u,v,s,r. Remember now that the coefficients

cm,u,v,s,r cannot be larger than order ε (they are the coefficients of the Fourier
expansion of εH1), but they can possibly be much smaller. Denote by εβ the
size of the largest coefficient(s). Then, the possibilities are those sketched in
Fig. 9.15: if β ∼ 1, the major resonances in the multiplet have widths that are
much larger than their mutual separation (respectively ∼ √

ε and ∼ ε) so that
there is a situation of complete resonance overlap (panel a); if β ∼ ε the major
resonances have widths of the same order as their mutual separation (∼ ε),
so that partial overlap occurs (panel b); finally, if β << ε, all the resonances
are much thinner than their mutual separation, so that we expect no overlap
among the resonances in the multiplet (panel c).

In mean motion resonances with Jupiter, the values of |k − k̄| and of the
asteroid’s eccentricity and inclination dictate which of the three situations
sketched above must occur. In fact, for the D’Alembert rules, each coefficient
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cm,u,v,s,r is equal to εe|s|i|r|
∏

jM
|uj |
5,j N

|vj |
5,j times some numerical factor (not

necessarily of order unity), where M5,j and N5,j are the constants entering
in (7.10) for the secular motion of Jupiter’s elements. Moreover, s + r −
∑

j(uj + vj) = m(k − k̄). As a consequence, for mean motion resonances of
low eccentricity order (i.e. |k − k̄| of order unity), some of the coefficients
cm,u,v,s,r must be proportional to powers of e, i, M5,j or N5,j that are of order
unity, and therefore cannot be significantly smaller than ε (remember from
formula 8.7 that e and i oscillate due to the planetary secular perturbations
so that they cannot be assumed significantly smaller than Jupiter’s eccentricity
and inclination). Therefore, mean motion resonances with Jupiter of low order
in the eccentricity are expected to correspond to the situation of Fig. 9.15a.
This dynamical structure, equivalent to that of a modulated pendulum, will be
discussed in the next section. The situation changes gradually with increasing
values of |k − k̄|: the coefficients cm,u,v,s,r become proportional to increasing
powers of the eccentricities and inclinations, so that the situations sketched in
Fig. 9.15b and c are attained, first for values of e and i of the same order of
Jupiter’s eccentricity and inclination, and then also for larger values.

However, for mean motion resonances with planets of much smaller size
than Jupiter, the situation of marginal overlap among the resonances in the
multiplet can be attained for smaller |k−k̄|. In fact, from (9.19) the separation
among the resonances in the multiplet is of order ε (the mass of Jupiter relative
to that of the Sun) whatever the resonant planet; conversely the coefficients
cm,u,v,s,r are, for these resonances, proportional to the mass of the resonant
planet ε̄ ≪ ε.

The situation of Fig. 9.15b is already expected for very low eccentricity
orders in the case of three-body resonances, namely for the resonances among
the mean motions of an asteroid and of two planets. In fact, for these reso-
nances, the coefficients cm,u,v,s,r are of order ε

2, because the resonant harmon-
ics appear in the normal form only at order 2, as explained in Section 2.5.2.
Three-body mean motion resonances will be discussed in detail in Chapter 10.

The precise understanding of the multiplet structure requires of course the
quantitative computation of the separatrices of each single-resonance Hamil-
tonian (9.18). Nevertheless, a simple diagnostic can be done on the basis of
a short numerical integration. Because the separation of the resonances in
the multiplet is proportional to the secular precession frequencies (see equa-
tion 9.19), while the amplitude of a resonance is proportional to the libra-
tion frequency of its critical argument σm,u,v,s,r (see Chapter 4), the case of
Fig. 9.15a should be expected when the frequency of libration is much faster
than the secular precession frequencies. Conversely, the case of Fig. 9.15b re-
quires that the frequencies are of the same order, while the case of Fig. 9.15c
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can occur only when the frequencies of libration of all angles σm,u,v,s,r are
much slower than the secular frequencies.

9.4 The modulated pendulum approximation

The time-dependent one-degree of freedom Hamiltonian of the modulated pen-
dulum is

H =
β

2
p2 + c(1 + α cos(εt)) cos q , (9.20)

where p, q are generic action–angle variables, t is the time, ε is a small param-
eter and α, β and c are numerical coefficients. The modulated pendulum is
the paradigm model for a system of resonances that completely overlap, as in
Fig. 9.15a. In fact, with some trigonometrical transformations, it is easy to
see that (9.20) is equivalent to the two-degrees of freedom Hamiltonian

H =
β

2
p2 + εT + c

(

cos q +
α

2
(cos(q − τ) + cos(q + τ))

)

, (9.21)

where T , τ ≡ εt are conjugate action–angle variables. The Hamiltonian (9.21)
presents a multiplet of three resonances, with critical angles q, q − τ and
q + τ , which are ε-close (they are located respectively at p = 0 and p = ±ε)
and whose half-widths are large with respect to ε (respectively 2

√

c/β and
2
√

cα/β).
The Hamiltonian (9.20) has been extensively studied both analytically (see

for instance Elskens and Escande, 1991; Bruhwiler and Cary, 1989) and nu-
merically (e.g. Henrard and Henrard, 1991). Figure 9.16 shows its Poincaré
section. The pictures are similar to the phase portrait of a pendulum, but
instead of a separatrix they show the existence of a large chaotic layer, where
regular islands are small with ε. As one sees, in panel (a) the outer boundary
of the chaotic layer is a curve which is basically equal4 to the separatrix of a
pendulum with Hamiltonian βp2/2 + c(1 + α) cos q; analogously, in panel (b),
the inner boundary of the chaotic layer is a curve that almost coincides with
the separatrix of a pendulum with Hamiltonian βp2/2 + c(1 − α) cos q. This
means that the chaotic layer covers the region that is spanned by the instanta-
neous separatrices of (9.20) during a period of modulation of c(1 + α cos(εt)),
where by instantaneous separatrices we intend those computed from (9.20) as-
suming t as a constant. As a consequence, a regular region filled by librational
invariant tori exists if and only if α < 1.

Of course, the dynamics in a real mean motion resonant multiplet, even
in the case of complete overlap, is more complicated than the dynamics of

4The equality holds in the limit ε→ 0.



9.4. THE MODULATED PENDULUM APPROXIMATION 225

Figure 9.16: Poincare sections of (9.20) for εt = 0 mod 2π (panel a) and
for εt = π mod 2π (panel b). The solid curve denotes the separatrix of
the pendulum obtained from (9.20) under the assumption that εt is a fixed
parameter equal to 0 (a) or π (b).

(9.20). In fact, the mean motion resonant multiplet has in general more than
three components and, moreover, it does not have the nice symmetry of the
multiplet of (9.21). Nevertheless one can still compute with good accuracy
the extent of the chaotic layer using a recipe equivalent to that used for the
modulated pendulum. Using the variables (9.5), one rewrites (9.15) as

HMMR = H0(N,S, Sz ,Λgj ,Λsj ) + εH1(S,N, Sz, σ, ν, σz ,̟
∗,Ω∗) , (9.22)

and calculates its instantaneous separatrices under the assumption that the
secular angles ν, σz,̟

∗,Ω∗ and the actions N,Sz are constant parameters
(so that HMMR depends only on S, σ and is thus integrable): the chaotic
layer should cover the region spanned by the instantaneous separatrices for
changing values of the secular angles, and its boundaries should be given by
the instantaneous separatrices respectively corresponding to the minimal and
to the maximal resonant width. As an example, Fig. 9.17 shows these extreme
instantaneous separatrices for the case of the 5/2 mean motion resonance with
Jupiter, in a simplified model where the asteroid and the planet are assumed
to be in coplanar orbits and the orbit of Jupiter is elliptic and fixed. Analogous
figures for different values of the secular angles and for various mean motion
resonances can be found in Yoshikawa (1990, 1991). As one sees in Fig. 9.17,
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Figure 9.17: Dynamics in the 5/2 mean motion resonance with Jupiter, com-
puted for eJ = 0.05989, a value of N that corresponds to e = 0.204 at
a = 2.825 AU, and two different values of ̟ − ̟J: 0 (left panel) and π
(right panel). The label qσ on the x-axis stands for (k̄ − k)σ, which is equal
to 3σ for the 5/2 resonance. Reprinted from Fig. 2 of Morbidelli et al. (1995b),
with permission from Academic Press.

the width of the region of libration is much smaller in the minimal case (left
panel) than in the maximal case (right panel), but it is never zero; therefore
a regular libration region is expected, surrounded by a chaotic layer, like for
the modulated pendulum in the case α < 1. In general, a regular libration
region is expected whenever the asteroid’s inclination is moderate and its
eccentricity is significantly larger than the planetary eccentricities, because in
these cases – for the D’Alembert rules – the width of the resonance related
to the planar circular restricted problem (9.4) dominates over the widths of
all other resonances in the multiplet. The adjective “regular” should not
be misinterpreted here: the region is regular only in the oversimplified model
where the asteroid’s actions N,Sz are assumed to be constant. In reality these
actions evolve in a secular motion that may still be unstable and chaotic. The
study of the secular dynamics in these “regular” regions is one of the most
complicated issues in Celestial Mechanics, as will be discussed in Chapter 11.

The computation of the boundaries of the chaotic layer of a mean motion
resonance is not enough to understand whether a given asteroid is outside of
the resonance, in the chaotic layer, or in the “regular” libration region. The
reason is that the precession of the secular angles, which causes the modulation
of the mean motion resonance width, also forces the oscillation of the asteroid’s
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Figure 9.18: Numerical integration of the equations of the normal form for the
5/2 mean motion resonance with Jupiter. The secular variations of Jupiter’s
orbit with frequencies g5 and g6 are taken into account. See text for comments.
Reprinted from Fig. 3 of Morbidelli et al. (1995b), with permission from
Academic Press.

eccentricity and inclination; this in turn changes the width of the resonance,
since the latter depends also on the values of both e and i. Figure 9.18 shows
an example of these competing effects. The model now accounts for the terms
with frequencies g5 and g6 in the equations (7.10) for the secular motion of
Jupiter’s eccentricity and perihelion longitude. The two light curves denote
the minimal width in the (a, e) plane of the 5/2 resonance, which corresponds
to ̟ − ̟∗

5 = 0 and ̟ − ̟∗
6 = π; the two bold curves denote the maximal

width of the resonance, related to ̟−̟∗
5 = π and ̟−̟∗

6 = 0. The dots trace
the evolution of an asteroid obtained by numerically integrating the equations
of motion of the resonant normal form (9.15). During this integration, the
asteroid slowly goes up and down on the (a, e) plot because of the secular
evolution of its eccentricity. In the meantime, it performs rapid and almost
horizontal oscillations that are due to the variations of the semimajor axis,
forced by the proximity of the resonance and correlated with the circulation of
σ. The maximal eccentricity is attained when̟−̟∗

5 = 0 and̟−̟∗
6 = π, and

at that instant the position of the asteroid should be compared with the light
borders of the resonance; the minimal eccentricity is achieved when̟−̟∗

5 = π
and ̟−̟∗

6 = 0, namely when the resonance width is maximal. The cone-like
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Figure 9.19: Left panel: the position of the asteroids of the Themis family
and the border of the chaotic region of the 2/1 resonance with Jupiter; the
position of the asteroid Zhonnguo, one of the few long-living bodies in the 2/1
resonance (see Chapter 11) is also indicated. Right panel: the same, but for
the Gefion family and the 5/2 resonance; the ellipse indicates the expected
distribution of the Gefion family members according to a collisional model.
The definition of the elements aR, eR that allow a precise comparison of the
asteroids’ positions vs. the borders of the resonance is explained in the text.
Reprinted from Figs. 6 and 17 of Morbidelli et al. (1995b), with permission
from Academic Press.

shape left by the trace of the asteroid’s evolution indicates that the maximal
amplitude of oscillation of the semimajor axis occurs when the eccentricity is
at the minimum of its secular cycle; but from Fig. 9.17 we know that the more
a oscillates, the closer is the asteroid to the resonance’s separatrix. Therefore,
we can conclude that the closest approach of the asteroid to the modulated
resonance happens when ̟ − ̟∗

5 = π and ̟ − ̟∗
6 = 0. The fact that the

bottom left corner of the cone-like shape is outside of the region bounded
by the bold curves implies that the asteroid is outside of the resonance also
during the phase of closest approach; in the opposite case the trace left by the
oscillation of the semimajor axis would lie within the bold curves and would
be centered around ∼ 2.825 AU. Thus we can conclude that this asteroid is
outside of the chaotic layer of the 5/2 mean motion resonance.

If we want to unambiguously represent the position of this asteroid relative
to the 5/2 resonance, the natural choice is to use for the asteroid the values of
the semimajor axis and eccentricity, say (aR, eR), that correspond to the bot-
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tom left corner of the cone-like shape of Fig. 9.18, and to plot the boundaries
of the chaotic layer given by the bold separatrices. In this way we represent
the asteroid and the separatrices of the resonance using the same values of all
the angles (σ,̟,̟∗

5 ,̟
∗
6), and at the instant of their closest mutual approach.

However, the dynamics is not like that illustrated in Fig. 9.18 for all the
mean motion resonances, because it depends on the local amplitude of the
secular oscillation of the asteroid’s eccentricity and on the amplitude of mod-
ulation of the resonance. For instance, for the 2/1 resonance with Jupiter the
closest approach between the asteroid and the resonance’s chaotic layer occurs
when̟−̟∗

5 = 0 and̟−̟∗
6 = π, namely when the asteroid is at the top of its

secular eccentricity cycle and the amplitude of the resonance is minimal. For
the 3/1 resonance, the closest approach happens in an intermediate situation,
when ̟ − ̟∗

5 = ̟ − ̟∗
6 = π. Therefore, each resonance requires different

phases of the secular angles for a correct representation of the position of the
asteroids relative to its boundaries.

Morbidelli et al. (1995b) have done the first systematic study of the posi-
tion of the asteroids of the major asteroid families with respect to the bound-
aries of the chaotic layers of the nearby resonances. Figure 9.19 shows the
results for the Themis and the Gefion families, respectively close to the 2/1
and 5/2 resonances with Jupiter. As one notices, all asteroids are outside the
border of the resonant chaotic layer. Actually, the distributions of the aster-
oids of these families appear truncated at the exact position of the resonance
border. This suggests that, at the time of the formation of these families by
the catastrophic break-up of the parent bodies, several asteroids were injected
into resonance. These bodies must have been subsequently eliminated by the
dynamical action of the resonances. Because the asteroid families should be
much younger than the age of the Solar System (as can be deduced from col-
lisional studies; Marzari et al., 1995, 1999), this indicates that the formation
of the Kirkwood gaps cannot be due to some phenomenon that occurred dur-
ing the very early phase of the Solar System, but it must be due to “some”
dynamical instability mechanism, still ongoing in the present-day system (see
Chapter 11).
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Chapter 10

THREE-BODY
RESONANCES

10.1 Origin of the resonant perturbation terms

The three-body resonances belong to the general class of mean motion reso-
nances, but, differently from the two body mean motion resonances discussed
in Chapter 11, they involve the orbital frequencies of three bodies. More
specifically, a three-body resonance corresponds to the relationship

k1λ̇1 + k2λ̇2 + k3λ̇3 ∼ 0 , (10.1)

where λ̇1, λ̇2, λ̇3 denote the mean motions of three different bodies and
k1, k2, k3 are nonzero integers. In this chapter, we require that (10.1) can-
not be decomposed into

k1λ̇1 + (k2 −m)λ̇2 ∼ 0 ; mλ̇2 + k3λ̇3 ∼ 0 , (10.2)

for some integer m. In the opposite case, the three-body resonance is just
a consequence of the overlapping of two independent two-body mean motion
resonances (called Laplace resonance in the case of exact overlapping) and can
be studied as explained in Sections 9.2.2 and 11.2.5.

For their importance in planetary dynamics, as well as in the dynamics of
the asteroid and of the Kuiper belts, the three-body resonances merit a chapter
by themselves. As far as the properties of motion are concerned, three-body
resonances do not have specific differences with respect to two-body reso-
nances but, the coefficients of the resonant harmonics being quadratic in the
planetary masses, they better show the multiplet structure discussed in the
previous chapter. Moreover, it is less trivial to understand the origin of the

231
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harmonics associated to three-body resonances and compute their coefficients,
because the original Hamiltonian (see 1.29 for the asteroid problem and 1.38
for the planetary problem), once written in modified Delaunay variables (see
respectively 2.38 and 2.39), does not present harmonics depending on the com-
bination of the mean longitudes of three bodies. Therefore, one could naively
think that three-body resonances have no effect because the corresponding
resonant harmonics have null coefficients. Of course, this is not true. In this
section, we discuss how the resonant harmonics are generated. We distin-
guish between a direct effect, common to both the restricted problem and the
planetary problem, and an indirect effect, specific to the restricted case.

10.1.1 The direct effect

The harmonics depending on the combination of the mean longitudes of three
bodies are just hidden in the original Hamiltonian (2.38) or (2.39), and they
appear at the second order in the planetary masses when the Hamiltonian is
averaged over the short periodic terms using a perturbation algorithm. This
has already been anticipated in Section 2.5, and we detail this process here.
The restricted problem and the planetary problem are formally equivalent,
and we focus on the former for simplicity of notation.

We start from the Hamiltonian (2.38), namely

H = H0 + εH1 = − 1

2Λ2
+

N
∑

j=1

njΛj + εH1 , (10.3)

with

εH1 =
N
∑

j=1

εjH(j)
1 (Λ, P,Q, λ, p, q, λj , pj, qj) , (10.4)

where nj is the orbital frequency of the j-th planet of mass εj and N is the
number of considered planets. Recall that all planets are considered to move
on fixed Keplerian ellipses, so that pj, qj can be considered as parameters,1

while the actions Λj , conjugate to λj , are introduced in order to make the
Hamiltonian time independent.

Under the assumption that the mean motion of the asteroid in not in two-
body resonance with any of the mean motions of the planets, all harmonics
depending on λ, λj in (10.4) can be averaged out at order ε. As explained in
Section 2.5, the averaging of the perturbation H1 over the fast angles λ, λj ,
is done following Lie’s algorithm, by introducing a generating Hamiltonian χ

1Taking into account the slow precession of pj , qj , would not change what follows.
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such that

{H0, χ}+H1 = H1 ≡
1

(2π)2

N
∑

j=1

∫ 2π

0

∫ 2π

0
H(j)

1 dλdλj , (10.5)

where {f, g} denotes the Poisson bracket of functions f and g. The solution
of equation (10.5) has the form:

εχ =
N
∑

j=1

εjχ
(j) , (10.6)

where each χ(j) is a function only of the variables related to the asteroid and
to the j-th planet.

With the canonical variables (Λ1, P 1, Q1,Λ1
j , λ

1, p1, q1, λ1j ) (the semimean
modified Delaunay variables) introduced by the Lie series Sεχ, namely Λ =
SεχΛ

1, . . . , λ = Sεχλ
1, . . ., the new Hamiltonian becomes:

H1 = H0+ε (H1 + {H0, χ})+ε2
(

1

2
{{H0, χ}, χ}+ {H1, χ}

)

+O(ε3) . (10.7)

Since, by construction, {H0, χ} = H1 − H1, the Hamiltonian (10.7) can be
rewritten as

H1 = H0 + εH1 +
ε2

2

(

{H1, χ}+ {H1, χ}
)

+O(ε3) . (10.8)

Recalling the expressions of H1, H1 and χ in (10.4) (10.5) and (10.6) and
the definition of Poisson bracket, it is immediately evident that ε2{H1, χ} and
ε2{H1, χ} have the form:

N
∑

j=1

N
∑

k=1

[ εjεk
∂Fj
∂ϕ

(I, ϕ, ϕj) ·
∂χ(k)

∂I
(I, ϕ, ϕk)

−εjεk
∂Fj
∂I

(I, ϕ, ϕj) ·
∂χ(k)

∂ϕ
(I, ϕ, ϕk)

]

, (10.9)

where Fj stands for H(j)
1 or H(j)

1 , the variables (I, ϕ) generically denote the
canonical action–angle variables of the asteroid, (ϕj , ϕk) denote the angles
of the j-th and of the k-th planet respectively, and the expression ∂

∂I · ∂
∂ϕ

denotes the scalar product between the two gradients. Therefore ε2{H1, χ}
and ε2{H1, χ} contain terms which couple the variables of the j-th and of
the k-th planet. The harmonics which depend on a combination of the mean
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longitudes of the asteroid and of two planets, and which may be related to a
three-body resonance, appear in ε2{H1, χ}. Their coefficients are proportional
to the product of the masses of the resonant planets εjεk.

To construct a three-body resonant normal form to second order in the
planetary masses, the Hamiltonian (10.8) is then averaged over all nonres-
onant combinations of the fast angles λ1, λ1j (j = 1, . . . , N), retaining only
the secular harmonics and the resonant harmonics. In principle, this re-
quires the introduction of a new generating Hamiltonian χ2 and of new
variables (Λ2, P 2, Q2,Λ2

j , λ
2, p2, q2, λ2j ) through the canonical transformation

Λ1 = Sε
2

χ2
Λ2, . . . , λ1 = Sε

2

χ2
λ2, . . .. As usual (see Section 2.5.2), the generating

Hamiltonian is chosen such that

{H0, χ2}+H2 = H̄2 (10.10)

where H2 =
1
2({H1, χ}+ {H1, χ}) and H̄2 is a function which retains only the

harmonics of H2 of type

exp
[

ι(k1λ
2
j1 + k2λ

2
j2 + kλ2 +m1pj1 +m2pj2 + r1qj1 + r2qj2 +mp2 + rq2

]

(10.11)
with integers k1, k2, k equal to zero (the secular terms in the Hamiltonian) or
satisfying the resonant relationship k1nj1 + k2nj2 + k/Λ3 ∼ 0, where nj1 and
nj2 are the mean motions of the resonant planets, with indexes j1 and j2.

10.1.2 The indirect effect

The indirect effect is specific to the restricted problem, where the motion of
the planets is assumed to be a known function of time and only the motion of
a massless asteroid is computed from the Hamiltonian equations. Conversely,
in the planetary problem, where the motion of all the bodies is computed in
a self-consistent way starting from the global Hamiltonian (2.39), we do not
need to worry about the indirect effect.

In the previous parts of this book, in the study of an asteroid’s dynamics
we have always assumed that the planets move on fixed Keplerian orbits, or
on orbits slowly precessing according to the Lagrange–Laplace solution (7.10);
in both cases, the mean longitudes of the planets have been considered to be
linear functions of time and all the other orbital elements of the planets have
been assumed to have no short-period oscillations. This level of approxima-
tion is not sophisticated enough, when one comes to the study of three-body
resonances.

In reality, the orbital elements of all planets have short periodic oscillations
due to their mutual perturbations. The explicit expressions of these oscilla-
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tions are obtained while constructing the secular normal form of the planetary
problem, as explained in Section 2.5.

The indirect effect consists in the perturbations of the asteroid’s motion
that are exerted by the short-period oscillations of the orbital elements of the
planets. The Hamiltonian that takes into account this effect can be obtained
by substituting in the perturbation function the osculating elements of the
planets with their expressions as functions of the mean elements. The mean
elements are, by definition, free of short-period oscillations, and themeanmean
longitudes are linear functions of time. Therefore, one obtains an expression
that is formally equivalent to (2.38), but with λ1, . . . , λN standing for the
planets’ mean mean longitudes; however, the resulting perturbation H1 can
be written no longer as the sum of the perturbations exerted by the individual
planets. In fact, in the substitution, one introduces harmonics that couple
the mean elements of the planets, with coefficients that are quadratic in the
planetary masses. Among these harmonics there are also those related to
any given three-body resonance. For practical purposes, it is often enough to
consider only the short-period oscillations of the orbital elements of the main
perturber, i.e. Jupiter for the asteroid belt and Neptune for the Kuiper belt.

In the following, we detail the procedure for substituting the planets’ os-
culating elements with their functions of the mean elements, following the
approach of Nesvorný and Morbidelli (1999). In order to be explicit and con-
structive, this approach makes use of series expansions.

Without loss of generality, we consider only the term H(̄)
1 in the perturba-

tion function (10.4), related to the ̄-th planet. In the following we restrict for
simplicity to the planar case, where the inclinations of the asteroid and of the
planets are set equal to 0. The substitution of the planet’s orbital elements in
the terms of the perturbation that depend on the inclinations can be done in
an analogous way.

The classical Legendre expansion of ε̄H(̄)
1 can be written as

ε̄H(̄)
1 =

ε̄
ā

∑

u

Pu(α)e
P e

P̄

̄ cosΨu , (10.12)

where Ψu = k̄λ̄+ kλ+ l̟̄̄+ l̟ (the multi-index u denoting different values
of the integers k̄, k, l̄, l) and α = a/ā. In the expression above a, e, λ,̟ are
respectively the semimajor axis, the eccentricity, the mean longitude and the
perihelion longitude of the asteroid. The variables with subscript ̄ refer to the
considered planet. For the D’Alembert rules one has k̄ + k + l̄ + l = 0, and
P = |l|+2m and P̄ = |l̄|+2n, where m,n are positive integer numbers. The
functions Pu(α) in (10.12) can be evaluated following Šidlichovský (1990).

The expansion (10.12) contains the osculating elements of the considered
planet: ā, λ̄, ē and ̟̄. The dependence of these variables on the mean
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elements of the planetary system can be written in the form (see Bretagnon,
1990):

ā=ā̄ +
∑

v

Av cos Φv +O(ε2) (10.13)

λ̄=λ̄̄ +
∑

v

Bv sinΦv +O(ε2) (10.14)

ē exp (ῑ̟)=ē̄ exp (ι ¯̟ ̄) +
∑

v

Cv exp (ιΦv) +O(ε2) , (10.15)

where Φv = r̄λ̄̄ + s̄ ¯̟ ̄ + rjλ̄j + sj ¯̟ j (the multi-index v denoting different
values of the integers r̄, rj , s̄, sj and of the index j 6= ̄). In the expression
above, āj, ēj , λ̄j and ¯̟ j denote the mean semimajor axis, eccentricity, mean
longitude and perihelion longitude of the j-th planet; recall that the mean
semimajor axis is constant, the mean mean longitude is a linear function of
time, and the mean perihelion longitude has only secular variations. The
constants Av, Bv , Cv are proportional to the mass εj of the j-th planet, and
O(ε2) denotes that the neglected terms are at least quadratic in the planetary
masses. In a nonplanar approximation, the dependence of ī exp(ιΩ̄) on the
planetary mean elements would have the same form as (10.15).

The expressions (10.13)–(10.15) can be introduced in equation (10.12).

This will make H(̄)
1 a function of the mean elements. However, certain simpli-

fications must be performed on the perturbing function in order to write it as
an explicit Fourier series of cosine terms. It is suitable to treat separately the
substitutions of expressions (10.13), (10.14) and (10.15) because they involve
different technical procedures.

ā substitution

The substitution of equation (10.13) into equation (10.12) is done by first
writing P (α) as a polynomial in α:

P (α) =
∑

n

Pnα
n (10.16)

and then substituting equation (10.13) into each term:

1

ā
αn=an

(

ā̄ +
∑

v

Av cos Φv

)−(n+1)

∼= 1

ā̄
ᾱn − (n + 1)

1

ā2̄
ᾱn
∑

v

Av cosΦv , (10.17)
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where we have denoted ᾱ = a/ā̄, and a is the asteroid’s semimajor axis. All
the terms in the Taylor expansion which are of order A2

v or smaller have been
neglected, because these terms would be at least quadratic in the planetary
masses.

Substituting (10.17) in (10.16), one gets:

1

ā
P (α) =

1

ā̄

∑

n

Pnᾱ
n − 1

ā2̄

∑

n

Pn(n+ 1)ᾱn
∑

v

Av cos Φv . (10.18)

Substituting (10.18) in (10.12), the first term of (10.18) recovers the original
Taylor expansion of the perturbing function, now with the mean semimajor
axis ā̄, instead of the osculating one ā. The second term generates new
harmonics cosΨu cos Φv =

1
2 (cos(Ψu +Φv) + cos(Ψu − Φv)), with coefficient:

− ε̄
ā2̄
Av

(

∑

n

Pn(n+ 1)ᾱn
)

eP e
P̄

̄ , (10.19)

which is quadratic in the planetary masses.

λ̄ substitution

The substitution of equation (10.14) into equation (10.12) is done by writing

cosΨu = Re exp [ι(Ψ̄u +
∑

v

k̄Bv sinΦv)] ,

where Re denotes the real part, and Ψ̄u = k̄λ̄̄ + kλ+ l̟̄̄ + l̟. Because of

exp (ιk̄Bv sinΦv) =
∑

n

Jn(k̄Bv) exp (ιnΦv)

with coefficients given by the Bessel functions:

Jn(z)=

(

z

2

)n
∑

r≥0

(−1)r

r!(r + n)!

(

z

2

)2r

; n ≥ 0 ,

Jn(z)=(−1)nJ−n(z) ; n < 0 ,

one can write

exp [ι(Ψ̄u +
∑

v

k̄Bv sinΦv)] = exp (ιΨ̄u)
∏

v

(

∑

n

Jn(k̄Bv) exp (ιnΦv)

)

.

(10.20)
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As the coefficients Bv are proportional to the planetary masses, one can ap-
proximate (10.20) retaining only the linear terms in Bv; this preserves only
the terms in

J0 ∼= 1 , J1(k̄Bv) ∼=
(

k̄Bv
2

)

, J−1(k̄Bv) ∼=
(

−k̄Bv
2

)

.

It follows that

exp [ι(Ψ̄u+
∑

v
k̄Bv sinΦv)] = exp (ιΨ̄u)+

1

2

∑

v

k̄Bv exp [ι(Ψ̄u+Φv)]

−1

2

∑

v

k̄Bv exp [ι(Ψ̄u−Φv)] . (10.21)

We now substitute cosΨu in (10.12) with the real part of (10.21): the first
term on the right hand side of (10.21) gives the harmonic cos Ψ̄u, i.e. the
original harmonic with the formal substitution of the osculating λ̄ with the
mean mean longitude λ̄̄; the two other terms produce harmonics cos(Ψ̄u+Φv)
and cos(Ψ̄u − Φv), with coefficients

± ε̄
2ā

k̄BvP (α)e
P e

P̄

̄ (10.22)

(the upper sign for Ψ̄u + Φv, the lower for Ψ̄u − Φv), which are quadratic in
the planetary masses.

ē exp ῑ̟ substitution

We start by writing in exponential form (supposing l̄ ≥ 0):

e2n̄ e
l̄
̄ exp (ιl̟̄̄) =

[

ē̄ exp (ι ¯̟ ̄) +
∑

v

Cv exp (ιΦv)

]n

×
[

ē̄ exp (−ι ¯̟ ̄) +
∑

v

Cv exp (−ιΦv)
]n

×
[

ē̄ exp (ι ¯̟ ̄) +
∑

v

Cv exp (ιΦv)

]l̄

Performing the binomial expansion of each factor and considering only the
terms which are linear in Cv, it follows that

e2n̄ e
l̄
̄ exp (ιl̟̄̄)=ē

2n
̄ ē

l̄
̄ exp (ιl̄ ¯̟ ̄)

+ē2n̄ ē
l̄
̄ exp (ιl̄ ¯̟ ̄)

[

(n+ l̄)ē
−1
̄ exp (−ι ¯̟ ̄)

∑

v

Cv exp (ιΦv)

+ nē−1
̄ exp (ι ¯̟ ̄)

∑

v

Cv exp (−ιΦv)

]

. (10.23)
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Similarly we have:

e2n̄ e
l̄
̄ exp (−ιl̟̄̄)=ē

2n
̄ ē

l̄
̄ exp (−ιl̄ ¯̟ ̄)

+ē2n̄ ē
l̄
̄ exp (−ιl̄ ¯̟ ̄)

[

(n+ l̄)ē
−1
̄ exp (ι ¯̟ ̄)

∑

v

Cv exp (−ιΦv)

+ nē−1
̄ exp (−ι ¯̟ ̄)

∑

v

Cv exp (ιΦv)

]

. (10.24)

Thus, substituting for (10.23) and (10.24) in the term e
P̄

̄ cosΨu of (10.12),

we obtain ē
P̄

̄ cos Ψ̄u, with Ψ̄u = k̄λ̄ + kλ + l̄ ¯̟ ̄ + l̟ (i.e. the same term,
rewritten with the formal substitution of ē and ̟̄ with ē̄ and ¯̟ ̄), together
with new harmonics in Ψ̄u + Φv − ¯̟ ̄ and Ψ̄u − Φv + ¯̟ ̄. The coefficients of
these harmonics are respectively:

(n+ |l̄)
ε̄
ā
CvP (α)e

P ē
P̄−1
̄ and n

ε̄
ā
CvP (α)e

P ē
P̄−1
̄ . (10.25)

These coefficients are, again, quadratic in the planetary masses.

10.1.3 Inclusion of both direct and indirect effects in the
asteroid problem

We now show how the indirect and the direct terms can both be taken into
account in the construction of the resonant normal form for a three-body reso-
nance. First, using the recipe described in Section 10.1.2 and then introducing
the modified Delaunay variables (Λ, P,Q, λ, p, q) for the asteroid we write the
perturbation of the restricted problem as

εH1=
N
∑

j=1

εjH(j)
1 (Λ, P,Q, λ, p, q, λ̄j , ¯̟ j , Ω̄j) (10.26)

+
N
∑

j=1

∑

k 6=j

εjεkH(j,k)
2 (Λ, P,Q, λ, p, q, λ̄j , ¯̟ j , Ω̄j, λ̄k, ¯̟ k, Ω̄k) +O(ε3) ;

the functions H(j)
1 are the same as in (10.4), with the formal substitution of

λj ,̟j ,Ωj with λ̄j, ¯̟ j , Ω̄j, while each functionH(j,k)
2 depends only on the mean

modified Delaunay variables of the j-th and of the k-th planet. The planets’
mean mean longitudes λ̄j are linear functions of time, with frequencies nj.
For simplicity of notation, hereafter we will omit the over-bar, and denote the
mean mean longitudes simply by λj.
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Then, as usual, we write the Hamiltonian of the asteroid problem in an
autonomous form introducing actions Λj conjugate to λj and adding the term
∑

j njΛj to the integrable part of the Hamiltonian. The Hamiltonian of the
asteroid problem then becomes formally identical to (10.3), with the sole ad-

dition of the term
∑

j

∑

k 6=j εjεkH
(j,k)
2 , quadratic in the planetary masses, and

of higher-order terms.

The averaging of the Hamiltonian over the fast angles λ, λj at first order in
ε is then done as in Section 10.1.1, obtaining, to second order in the planetary
masses, the function:

ε2H2 =
ε2

2

(

{H1, χ}+ {H1, χ}
)

+
N
∑

j=1

∑

k 6=j

εjεkH(j,k)
2 , (10.27)

where the first two terms on the right hand side are the same as in (10.8). This
means that the perturbation terms in the averaged Hamiltonian at order two
in the planetary masses are simply the sum of those coming from the direct
effect and of those coming from the indirect effect. The construction of the
three-body resonant normal form can then be done as explained at the end of
Section10.1.1.

10.2 Three-body resonant multiplets

Once the three-body resonant normal form is computed, we can proceed as
done in Section 9.3 for two-body mean motion resonances. We take into ac-
count the secular precession of planetary orbits, assuming that the mean plan-
etary elements evolve according to the Lagrange–Laplace solution (7.10), and
we introduce the angles ̟∗

j = gjt+βj and Ω∗
j = sjt+δj. To make the Hamilto-

nian autonomous, we introduce Λgj and Λsj as the actions conjugate to ̟
∗
j ,Ω

∗
j

(j = 1, . . . , N), and add to the Hamiltonian the term
∑

j(gjΛgj + sjΛsj ).

The normal form for a three-body resonance k1λ̇j1 + k2λ̇j2 + kλ̇ ∼ 0 is
therefore written as:

H3BR=− 1

2Λ2
+ nj1Λj1 + nj2Λj2 +

N
∑

j=1

(gjΛgj + sjΛsj ) + εH̄1(p, q,̟
∗,Ω∗)

+ε2H2(k1λj1 + k2λj2 + kλ,̟∗,Ω∗, p, q) , (10.28)

where nj1 = λ̇j1 , nj2 = λ̇j2 and, as in previous chapters, ̟∗ and Ω∗ denote
the vectors with components ̟∗

j and Ω∗
j respectively. Both functions H̄1 and

H2 in (10.28) depend on the actions Λ, P,Q of the asteroid, and H2 can be
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Table 10.1: Coefficients for the 5 −2 −2 three-body resonance. Reprinted
from Table 3 of Nesvorný and Morbidelli (1999), with permission from Kluwer
Academic Publishers.

N. Perihelia ares − 3.17 cu5,u6,−s
(10−3 AU) (10−8)

1 −̟ 5.08 45.59e − 32.24e3

2 −̟∗
5 4.33 −2.76 + 0.93e2

3 −̟∗
6 4.44 1.18 − 0.38e2

4 ̟∗
5 −̟∗

6 −̟ 5.19 −3.82e + 2.07e3

5 −̟∗
5 +̟∗

6 −̟ 4.97 −7.39e − 2.98e3

6 −2̟∗
5 +̟ 3.57 0.15e + 0.73e3

7 −2̟∗
6 +̟ 3.79 0.03e + 0.14e3

8 −̟∗
5 −̟∗

6 +̟ 3.68 −0.13e − 0.60e3

9 −2̟∗
5 +̟∗

6 4.21 0.01 + 0.07e2

10 ̟∗
5 − 2̟∗

6 4.55 0.01
11 ̟∗

5 − 2̟ 5.83 −23.5e2

12 ̟∗
6 − 2̟ 5.72 23.2e2

13 2̟∗
5 − 3̟ 6.58 0.64e3

14 2̟∗
6 − 3̟ 6.36 1.42e3

15 ̟∗
5 +̟∗

6 − 3̟ 6.47 3.41e3

expanded in a Fourier series as

H2 =
∑

m,u,v,s,r

cm,u,v,s,r(Λ, P,Q) exp (ισm,u,v,s,r) (10.29)

where σm,u,v,s,r = m(k1λj1 + k2λj2 + kλ)+u ·̟∗+v ·Ω∗+ sp+ rq and m, r, s
are integer numbers and u ≡ (u1, . . . , un) and v ≡ (v1, . . . , vn) are vectors
with integer components such that m(k + k1 + k2)− s− r +

∑

j(uj + vj) = 0.
As explained in Section 9.3, each σm,u,v,s,r is an independent resonant an-

gle, so that a three-body resonance splits into a multiplet of resonances. Be-
cause the coefficients of the resonant harmonics are of order ε2, the resonances
of the multiplet should have a width in the semimajor axis of order ε; the
separation in semimajor axis of the different resonances, being proportional
to the precession frequencies of the secular angles, should also be of order ε.
Therefore we expect that in general a three-body resonance is characterized
by a marginal overlap of its resonant multiplet. The paper by Nesvorný and
Morbidelli (1999) explicitly computes the multiplet structure of some notable
three-body resonances occurring in the asteroid belt.

Table 10.1 lists the main harmonics of the multiplet of the resonance 5λ̇J−
2λ̇S − 2λ̇ ∼ 0 (hereafter 5 −2 −2 three-body resonance), where λ̇J and λ̇S are
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Figure 10.1: Separatrices of five multiplet resonances of the 5 −2 −2 three-
body resonance. Reprinted from Fig. 2 of Nesvorný and Morbidelli (1999),
with permission from Kluwer Academic Publishers.

the mean mean motions of Jupiter and Saturn and λ̇ is the mean motion of
the asteroid, respectively. This resonance occurs at about 3.17 AU in the
asteroid belt. The first column gives the reference number of the harmonic.
The second one shows the combination of the perihelia u5̟

∗
5 + u6̟

∗
6 − s̟

that characterizes the resonant angle σ1,(0,...,0,u5,u6,0...),0,s,0 (hereafter denoted
for simplicity as σu5,u6,−s). The third column shows the value of the semimajor
axis ares at which the angle σu5,u6,−s is exactly resonant, taking into account
the precession frequencies of the perihelia. Finally, the last column lists the
coefficient of the harmonic c1,(0,...,0,u5,u6,0...),0,s,0 (hereafter cu5,u6,−s) and its
dependence on the asteroid’s eccentricity. The computations have been done in
the framework of the planar problem, so that all terms involving the longitudes
of nodes and the inclinations are not reported.

As one sees from Table 10.1, the dominant harmonic in the multiplet is the
first one. The resonant angle is σ0,0,−1 = 5λJ − 2λS − 2λ −̟ and the linear
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Figure 10.2: Poincaré sections of the model (10.30) for the 5 −2 −2 three-body
resonance. The semimajor axis and σ = σ0,0,−1 are plotted when ̟−̟∗

5 = 0.
Reprinted from Fig. 3 of Nesvorný and Morbidelli (1999), with permission
from Kluwer Academic Publishers.

part in the eccentricity of the coefficient of the harmonic is 45.59 × 10−8e.
This harmonic is mainly generated by the eJ exp(ι̟J) contribution of the
indirect effect and, more precisely, the large value of its coefficient is due to
the favorable combination of the term Φv = λ̄J − 2λ̄S+ ¯̟ J in (10.15) with the
term Ψu = 4λJ − 2λ−̟J −̟ in (10.12).

The structure of the resonant multiplet of the 5 −2 −2 resonance is com-
plex. Looking carefully at Table 10.1, one realizes that the multiplet is made
of submultiplets of resonances which almost completely overlap. For instance
resonances 4 and 5 overlap resonance 1 (they have the same dependence on
the asteroid’s eccentricity and almost exactly the same resonant semimajor
axis). Similarly, resonances 3 and 9 overlap resonance 2; resonance 12 over-
laps resonance 11; resonances 13 and 14 overlap resonance 15 and resonances
7 and 8 overlap resonance 6. Recall from Section 9.4 that, when the sepa-
ration among the resonances is much smaller than their width, the resulting
dynamics is similar to that of a modulated pendulum. Therefore, each of these
submultiplets should be considered as a modulated pendulum-like resonance.

In addition, these modulated pendulum-like resonances overlap each other,
as shown in Fig. 10.1, where the separatrices of the resonances 1, 2, 11, 15 and 6
in Table 10.1 (namely the dominating terms of each submultiplet) are plotted.
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Figure 10.3: A composite of the Poincaré section of the 5 −2 −2 three-body
resonance at e = 0.2 and of the filtered motion of 3460 Ashkova. Reprinted
from Fig. 4 of Nesvorný and Morbidelli (1999), with permission from Kluwer
Academic Publishers.

This overlap should be considered to be responsible for the general global
chaoticity of the 5 −2 −2 three-body resonance. Only at large eccentricity,
where resonance 1 is much larger than all other resonances, should a central
island of stable motion be expected, as in a modulated pendulum of type
(9.20), in the case where the relative amplitude of modulation α < 1.

An approximate view of the dynamics generated by this multiplet structure
can be obtained by computing Poincaré surfaces of section for a simplified
model that includes only the two major harmonics reported in Table 10.1,
given by the Hamiltonian:

H = − 1

2Λ2
+nJΛJ+nSΛS+g5Λg5+βe

2+c0,0,−1 cos σ0,0,−1+c−1,0,0 cos σ−1,0,0 .

(10.30)
This Hamiltonian is in fact the simplified version of (10.28), where only two
harmonics have been taken into account in ε2H2, and the secular part εH̄1

has been reduced to the sole term βe2.
Figure 10.2 shows the Poincaré sections on four energy surfaces, which are

identified on the upper right-hand corner of each panel by the eccentricity at
which the energy surface H =constant (with H as in 10.30 and the angles set
equal to zero) intersects the resonant semimajor axis ares = 3.1751 AU. On
such energy surfaces, the eccentricity is roughly constant over the semimajor
axis range reported in the figure.
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Table 10.2: The same as Table 10.1 but for the 6 1 −3 three-body resonance.
Reprinted from Table 6 of Nesvorný and Morbidelli (1999), with permission
from Kluwer Academic Publishers.

N. Perihelia ares − 3.13 cu5,u6,−s
(10−3 AU) (10−8)

1 −4̟ 8.88 −28.45e4

2 −̟∗
5 − 3̟ 8.50 10.52e2

3 −̟∗
6 − 3̟ 8.57 −16.84e3

4 −2̟∗
5 − 2̟ 8.13 −1.28e2

5 −2̟∗
6 − 2̟ 8.27 −1.16e2

6 −̟∗
5 −̟∗

6 − 2̟ 8.20 3.39e2

7 −3̟∗
5 −̟ 7.75 0.07e − 0.20e3

8 −3̟∗
6 −̟ 7.96 −0.01e3

9 −2̟∗
5 −̟∗

6 −̟ 7.82 −0.22e + 0.43e3

10 −̟∗
5 − 2̟∗

6 −̟ 7.89 0.17e − 0.42e3

The chaotic motion fills almost all the resonant space in the three panels
corresponding to e = 0.05, 0.1 and 0.15. Only for e = 0.2 is a relatively large
portion of the phase space occupied by a central regular area, as expected from
the fact that, for this value of the eccentricity, the resonance in the multiplet
with angle σ0,0,−1 is almost twice as wide as the one with angle σ−1,0,0 (see
Fig. 10.1). Of course, the real dynamics is much more complicated than that
shown in Fig. 10.2, because the model (10.30) is strongly simplified. However,
the integration of the full equations of motion for the asteroid 3460 Ashkova
confirms the existence of a quasi-regular region in this three-body resonance
at e ∼ 0.2. Figure 10.3 shows the evolution of Ashkova’s trajectory over 105 y,
filtered over the short-period oscillations, and superposed on the correspond-
ing Poincaré section of model (10.30). Note the quite good agreement on
this timescale. However Ashkova’s trajectory becomes irregular on a longer
timescale and its Lyapunov time is about 8300 years.

The overlapping of the resonances in the multiplet is at the origin of the
chaotic behavior also for most of the other three-body resonances of low or-
der, and several additional examples are provided by Nesvorný and Morbidelli
(1999). Only resonances of higher eccentricity order can be characterized by
the separation of the multiplet components at low eccentricity.

An example of this is provided by the 6 1−3 three-body resonance, which is
of order 4 in the eccentricity. Table 10.2 gives the coefficients of the harmonics
of the multiplet and Fig. 10.4 shows the separatrices of the corresponding
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Figure 10.4: Separatrices of four multiplet resonances of the 6 1 −3 three-
body resonance. Reprinted from Fig. 8 of Nesvorný and Morbidelli (1999),
with permission from Kluwer Academic Publishers.

resonances: the region of nonoverlap extends to e ∼ 0.07, a value that is of
the order of the amplitude of the secular oscillations of the asteroid eccentricity
forced by Jupiter.

For three-body resonances of increasingly higher order, the width of each
resonant component should shrink, while their mutual distance should remain
of the same order (dictated by the secular precession rates of the perihelia).
Therefore the region where the resonances of the multiplet do not overlap
should extend to larger eccentricities than those observed in Fig. 10.4. Conse-
quently, the dynamics of three-body resonances of very large eccentricity order
should be basically regular.



10.3. THE ASTEROID AND KUIPER BELTS 247

Figure 10.5: Lyapunov time as a function of the semimajor axis in the outer
asteroid belt. Left panel: the model includes only the effect of Jupiter, as-
sumed on an elliptic orbit that secularly evolves according to (7.10). Right
panel: the model includes the effects of all four giant planets, fully interacting
each other. The main mean motion resonances with Jupiter are labeled at
the top of the right panel; all other chaotic zones are then presumably associ-
ated to three-body resonances. Reprinted from Figs. 1 and 4 of Murray et al.
(1998), with permission from the American Astronomical Society.

10.3 The asteroid and Kuiper belts

Three-body resonances with Jupiter and Saturn are extremely important for
understanding the chaotic structure of the asteroid belt. A very clear example
is provided by Fig. 10.5 (from Murray et al., 1998) which shows the Lyapunov
time (inverse of the maximum Lyapunov exponent) as a function of the initial
semimajor axis in the outer asteroid belt. The left panel is computed in a
model that takes into account only the perturbations of Jupiter on a secularly
precessing Keplerian orbit, while the right panel is the result of a computation
which includes both Jupiter and Saturn (as well as Uranus and Neptune), fully
interacting with each other.

As discussed in Section 5.2 (see Fig. 5.5), each dip and each peak in the
Lyapunov time profile denotes the position of a chaotic zone, while a regular
plateau, where the Lyapunov time is almost constant as a function of the initial
condition, reveals a region where resonances have a negligible effect and the
dynamics is expected to be essentially regular. The fact that the Lyapunov
time in this regular region is not infinite is dictated by the limited integration
time. Keeping these premises in mind, Fig. 10.5 reveals few isolated chaotic
regions, separated by intervals of regular motion, in the model that accounts
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Figure 10.6: Location of the mean motion resonances kJλ̇J − kλ̇ ∼ 0 with
kJ + k ≤ 20 (bold red lines) and of the three-body resonances kJλ̇J + kSλ̇S +
kλ̇ ∼ 0 with |kJ| + |kS| + |k| ≤ 20 (light blue lines) in the asteroid belt. The
vertical scale gives a qualitative comparative indication of the strength of the
resonances. Adapted from Nesvorný and Morbidelli (1998).

only for the perturbations of Jupiter; conversely, in the model that includes
Saturn, the dynamics is essentially chaotic over all the considered semimajor
axis range. From the point of view of the resonant structure, the difference
between the two models is the presence in the second one of the three-body
Jupiter–Saturn–asteroid resonances.

The reason that three-body resonances change so drastically the chaotic
structure of the belt is that, involving three mean motion frequencies, they
are much more numerous than the ordinary mean motion resonances with
Jupiter of comparable strength. To illustrate this property, Fig. 10.6 marks
with vertical lines the locations of both the two-body and the three-body mean
motion resonances, for semimajor axis ranging over all the asteroid belt (2–
4 AU). For the two-body mean motion resonances with Jupiter (red lines)
the height of the line is given as 10 − q, where q is the eccentricity order of
the resonance, so that all the resonances up to order 9 are shown. For the
three-body mean motion resonances (blue lines) the height of the line is given
instead as 7 − q. This is done to account for the fact that the coefficients of
the three-body resonant harmonics are quadratic in the masses and that for
an eccentricity e = 0.066 the mass of Saturn (in solar units) is equal to e3; in
other words, a three-body resonance of a given order q should have roughly the
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Figure 10.7: The numbered asteroids that are strongly chaotic under the effect
of the giant planets, according to Froeschlé et al. (1997). The locations of the
main two-body and three-body resonances are also indicated with vertical
lines. The heights of the lines are scaled as in Fig. 10.6. Above each line
the integer coefficients characterizing the resonance are reported: kJ kS k
denote the three-body resonance kJλ̇J+kSλ̇S+kλ̇ ∼ 0, while kJ/k denotes the
two-body resonance kJλ̇J − kλ̇ ∼ 0. Reprinted from Fig. 5 of Nesvorný and
Morbidelli (1998), with permission from the American Astronomical Society.

same strength as a resonance with Jupiter of order q+3 for eccentricity about
0.05–0.10. With this trick, the vertical scale of Fig. 10.6 gives a qualitative
comparative indication of the strength of the various resonances, so that the
overdensity of the three-body resonances appears evident.

Unlike low-order mean motion resonances with Jupiter, which are so pow-
erful to remove the asteroids at their locations (for the reasons explained in the
next chapter), the three-body resonances are not associated to any remarkable
gap in the asteroids’ distribution. As a consequence, most of the chaotic real
asteroids are in three-body resonances. Figure 10.7 shows the semimajor axis,



250 CHAPTER 10. THREE-BODY RESONANCES

eccentricity and inclination of 836 asteroids that have been found to be chaotic
by Froeschlé et al. (1997), in a model taking into account the perturbations of
the four giant planets (the figure makes use of the proper elements by Milani
and Knežević (1994) when available, and of the osculating elements other-
wise). The bottom panel shows the location of some of the main mean motion
resonances with Jupiter (bold lines) and three-body Jupiter–Saturn–asteroid
resonances (light lines). The height of the lines has been scaled as in Fig. 10.6
(note that with respect to Fig. 10.6, only some of the resonances have been
plotted to make the picture readable).

The figure shows that most of the chaotic asteroids are concentrated along
lines that can be easily identified with two-body and three-body resonances of
moderate order. The two-body mean motion resonances 7/2, 10/3, 11/4, 8/3,
9/4, 13/6, etc., and the three-body mean motion resonances 4 −1 −1, 3 1 −1,
4 −2 −1, 5 3 −2, 5 2 −2, 2 2 −1, 4 −3 −1, 5 1 −2, 3 −1 −1, 6 2 −3, 5 −2 −2,
5 3 −3, etc., seem to be responsible for most of the chaotic orbits of the
real asteroids in the belt. These apparent associations have been checked by
Nesvorný and Morbidelli (1998) with numerical integrations covering 105 y,
by monitoring the evolution of their filtered resonant angles. 255 asteroids
have been unambiguously identified to be in three-body resonances and 63 in
mean motion resonances with Jupiter. Taking into account that the original
database of 836 chaotic asteroids has been obtained by Froeschlé et al. (1997)
from the selection of the first 5400 numbered asteroids, which constitute only
less than 1/6 of all the catalogued asteroids, Nesvorný and Morbidelli con-
cluded that at least 1500 real asteroids should be chaotic due to three-body
resonances and 380 due to mean motion resonances with Jupiter. Notice that
these numbers must be severe low estimates, because the positive identifica-
tion of a chaotic asteroid with a resonance by Nesvorný and Morbidelli (1998)
was less than 50% efficient (318 asteroids with identified resonance out of 836),
and because the work of Froeschlé et al. (1997), being based on the compu-
tation of fast Lyapunov indicators over 50,000 y (see Section 5.4.1), probably
selected only the asteroids with the strongest chaotic motion. Conversely, the
ratio 255/63 of the number of bodies in three-body resonances vs. two-body
resonances should not be biased by the computational methods, and should
therefore reflect the reality of the asteroid belt.

In Fig. 10.7, most of the chaotic asteroids appear to be concentrated be-
tween 3.1 and 3.25 AU and e > 0.1; moreover, unlike the other parts of the
belt, in this region the chaotic asteroids are not located along well-defined
lines a ∼ constant. A detailed exploration of this region has been done by
Nesvorný and Morbidelli (1998). Figure 10.8 shows (solid line) the maximum
Lyapunov exponent (MLE) as a function of the semimajor axis, computed
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Table 10.3: Numerical results on three-body resonances in the asteroid belt.
The first entry lists the numbers kJ, kS, k that characterize the resonance
kJλ̇J + kSλ̇S + kλ̇ ∼ 0; the second column gives the identification number
of the resonant asteroid whose motion, integrated over 2 × 105 y, provides
the informations reported in the following columns: proper eccentricity (ep),
center value (ac) and amplitude (δa) of its semimajor axis oscillations and
the typical period T of these oscillations. The latter is typically of the order
of the Lyapunov exponent. Note that, the motion of most of the asteroids
being chaotic, all data reported in this table are only indicative of an order of
magnitude. Reprinted from Table 1 of Nesvorný and Morbidelli (1998), with
permission from the American Astronomical Society.

Resonance Asteroid ep ac δa T
(AU) (10−3 AU) (103 y)

4 −1 −1 2440 0.1113 2.2157 0.6 50
4 −2 −1 463 0.1795 2.3977 3.0 ∼10
7 −2 −2 1966 0.1241 2.4476 0.6 ∼30
7 −3 −2 1430 0.1741 2.5599 0.5 ∼30
2 2 −1 258 0.1687 2.6155 0.7 ∼20
6 −1 −2 53 0.2092 2.6190 ∼1.0 35
4 −3 −1 792 0.1604 2.6230 2.5 25
7 −4 −2 789 0.1471 2.6857 0.5 20
3 −1 −1 485 0.1958 2.7525 3.0 15
4 −4 −1 22 0.0881 2.9095 ∼1.0 ∼50
5 −1 −2 576 0.1758 2.9860 2.0 20
3 −2 −1 2395 0.0690 3.0790 4.0 10
6 1 −3 936 0.1540 3.1385 0.4 10
8 −4 −3 10 0.1347 3.1418 0.5 ∼30
3 3 −2 106 0.1466 3.1708 ∼2.0
5 −2 −2 490 0.0652 3.1738 4.0 10
7 −2 −3 530 0.1937 3.2080 <8.0 12

by integrating fake asteroids for 2 My under the perturbations of the four
giant planets. The bottom, middle and top panels refer respectively to aster-
oids with initial eccentricity equal to 0.05, 0.15 and 0.25. The dotted lines
denote the relative change of the asteroid’s perihelion frequency over 1 My.
As explained in Chapter 5, MLE and frequency analysis give complementary
information: the MLE tells about the degree of chaoticity, while the relative
change of perihelion frequency is related to the speed of chaotic diffusion in
the frequency space. Recall that for both indicators the existence of a plateau
indicates a smooth dependence of the results on the initial conditions, typical
of regions where effective resonances are absent, while a peak reveals the exis-
tence of a chaotic region. As one can see in Fig. 10.8, the chaotic regions are
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Figure 10.8: Lyapunov exponent (solid curve) and relative change of the as-
teroid’s perihelion frequency (dotted curve) as a function of semimajor axis
for three values of the eccentricity. In this region a large number of chaotic as-
teroids are located. Reprinted from Fig. 6 of Nesvorný and Morbidelli (1998),
with permission from the American Astronomical Society.
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Figure 10.9: The same as Fig. 10.6, but for the mean motion resonances with
Neptune (red) and the three-body resonances with Uranus and Neptune (blue)
in the Kuiper belt.

well correlated with the location of high-order mean motion resonances with
Jupiter and three-body Jupiter–Saturn–asteroid resonances. With increasing
eccentricity the widths of the chaotic regions become larger, because all these
resonances are related to harmonics whose coefficients are positive powers of
e; moreover new peaks appear, related to high-order resonances that are inef-
fective at low e. As a consequence, the chaotic regions overlap starting from
e ∼ 0.15, making this part of the belt globally chaotic: this explains why the
chaotic asteroids do not appear to be located along well-defined lines. Note
that this eccentricity threshold for global resonance overlap is much lower
than the one indicated in Fig. 9.12, because the work by Dermott and Murray
(1983) did not take into account the resonances with Jupiter of large order
and, of more importance, the three-body resonances with Jupiter and Sat-
urn. Table 10.3 gives a compilation of the properties of the most important
three-body resonances of the main asteroid belt.

In the Kuiper belt the most important three-body resonances are those
with the mean motions of Uranus and Neptune. Figure 10.9 is the equivalent
of Fig. 10.6, but reports the main mean motion resonances with Neptune and
three-body resonances with Uranus and Neptune between 35 and 70 AU. To
account for the mass of Uranus being smaller than the mass of Saturn, the
height of the blue lines is now equal to 6− q (instead of 7− q as in Fig. 10.6),



254 CHAPTER 10. THREE-BODY RESONANCES

where q is the eccentricity order of the corresponding resonance. The situa-
tion is analogous to that of the asteroid belt: the three-body resonances are
much denser in the semimajor axis than the ordinary two-body resonances of
comparable strength, particularly beyond 45 AU. Therefore, the three-body
resonances are an essential ingredient to understanding the global dynamical
structure and the long-term stability properties of the Kuiper belt, as will
be shown in Chapter 12. Unfortunately, for the limited number of bodies
discovered so far and for the still inaccurate determination of the orbital pa-
rameters, it is not yet possible to estimate which fraction of the real Kuiper
belt population is chaotic due to three-body resonances.

10.4 Chaotic dynamics of the giant planets

As discussed in Chapter 7, the secular motion of the terrestrial planets is
strongly chaotic; conversely, the secular motion of the giant planets presents
only a very weak chaoticity that is raised by the coupling with the terrestrial
planets. Therefore, without the presence of the terrestrial planets, the giant
planets by themselves would constitute a regular system, at least from the
point of view of secular dynamics.

Nevertheless, Sussman and Wisdom (1992) computed a positive Lyapunov
exponent in a numerical integration of the giant planets. However this result
has never been stressed, because the Lyapunov exponent presented a puzzling
dependence on the integration step-size and on the initial conditions. More-
over, Sussman and Wisdom failed to identify a resonance responsible for the
origin of chaos. In fact, the giant planets are not in two-body mean motion
resonances, even of considerably large order. It is well known that Jupiter and
Saturn are close to the 5/2 resonance, Uranus and Neptune are close to the
2/1 resonance and Jupiter and Uranus are close to the 7/1 resonance, but in
all cases the critical resonant angles circulate, showing that the planets are
not in such resonant configurations.

Recently, Murray and Holman (1999) showed that the system of the giant
planets presents two three-body resonant relationships, which are:

3λ̇J − 5λ̇S − 7λ̇U ∼ 0 , and 3λ̇S − 5λ̇U − 7λ̇N ∼ 0 (10.31)

where λ̇J, λ̇S, λ̇U and λ̇N denote the mean motions of Jupiter, Saturn, Uranus
and Neptune, respectively. These resonances couldn’t be detected by Laskar
(1985) in the computation of the secular normal form, because their resonant
terms appear at order 2 in the planetary masses and order 9 in the eccentricity,
which were beyond Laskar’s computational limits. As estimated by Murray
and Holman, the coefficients of the harmonics related to the first resonance
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Figure 10.10: Lyapunov time as a function of the initial value of the semimajor
axis of Uranus aU. See text for detailed description. Reprinted from Figs. 1
and 2 of Murray and Holman (1999), with permission from the American
Association for the Advancement of Science.

in the equations of motion of Uranus are of order 10−12 in units such that
GM⊙ = aU = 1, while the coefficients of the harmonics related to the second
resonance are smaller by a factor

∼ (εN/εJ) ∗ [(5λ̇S − 2λ̇J)/(2λ̇N − λ̇U)] ∼ 3× 10−3 .

To understand in detail the complex dynamical structure of the giant
planet system, Murray and Holman made a numerical survey in which all
the initial orbital elements of the planets were fixed, except Uranus’ semima-
jor axis aU, which ranged from 18.9789 and 19.3990 AU. For every set of initial
conditions, the motion was integrated for 200 My, and the Lyapunov time was
computed. The left panel of Fig. 10.10 shows the resulting dependence of the
Lyapunov time as a function of the initial value of aU. The strong chaotic
region extending up to 19.13 AU is due to the 2/1 resonance with Neptune,
and overlaps with the chaotic region generated by the 1/7 resonance with
Jupiter in the range 19.13–19.17 AU. Conversely, the chaotic regions centered
at aU = 19.219, 19.26, 19.29 and 19.34 AU are all associated to three-body res-
onances. The present value of Uranus’ semimajor axis, as given by the DE200
ephemeris of the Jet Propulsion Laboratory, is indicated by a vertical line in
the figure. The right panel of Fig. 10.10 is a close-up around this value. For
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aU < 19.218 AU one can distinguish the thin chaotic regions generated by the
individual resonant components of the multiplet of the three-body resonance
3λ̇J − 5λ̇S − 7λ̇U ∼ 0, separated by narrow regular regions. More precisely,
between 19.216 and 19.218 AU Murray and Holman identified the resonant
components with critical angles 3λJ− 5λS− 7λU+ q̟∗

5 +7̟∗
6 +(2− q)̟∗

7, for
various values of the integer q. Conversely, for 19.218 ≤ aU ≤ 19.22 AU, the in-
dividual resonant components partially overlap, so that nearly all the orbits are
chaotic and have a finite Lyapunov time. The critical angles of these resonant
components are 3λJ−5λS−7λU+q̟

∗
5+6̟∗

6+(3−q)̟∗
7 , but also some resonant

components of the three-body resonance 3λ̇S−5λ̇U−7λ̇N ∼ 0 are present, more
precisely those with critical angles 3λS − 5λU − 7λN +7̟∗

6 +(2− q)̟∗
7 + q̟∗

8.
Curiously, the present position of Uranus corresponds to the only place in the
19.218–19.22 AU interval where the resonant components do not quite overlap.
This explains the very strong dependence of the Lyapunov time on the initial
conditions and integration approximations, found by Sussman and Wisdom
(1988).

The uncertainty in the current semimajor axis of Uranus is 6 × 10−6 AU
and the physical size of the planet is ∼ 10−4 AU. It is therefore impossible to
conclude what is the real Lyapunov time of Uranus and what is the multiplet
resonant component that really affects its motion. However, the results by
Murray and Holman leave little room for doubt about the importance of three-
body resonances in the giant planets’ motion. With the dynamical model that
will be explained in Chapter 12, Murray and Holman estimated that, because
of its chaotic motion, Uranus could increase its eccentricity up to a Saturn-
crossing value, but in a time not shorter than 1018 y, that is 8 orders of
magnitude longer than the physical lifetime of the Sun. Therefore, the system
of the giant planets is practically stable.



Chapter 11

SECULAR DYNAMICS
INSIDE MEAN MOTION
RESONANCES

11.1 Successive elimination of harmonics

In Chapter 9 we have seen that the mean motion resonances of low order with
a major planet have, to a first approximation, a dynamical structure typical
of a modulated pendulum: they are characterized by the presence of a central
region of “regular” motion, surrounded by a chaotic layer. The goal of this
chapter is to study the dynamics inside this central region on timescales that
are much longer than the libration period inside the mean motion resonance.
For this purpose one must fully take into account also the secular part of
the perturbation (9.17). This leads us to study resonances inside a resonance
(or resonances inside a resonance inside a resonance as in the case of Pluto),
namely highly nonlinear dynamics.

As discussed in Chapter 4, the elimination of the angular dependence of
a resonant Hamiltonian cannot be achieved using the Lie algorithm, even in
the integrable case. Instead, it can be done with the introduction of Arnold
action–angle variables. In these variables, an integrable resonant Hamiltonian
is written as a function of the sole action variables and can therefore be used
as the starting basis for further investigation of the dynamics. Therefore,
the study of a problem characterized by a hierarchical interaction of several
resonances must require the introduction of a sequence of transformations to
suitable Arnold action–angle variables. For these problems, the use of Arnold
variables allows us to revisit a perturbation approach originally due to Delau-
nay (1867), based on the successive elimination of perturbation harmonics up

257
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to a given order.

The principle of the algorithm is simple. Consider a Hamiltonian H(I,ϕ)
and expand it in a Fourier series

H = H0(I) +
∑

m

hm(I) exp (ιm · ϕ) . (11.1)

Then choose one harmonic, say with index m̄, and its multiples, and consider
the partial Hamiltonian

Hm̄ = H0(I) +
∑

k∈Z

hkm̄(I) exp (ιkm̄ ·ϕ) . (11.2)

Since this Hamiltonian is integrable, introduce Arnold action–angle variables
J,ψ in order to write it as a function only of the new actions, i.e. H′

0(J). The
harmonics considered in (11.2) are completely eliminated. Afterwards, write
the remainder

R =
∑

m 6=km̄,k∈Z

hm(I) exp (ιm · ϕ) (11.3)

in the new variables J,ψ and expand it in a Fourier series of the new angles
ψ:

R =
∑

m 6=km̄,k∈Z

h′m(J) exp (ιm · ψ) . (11.4)

The new Hamiltonian H′
0(J) +R(J,ψ) is formally equivalent to (11.1); thus

the algorithm can be iterated, as sketched in Fig. 11.1, in order to eliminate
all the principal harmonics.

Although apparently simple, the algorithm sketched above hides several
conceptual difficulties. The first one concerns the sequential order by which the
harmonics should be eliminated. The experience suggests that for an efficient
and effective practical implementation one should eliminate at each iteration
the harmonic that has the most important influence on the motion of the action
variables; this is in general the harmonic with the largest coefficient among
the resonant ones, which is usually also that associated with the shortest
librational timescale (as the latter is proportional to the square root of the
harmonic’s coefficient; see Section 4.1). When two harmonics are resonant
in different parts of the action space, it is irrelevant which of the two is first
eliminated. We will see in the next section that, in applying the algorithm to
mean motion resonance dynamics, the suitable order of successive elimination
of harmonics imposes itself in a quite natural way.

The second conceptual difficulty is that, when a resonant harmonic is elim-
inated, the introduction of Arnold action–angle variables is not global over the
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Figure 11.1: Sketch of the algorithm of successive elimination of harmonics by
the introduction of Arnold action–angle variables. See text.

entire phase space (see Section 4.2). In fact, the algorithm imposes a fragmen-
tation of the phase space into disconnected regions, according to the location
of the separatrices of the considered resonance. Different action–angle vari-
ables are introduced in the regions of libration and circulation of the resonant
angle, leading to the definition of different new Hamiltonians H′

0(J)+R(J,ψ),
one for each region. This corresponds to the real fact that the dynamics inside
a resonance may be completely different from the dynamics just outside of
it. Therefore, the new Hamiltonians are defined on domains of the actions
J that are delimited by well-defined boundaries, which are dictated by the
separatrices of the previously eliminated resonance. When a new harmonic is
considered, the actions J are no longer constant, so that some trajectories hit
the boundaries of the action domain. Evidently, for these trajectories it is not
possible to introduce new Arnold action–angle variables so that the algorithm
of successive elimination of harmonics cannot be iterated. As a consequence,
the algorithm does not allow the study of regions of phase space close to the
separatrices of the resonances. However, this is not a fault of the algorithm,
because these portions of phase space are expected to correspond to chaotic
regions (which, as we know from Chapter 4, originate around the separatrices
of an integrable resonant approximation when a perturbation is introduced).
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A third conceptual difficulty is that in general the already eliminated har-
monics reappear in the course of the algorithm, when other harmonics are
eliminated. However, under the assumption that the original Hamiltonian is
analytic and has a quasi-integrable form (see 2.1), it is easy to show that
the eliminated harmonics can reappear only with coefficients that are much
smaller than the original ones. In this sense, the method of successive elimi-
nation of the harmonics can be considered as a genuine perturbation theory.
Morbidelli and Giorgilli (1993) proved that, if the perturbation parameter is
small enough, the algorithm converges on a set of KAM tori.

The last difficulty is related to the technical implementation of the al-
gorithm. As remarked in Section 4.2, it is very hard, if not impossible, to
write the Hamiltonian H′

0(J) in explicit form. Conversely, on each torus
J =constant it is possible to compute the Hamiltonian, its derivatives, as
well as the remainder R(J,ψ) and its Fourier expansion, with a seminumeri-
cal procedure. Therefore, the algorithm of successive elimination of harmonics
can be implemented by evaluating, at each iteration, the new Hamiltonian over
a grid in the action space. The Hamiltonian flow is then computed in every
required point of the phase space, using an interpolation algorithm. This prac-
tical implementation technique is explained in detail in Morbidelli (1993b), in
the framework of a nontrivial example.

With reference to the algorithm of successive elimination of harmonics, we
can now investigate in a structured approach the complex dynamics existing
inside low-order mean motion resonances.

11.2 The mean motion resonant dynamical system

For a k̄λ̇̄ − kλ̇ ∼ 0 mean motion resonance between an asteroid and the
̄-th planet (with k̄ 6= k), we start from the Hamiltonian (9.15). Remember
that (9.15) is the nonsimplified mean motion resonant normal form, where
the secular motion of the perturbing planets is also taken into account. As
a first step of the process of successive elimination of harmonics we need to
find an integrable approximation of the dynamics. As discussed in Section 9.4,
if the inclination is not excessively large and the eccentricity of the asteroid
is significantly larger than those of the planets, the resonant harmonic with
angle

(k̄ − k)σ = k̄λ̄ − kλ+ (k̄ − k)p

dominates in width over all other harmonics in the resonant multiplet. There-
fore, we define an integrable approximation Hσ by retaining from the per-
turbation H1 in (9.15) only this harmonic and its multiples. This integrable
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approximation has the form:

Hσ = H0(Λ̃̄, N, S, Sz)+
∑

j

(gjΛgj +sjΛsj )+εFσ(S, (k̄−k)σ,N, Sz) , (11.5)

where H0 is given by (9.7) and Fσ retains all the terms in the perturbation
that do not depend on angles other than σ.

A complication is that the Fourier expansion of H1 in (9.15) does not
converge if the asteroid’s eccentricity is large enough to allow collisions with
the resonant planet for some values of σ (see Section 9.1.1). In these cases,
the function Fσ can still be computed for every value of σ that does not allow
collisions, by writingH1 as a function of the variables (9.5) without using series
expansions, and by averaging it over σz,̟

∗ and Ω∗. The local evaluation of
H1 and of its derivatives, avoiding series expansions, can be obtained following
Ferraz-Mello and Sato (1989) and Moons (1993, 1994).

The Hamiltonian (11.5) is formally equivalent to that of the planar circular
restricted problem, but in (9.4) Sz was assumed equal to 0, while now Fσ
depends parametrically on the value of Sz (constant of motion for 11.5). Recall
that Sz depends essentially on the value of the inclination.

Because the Hamiltonian (11.5) is integrable, we introduce Arnold action–
angle variables. According to Section 4.2 the transformation has the form

ψσ =
2π

Tσ
t , Jσ =

1

2π

∮

S dσ

ψz = σz − ̺z(ψσ , Jσ , Jz, Jν) , Jz = Sz

ψν = ν − ̺ν(ψσ, Jσ , Jz , Jν) , Jν = N ,

(11.6)

where the first line indicates, with an abridged notation, that the relationship
between the original (S, σ) and the new (Jσ , ψσ) action–angle variables is that
detailed in Section 4.2, and the functions ̺z and ̺ν are periodic with zero
average in ψσ.

Because we are interested in the dynamics inside the mean motion reso-
nance, we compute the separatrices of Hσ in (σ, S, Sz , N) space, and introduce
the variables (11.6) only for trajectories enclosed by the separatrices, so that
|Tσ| is the period of libration and Jσ is the normalized area bounded by the
librating trajectory in the (S, σ) plane.1

1As sketched in Fig. 9.3, in resonances of first order in the eccentricity σ might circulate
on some resonant trajectories, but action–angle variables can still be introduced by (11.6),
with |Tσ| denoting the period of the cycle in (S, σ). Using the convention introduced in
Section 4.2, Tσ is positive for exterior resonances (because the libration in the (σ, S) plane
is clockwise) while it is negative for interior resonances.
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When σ librates around some value σ0, the dependence of σ on ψσ is of
type σ = σ0 + ̺(ψσ), with ̺ periodic with zero average. Thus, it follows from
(9.5) that σz = σ0+̺(ψσ)−p+q = σ0+̺(ψσ)+ω and ν = −σ0−̺(ψσ)+p =
−σ0 − ̺(ψσ) − ̟. Recalling that the functions ̺z and ̺ν in (11.6) are also
periodic with zero average in ψσ, this implies that ψz and −ψν can be identified
respectively with the argument of perihelion and the longitude of perihelion of
the asteroid, averaged over the libration period in the resonance and shifted
by σ0.

As a function of (11.6), Hσ depends only on the action variables, i.e.

Hσ ≡
∑

j

(gjΛgj + sjΛsj ) + F0(Jσ , Jz, Jν) . (11.7)

The variables (11.6) are also introduced in the part of the original perturbation
that was not included in (11.5), namely in

H1 −Fσ = F1(ψσ , ψz, ψν ,̟
∗,Ω∗, Jσ, Jz , Jν) . (11.8)

As (11.7) depends only on the action variables, the frequencies:

ψ̇σ =
∂F0

∂Jσ
, ψ̇z =

∂F0

∂Jz
, ψ̇ν =

∂F0

∂Jν
(11.9)

are constant and depend only on (Jσ , Jz, Jν). We can therefore look at the
different possible resonances in order to decide which harmonic of F1 should
be considered in the next step of the study.

Notice that the location of the resonances, once determined in
(Jσ , Jz, Jν) space, can be easily imaged in (a, e, i) space through a section
at σ = σ0. The procedure is equivalent to that used in Chapter 9 for plotting
the separatrices of the mean motion resonance on the (a, e) plane. In fact, the
values of the three actions Jσ, Sz, N identify a cycle on the (S, σ) plane, along
which S assumes two values S1 and S2 corresponding to σ = σ0. The sets of
values (S1, Sz, N) and (S2, Sz, N) are then respectively transformed into the
sets (a1, e1, i1) and (a2, e2, i2) – one on each side of the resonance center –
using (9.5) and the definition (1.69) of the modified Delaunay variables.

11.2.1 Secondary resonances

The terminology secondary resonance was introduced by Lemâıtre and Hen-
rard (1990) to denote the resonance between the frequency of ψσ and the fre-
quency of a combination of the secular angles, whose corresponding harmonic
appears in (11.8).
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In a problem where the inclination of the asteroid is taken into account,
there is one family of secondary resonances whose corresponding harmonics
satisfy the second D’Alembert rule (see Section 1.9.3) and have coefficients
independent of the planetary eccentricities and inclinations. This family cor-
responds to the commensurabilities

mψ̇σ + 2nψ̇z = 0 , (11.10)

with integer m,n. As ψ̇z is the average frequency of the argument of perihelion
ω, this family corresponds to the resonances between the libration period of σ
and the circulation period of ω.

Taking into account also harmonics whose coefficients are powers of the
planetary eccentricities or inclinations, many other secondary resonances ap-
pear. Among them, we distinguish the family which corresponds to the com-
mensurabilities

mψ̇σ + n(ψ̇ν + gj) = 0 , (11.11)

and that associated with the relations

mψ̇σ + n(ψ̇z + ψ̇ν + sj) = 0 . (11.12)

Because ψ̇ν is equal to the average frequency of −̟, the first family corre-
sponds to commensurabilities between the libration period in the mean motion
resonance and the circulation period of ̟−̟∗

j , while the second family corre-
sponds to commensurabilities between the libration period in the mean motion
resonance and the circulation period of Ω − Ω∗

j . Other families of secondary
resonances involve combinations of perihelia and nodes.

By definition, in secondary resonances the secular angles must circulate
with a period that is of the order of the libration period in the mean motion
resonance; therefore, the secondary resonances are typically located in regions
were there are no low-order secular resonances, and they therefore dominate
the local dynamics. These regions are in general characterized by values of
the eccentricity that are low to moderate. As an example, Fig. 11.2 shows the
upper border (light dotted curve) of the region concerned by the resonances
of the family (11.11) with m = 1 and n ≤ 5 in the 3/1 resonance with Jupiter:
these resonances are all located at e < 0.1. See also Figs. 11.10, 11.17 and 11.18
for the location of secondary resonances in the 2/1 and 3/2 resonance with
Jupiter and in the 2/3 resonance with Neptune, respectively.

As one sees from the above quoted figures, the secondary resonances typ-
ically cluster in a narrow region. As a consequence, it does not make much
sense to try to successively eliminate their corresponding harmonics or to de-
velop single resonance models to study their dynamics. It is more efficient
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Figure 11.2: The location of the main resonances inside the 3/1 commensura-
bility. The two thick lines on each side of the plot denote the separatrices of
the 3/1 resonance, plotted for σ = 90 degrees. Inside the 3/1 resonance, the
bold solid curves show the location of the ν5 and ν6 secular resonances; the
bold dashed curves refer to the ν16 and to the Kozai secular resonances; the
light solid curve marks the location of the secular resonance ϑ̇ν+g6+2ϑ̇z = 0;
the light dotted curve refers to the secondary resonance ψ̇σ + 5(ψ̇ν + g6) = 0,
which bounds the region concerned by secondary resonances of type (11.11)
of order not larger than 5; the light dashed curves denote the location of the
three-body resonances 2ψ̇σ+3ϕ̇JS+9ψ̇ν = 0 and 3ψ̇σ+3ϕ̇JS+9ψ̇ν = 0, respec-
tively at larger and smaller eccentricity. Remember that ψ̇σ < 0 for interior
resonances.

to select a family of secondary resonances – say for simplicity that given by
(11.11) with a given j – to step back to the original Hamiltonian (9.15) written
in the variables (9.5), and to retain all the harmonics that depend on σ and/or
on ν +̟∗

j . In this way one obtains a two-degree of freedom system of type

Hσ,ν = H0(Λ̃̄, N, S, Sz) + gjΛgj + εFσ,ν(S, (k̄ − k)σ,N, ν +̟∗
j , Sz) , (11.13)

which can be studied using Poincaré sections. As an example, Fig. 11.3 shows
the Poincaré sections on six energy levels of (11.13) for the 2/1 resonance with
Jupiter, under the assumption that Jupiter is on a fixed eccentric orbit (set
gj = 0 in the expression of Hσ,ν). As one sees, the individual secondary res-
onances overlap, creating a chaotic layer that extends approximately over an



11.2. THE MEAN MOTION RESONANT DYNAMICAL SYSTEM 265

Figure 11.3: Poincaré sections of (11.13) at σ = 0, σ̇ < 0. Jupiter is assumed to
be in a fixed elliptic orbit with eccentricity equal to 0.0485. On each panel, the
amplitude of libration in the 2/1 resonance is zero for the most internal orbit,
and increases with increasing eccentricity. Reprinted from Fig. 6 of Moons
and Morbidelli (1993), with permission from Kluwer Academic Publishers.
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interval 0.10–0.15 in eccentricity. At larger eccentricity the motion is essen-
tially regular since no low-order secondary resonances exist (see Fig. 11.10).
An equivalent study can be done for each family of secondary resonances,
thus achieving a view of the extension of the chaotic regions generated by
these resonances.

11.2.2 The Kozai dynamics

In the regions where there are no secondary resonances of low order, the dy-
namics is dominated by the secular harmonics, namely by the harmonics of F1

that do not depend on ψσ. Neglecting the terms dependent on ψσ in (11.8),
the Hamiltonian that describes the secular dynamics inside the mean motion
resonance has the form

HSEC =
∑

j

(gjΛgj + sjΛsj ) + F0(Jσ, Jz , Jν) + F̄1(ψz , ψν ,̟
∗,Ω∗, Jσ , Jz, Jν)

(11.14)
where F̄1 is the average of F1 over ψσ. The action Jσ is a constant of motion
for (11.14). Figure 11.4 shows, for the 3/1 resonance with Jupiter, the sets of
values (a, e) that correspond to Jσ =constant when i = 0 and σ = 90◦ (the
libration center’s value). The pairs of dotted curves, symmetrically placed
with respect to the center of the resonance, correspond to the same value of
Jσ. These curves do not change significantly for different values of i. As one
sees, the preservation of Jσ during the secular evolution of the eccentricity
implies that the amplitude of oscillation of the semimajor axis (but not of
σ!) remains almost constant. In the above quoted figures, increasing values
of Jσ correspond to pairs of dotted curves with increasing distance from the
resonance center. In the limit Jσ = 0 the corresponding curves collapse onto
the curve denoting the center of the resonance; in fact, Jσ = 0 corresponds to
orbits that sit on the stable equilibrium point of the mean motion resonance.
If one restricts the study of the secular dynamics to Jσ = 0 (see for instance
Yoshikawa, 1990, 1991), the transformation (11.6) for ψz and ψν becomes
the identity and the Hamiltonian (11.14) is simply obtained from the original
(9.15) by setting σ = σ0 and Λ = Λ∗(Sz, N), where Λ∗(Sz, N) denotes the
value of Λ at the stable equilibrium point of (11.5), which weakly depends on
Sz and N .

For whatever value of Jσ , the Hamiltonian (11.14) is not integrable as
it depends on several angles. The study of its dynamics requires again the
hierarchical consideration of its main harmonic terms. For the D’Alembert
rules, all the harmonics that depend on ψν ,̟

∗,Ω∗ must have coefficients
that are powers of the planetary eccentricities or inclinations, which are in
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Figure 11.4: Secular dynamics in the 3/1 resonance with Jupiter in the (a, e)
plane at i = 0◦. The pair of dotted lines, symmetrically placed with respect to
the resonance center, denote the sets of (a, e) values that correspond to Jσ =
constant at σ = 90◦. The bold solid and dashed curves denote respectively
the location of the ν5 and of the ν6 resonances. The pair of light solid curves
and light dashed curves mark respectively the separatrices of the two secular
resonances. The unit on the abscissa is Jupiter’s semimajor axis. Reprinted
from Fig. 6 of Moons and Morbidelli (1995), with permission from Academic
Press.

general smaller than those of the asteroid. Thus, as for the secular problem
outside mean motion resonances (see Chapter 8), the leading harmonic part
of the Hamiltonian is the one depending solely on the argument of perihelion,
namely on ψz in the variables (11.6). In fact these harmonics are the only ones
with nonzero coefficients in the case where the eccentricities and inclinations
of the planets are all null.

Therefore, the next step in the process of elimination of harmonics is to
eliminate the terms in ψz. For this purpose, we first write

HSEC =
∑

j

(gjΛgj + sjΛsj) + F0 + Fz + (F̄1 −Fz) , (11.15)
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Figure 11.5: Typical portraits of the dynamics of (11.16) for three values of
the constant action Jν and setting Jσ = 0. The coordinates Jz, ψz have been
converted to inclination i and argument of perihelion ω. Reprinted from Fig. 5
of Morbidelli and Moons (1993), with permission from Academic Press.

where Fz is the average of F̄1 over ̟∗,Ω∗;2 then we consider the Hamiltonian

Hz =
∑

j

(gjΛgj + sjΛsj) + F0(Jσ , Jz , Jν) + Fz(ψz , Jσ, Jz , Jν) , (11.16)

which is integrable because it depends on only one angle (ψz). The Hamil-
tonian (11.16) is the equivalent of the Kozai Hamiltonian (8.16), but for the
secular dynamics inside a mean motion resonance.

The dynamics of (11.16) preserves the value of the action Jν ≡ N . On a
surface in (a, e, i) space defined by Jσ =constant3 and σ = σ0, the condition
Jν =constant gives a relationship between the eccentricity and the inclina-
tion, which is represented by the dotted curves in Fig. 11.6 for the 2/1 mean
motion resonances with Jupiter. The eccentricity and the inclination therefore
exhibit coupled oscillations, correlated with the motion of Jz , ψz. The evolu-
tion of Jz, ψz can be easily represented plotting the level curves of (11.16), Jσ
and Jν playing the role of parameters. As an example, Fig. 11.5 shows these
level curves for the 2/1 resonance with Jupiter, in the case Jσ = 0 and for
three values of Jν . For Jν sufficiently large, one sees a typical resonant por-
trait; this shows that the equivalent of the Kozai resonance is present inside
the 2/1 mean motion resonance with Jupiter. This property is common to

2The angle ψν disappears with the average over ̟
∗ and Ω∗ because of the D’Alembert

rules. Neglecting terms of order (ej , ij)
2, the average over ̟∗ and Ω∗ is simply obtained by

setting ej = ij = 0 in F̄1.
3Which can often be approximated by a surface a =constant, in order to make the

practical computations easier.



11.2. THE MEAN MOTION RESONANT DYNAMICAL SYSTEM 269

Figure 11.6: Secular dynamics at the center of the 2/1 resonance (Jσ = 0). The
dotted curves denote the sets of (e, i) values that correspond to Jν =constant.
The light solid curve represents the stable family of equilibrium points of
the argument of perihelion (ψz = 90◦, 270◦); the dashed curve represents the
unstable family (ψz = 0◦, 180◦). The two bold curves denote the separatrices
of the Kozai resonance, computed at ψz = 90◦. Reprinted from Fig. 6 of
Morbidelli and Moons (1993), with permission from Academic Press.

many other mean motion resonances (see Jefferys and Standish, 1972). Note
that the dynamics is π-periodic in ψz, as a consequence of the fact that, for the
D’Alembert rules, the Hamiltonian (11.16) can have only harmonics exp[ιmψz ]
with even m. Denote by ψ0

z the value of ψz for one of the stable equilibrium
points; the separatrix of the Kozai resonance intersects the axis ψz = ψ0

z in two

values of Jz, say J
(1)
z , J

(2)
z , which depend on Jν . Remembering that Jz ≡ Sz

and Jν ≡ N , one can convert the values (J
(1)
z (Jν), Jν) and (J

(2)
z (Jν), Jν) into

(e1(N), i1(N)) and (e2(N), i2(N)) on the surface corresponding to the consid-
ered value of Jσ, thus obtaining the image of the separatrices of the Kozai
resonance on an eccentricity vs. inclination plot. The equivalent procedure
can be done also for the families of stable and unstable equilibrium points of
(11.16). Figure 11.6 gives an example of this representation, again for the 2/1
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resonance.
In each of the dynamical regions of (11.16) (positive or negative circulation,

libration of ψz), we can now proceed to introduce action-angle variables

ϑz =
2π

Tz
t , Θz =

1

2π

∮

Jz dψz

ϑσ =ψσ − ̺′σ(ϑz,Θσ,Θz,Θν) , Θσ = Jσ

ϑν =ψν − ̺′ν(ϑz,Θσ,Θz,Θν) , Θν = Jν ,

(11.17)

(where the same notation as formula 11.6 has been used) in order to make Hz

dependent only on the action variables i.e.

Hz ≡
∑

j

(gjΛgj + sjΛsj ) +K0(Θσ,Θz,Θν) . (11.18)

When the new variables (11.17) are introduced into the neglected term K1 ≡
F̄1 −Fz, the complete secular Hamiltonian (11.15) takes the form:

HSEC = K0(Λgj ,Λsj ,Θσ,Θz,Θν) +K1(ϑz, ϑν ,̟
∗,Ω∗,Θσ,Θz,Θν) . (11.19)

The “unperturbed” frequencies of the Hamiltonian (11.19) are now

ϑ̇σ =
∂K0

∂Θσ
, ϑ̇z =

∂K0

∂Θz
, ϑ̇ν =

∂K0

∂Θν
, (11.20)

together with the planetary secular frequencies gj and sj. These frequencies
allow one to localize the resonances associated to the harmonics that appear
in K1. Among these resonances we distinguish two families:

(i) The perihelion secular resonances: these resonances correspond to the re-
lationships mϑ̇ν +

∑

jmjgj ∼ 0, where m =
∑

jmj for the D’Alembert rules;
in fact it is enough to notice that the transformation between ϑν and ψν in
(11.17) is close to the identity, and to remember that −ψν represents the av-
erage over the libration period of σ of the asteroid’s longitude of perihelion ̟.
We detail in Section 11.2.3 the secular resonances ϑ̇ν + gj ∼ 0, for the main
frequencies g5 and g6.

(ii) The nodal secular resonances: when ψz circulates, the transformation be-
tween ϑz and ψz in (11.17) is close to the identity; remembering that ψz is the
mean argument of perihelion over the σ-libration, the nodal secular resonances
are given by the relations m(ϑ̇z+ ϑ̇ν)+

∑

jmjsj ∼ 0, where again m =
∑

jmj .

In Section 11.2.4 we consider the resonance ϑ̇z + ϑ̇ν + s6 ∼ 0 for the mean
motion resonances in the asteroid belt and ϑ̇z + ϑ̇ν + s8 ∼ 0 for the Kuiper
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belt. In the region where ψz librates, the nodal secular resonances become
those given by mϑ̇ν +

∑

jmjsj ∼ 0.

However, many other secular resonances may occur; for example Pluto,
which is in the Kozai resonance inside the 2/3 mean motion resonance with
Neptune, is also in the resonance between the libration period of ψz and the
circulation period of ϑν +Ω∗

8 (Milani et al., 1989).

When the location of the resonances in (Θσ,Θz,Θν) space is determined,
one can compute its image in (a, e, i) space, with the following procedure: one
first computes the value of Jz that corresponds to Θz when ψz = ψ0

z , and
then tranforms the resulting values of (Jz , Jν ≡ Θν, Jσ ≡ Θσ) into (a, e, i) as
explained above for the separatrices of the Kozai resonance.

Note that, if one restricts to the planar problem, all the harmonics of ψz
in (11.16) have zero coefficients, as the latter are at least quadratic in the as-
teroid’s inclination. Thus, the transformation (11.17) becomes the identity on
all the variables, and the Hamiltonian (11.19) is the same as (11.14). This al-
lows the simplification of the computational procedure, but on the other hand
severely limits the validity of the results to the plane i = 0. For a nonzero
inclination, Yoshikawa (1990, 1991) has simplified the procedure explained in
this section by averaging (11.14) over ψz and approximating the trasformation
(11.17) with the identity; in this way he obtained a Hamiltonian that is for-
mally equivalent to (11.19), but that is accurate only in the region where ψz
rapidly circulates and induces negligible oscillations of Sz. Because the Kozai
resonance hits the plane i = 0 at large eccentricity (see Figs. 11.6, 11.9, 11.19),
his study is therefore valid only for small to moderate values of e.

11.2.3 Perihelion secular resonances

Figures 11.10, 11.2 and 11.17 show the location for i = 0 of the resonances
ϑ̇ν + g5 = 0 and ϑ̇ν + g6 = 0 (called also respectively ν5 and ν6) in the
2/1, 3/1 and 3/2 mean motion resonances in the asteroid belt. Recall from
Chapter 8 that outside the mean motion resonances these secular resonances
occur only for large inclination (with the exception of the ν6 resonance at
a ∼ 2.0–2.1 AU). The secular dynamics is therefore completely different inside
and outside mean motion resonances. This feature of degenerate dynamics
is well understood using the approach of successive elimination of harmonics:
in fact, as discussed in Section 11.1, the Arnold action–angle variables that
are suitable for the regions of circulation and libration of σ are completely
different, as well as the resulting secular Hamiltonians.

Analogously, Fig. 11.18 shows the location of the resonance ϑ̇ν + g8 = 0
(also called ν8) in the 2/3 resonance with Neptune in the Kuiper belt.
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To study a resonance of type ϑ̇ν+gj ∼ 0 we isolate in (11.19) the harmonic
of K1 with argument σj = ϑν +̟∗

j , and consider the integrable model

Hj = gjΛgj +K0(Θσ,Θz,Θν) +Kj
1(Θσ,Θz,Θν , σj) . (11.21)

The function Kj
1 is the average of K1 over all the angles except ϑν +̟∗

j . The
dynamics of (11.21) preserves the value of Θσ and Θz, while only Θν ≡ N
evolves with the circulation/libration of σj . The motion of N,σj is repre-
sented, as usual, by the level curves of (11.21), Θσ and Θz playing the role of
parameters. As an example, Fig. 11.7 shows the dynamics of the resonance
ϑ̇ν+g5 = 0 for four values of Θσ and Θz = 0 in the 3/1 mean motion resonance
with Jupiter. As one sees, the phase portrait shows a huge libration island
that dominates almost the entire (N,σ5) plane (except when Θσ is very large,
as in the bottom right panel). This implies that the secular dynamics of the
3/1 resonance on the plane i = 0 is dominated by the ν5 resonance.

In panels like those of Fig. 11.7 the upper limit value of N is given by
the condition e ∼ 1. The curves that seem to exit from the top border of
the panels therefore correspond to trajectories that reach e ∼ 1 during their
secular evolution and consequently hit the surface of the Sun. Conversely, the
lower limit on the N axis is the value that, together with the considered value
of Θσ ≡ Jσ, identifies the separatrix of (11.5). As one sees in Fig. 11.4, the
curves Jσ =constant inside the resonance are defined only for sufficiently large
eccentricity, namely for N larger than some lower threshold. Consequently,
all the curves that seem to exit from the bottom border of the panels of
Fig. 11.7 correspond to trajectories that hit the separatrix of the mean motion
resonance during their secular evolution, and are therefore expected to be
chaotic. Note however that in the present treatment of the problem, we have
lost the notion of modulation of the resonant amplitude with the evolution of
the secular angles, discussed in Section 9.4; in fact the action Jσ has been
introduced for (11.5), where the secular angles do not appear, and has been
afterwards considered as a constant.

The separatrices that surround the main libration island (see Fig. 11.7) can
be represented in (a, e, i) space with a procedure equivalent to that discussed
above for the separatrices of the Kozai resonance. First we define by σ0j the
value of σj for the stable equilibrium point at the center of the island; then

we compute the values Θ
(1)
ν and Θ

(2)
ν of the intersections of the separatrices

with the axis σj = σ0j . These values depend of course on Θσ and Θz. We
obtain in this way a representation of the separatrices in (Θσ,Θz,Θν) space,
which is then transformed to a representation in (a, e, i) space, as explained
in Section 11.2.2.
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Figure 11.7: Level curves of (11.21) for the ν5 resonance in the 3/1 commensu-
rability. The panels are computed, from top left to bottom right, for increasing
values of Θσ that are represented as pairs of dotted lines in Fig. 11.4. The
label q stands for ̟ −̟∗

5 , while N = Θν =
√
a(3 −

√
1− e2). At the center

of the 3/1 resonance, the values N = 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 correspond to
eccentricity e = 0.20, 0.55, 0.72, 0.84, 0.92, 0.97, respectively. Reprinted from
Fig. 7 of Moons and Morbidelli (1995), with permission from Academic Press.
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In each region of circulation/libration of the secular resonance, one can
introduce new Arnold action–angle variables Γjσ,Γ

j
z,Γ

j
ν , γ

j
σ , γ

j
z , γ

j
ν in order to

eliminate the harmonic related to the ϑ̇ν + g5 = 0 resonance.

This study can be done for all the proper frequencies gj of planetary per-
ihelia. For the mean motion resonances in the asteroid belt, one should at
least study the resonances with g5 and g6, while in the Kuiper belt the most
important resonance is that with g8. Figure 11.4 shows the separatrices of
the ν5 and ν6 resonances in the 3/1 mean motion resonance with Jupiter
(see also Fig. 11.16 for the 3/2 mean motion resonance). As one sees, the
two resonances are very large and completely overlap. As explained in Chap-
ter 6, when a large overlap occurs, the dynamics is expected to become mostly
chaotic. To check the extent of the chaotic region in a mean motion resonance
due to the overlapping of the ν5 and ν6 secular resonances, one can construct
a two-resonance model by retaining from (11.19) the harmonic of K1 with
arguments σ5 = ϑν + ̟∗

5 and σ6 = ϑν + ̟∗
6. In practice, one considers the

Hamiltonian

H5,6 = g5Λg5 + g6Λg6 +K0(Θσ,Θz,Θν) +K5,6
1 (Θσ,Θz,Θν , σ5, σ6) , (11.22)

in the notation used for (11.21). This nonintegrable Hamiltonian must be stud-
ied numerically and the dynamics can be represented on the (σ5,Θν) plane,
for instance through a section at σ6 = 0. This is not a real Poincaré section, as
the angle σ6 can librate or circulate in both directions, but it is still suitable
to distinguish regular from chaotic dynamics. To have a real Poincaré section,
one should write σ6 = σ5 + ̟∗

6 − ̟∗
5 and section on the value of ̟∗

6 − ̟∗
5 .

Figure 11.8 shows the section on σ6 of the dynamics of (11.22) for the 3/1
resonance, for the same values of Θσ used in Fig. 11.7, and still for Θz = 0.
As one sees, the difference with respect to Fig. 11.7 is striking, most of the
phase space being covered by a chaotic region. This is a typical situation for
all the main mean motion resonances with Jupiter in the asteroid belt, as first
shown by Morbidelli and Moons (1993) and Moons and Morbidelli (1995). The
extent of the chaotic region is the only difference among the resonances.

In the regular region that is not attained by the chaotic layer generated by
the overlapping of the ν5 and ν6 resonances, one can introduce action–angle
variables that remove at low order the dependence of the Hamiltonian on the
angles ̟∗

5 and ̟
∗
6 . This is done in two steps, first introducing the action–angle

variables Γ5
σ,Γ

5
z,Γ

5
ν , γ

5
σ, γ

5
z , γ

5
ν that eliminate the harmonic in ϑν+̟

∗
5 and then

introducing new action–angle variables Γ6
σ,Γ

6
z,Γ

6
ν , γ

6
σ, γ

6
z , γ

6
ν to eliminate the

harmonic in γ5ν +̟∗
6.
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Figure 11.8: Sections of the dynamics of (11.22) computed at σ6 = 0. The
four panels correspond to the same values as Θσ of those of Fig. 11.7. The
coordinates q and N are like in Fig. 11.7. See text for comments. Reprinted
from Fig. 7 of Moons and Morbidelli (1995), with permission from Academic
Press.
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Figure 11.9: Secular dynamics at the center of the 3/2 resonance. The dotted
curves denote the sets of (e, i) values that correspond to Θ′ =constant. The
bold solid curve marks the leftmost separatrix of the Kozai resonance. The
bold dashed and the light dashed curves denote respectively the center and the
separatrices of the ν16 secular resonance. The dots represent the osculating
eccentricity and inclination of the Hildas. Reprinted from Fig. 14 of Morbidelli
and Moons (1993), with permission from Academic Press.

11.2.4 Nodal secular resonances

Figures 11.10, 11.2 and 11.17 show the intersection with the plane i = 0 of
the location of the resonance ϑ̇z + ϑ̇ν + s6 = 0 (also called ν16) in the 2/1, 3/1
and 3/2 mean motion resonances in the asteroid belt. Analogously, Fig. 11.18
shows the location of the resonance ϑ̇z + ϑ̇ν + s8 = 0 (also called ν18) in the
2/3 resonance with Neptune in the Kuiper belt.

To study a resonance of type ϑ̇z + ϑ̇ν + s6 ∼ 0 we isolate in (11.19) the
harmonic of K1 with argument qj = ϑz +ϑν +Ω∗

j , and consider the integrable
model

Hj = sjΛsj +K0(Θσ,Θz,Θν) +Kj
1(Θσ,Θz,Θν , qj) . (11.23)

The function Kj
1 is the average of K1 over all the angles except ϑz + ϑν +Ω∗

j .
The dynamics of (11.23) preserves the value of Θσ and Θ′ = Θz − Θν , while
Θz (and consequently Θν) evolves with the circulation/libration of qj .
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The condition Θ′ =constant can be transformed into a relationship be-
tween i and e on the surface defined by the value of Θσ and by σ = σ0, with
the following procedure: for each value of Θz and Θν = Θz − Θ′, one first
computes the value of Jz that corresponds to Θz when ψz = ψ0

z , and then
transforms the resulting values of (Jz , Jν ≡ Θν) into (e, i) as explained in
Section 11.2.2 for the separatrices of the Kozai resonance. Figure 11.9 shows
some curves Θ′ =constant on the (e, i) plane defined by Θσ = 0, in the case of
the 3/2 mean motion resonance with Jupiter. On these curves the eccentricity
is almost constant, showing that the nodal secular resonance acts mainly on
the asteroid’s inclination, as expected.

The secular evolution of Θz, qj can be represented with the level curves of
(11.23), Θσ and Θ′ playing the role of parameters, analogously to what has
been explained in Section 11.2.3 for the perihelion resonances. Also, one can

compute the extreme values Θ
(1)
z and Θ

(2)
z assumed by Θz on the separatrices of

the considered secular resonance. The set of values (Θ
(1)
z ,Θν = Θ

(1)
z −Θ′) and

(Θ
(2)
z ,Θν = Θ

(2)
z −Θ′) can be transformed into values of e and i on the surface

defined by the value of Θσ and by σ = σ0, thus obtaining a representation of
the separatrices of the secular resonance like that of Fig. 11.9.

As usual, new action–angle variables can be introduced, in each libra-
tion/circulation region of the secular resonance, in order to remove the con-
sidered resonant harmonic.

11.2.5 Three-body resonances

The existence and importance of three-body resonances inside two-body mean
motion resonances has been pointed out only recently by Ferraz-Mello and
collaborators in a series of works (Ferraz-Mello, 1996; Ferraz-Mello et al.,
1997; Michtchenko and Ferraz-Mello, 1997; Nesvorný and Ferraz-Mello, 1997b;
Ferraz-Mello et al., 1998a). These are commensurabilities occurring between
the frequency ψ̇σ and the frequency of a quasi-resonant combination of the
mean longitudes of two planets, mainly 2λ̇J−5λ̇S for the asteroid belt and λ̇U−
2λ̇N for the Kuiper belt, where λ̇J, λ̇S, λ̇U, λ̇N denote the mean mean motions
of Jupiter, Saturn, Uranus and Neptune, respectively. These resonances can
be seen as a consequence of the overlap between mean motion resonances with
two different planets, in the case where one resonance is much stronger than
the other. In this sense, the use of the terminology “three-body resonance”
is quite an abuse, and in fact we will show below that the coefficients of the
related harmonics are linear in the planetary mass, while in the case of the
“real” three-body resonances the coefficients are quadratic (see Chapter 10).

To clarify, consider the specific case of the 2/1 mean motion resonance



278 CHAPTER 11. INSIDE MEAN MOTION RESONANCES

with Jupiter; because 2λ̇J − 5λ̇S is small (the corresponding period is about
880 years) the asteroid is also close to the 5/1 mean motion resonance with Sat-
urn. Therefore, in the construction of the normal form for the 2/1 resonance
with Jupiter, one cannot average out the harmonics of (2.38) with arguments
m(5λS − λ + · · ·), where m is an integer number and the dots stand for the
correct combinations of the secular angles that satisfy the D’Alembert rules.
These harmonics have a coefficient that is proportional to εSe

αeαS
S iβiβSS where

εS is the mass of Saturn relative to the Sun, e, i, eS, iS are the eccentricity, the
inclination of the asteroid and of Saturn and α+ αS + β + βS ≥ 4m. Because
the eccentricity and the inclination of Saturn are small, the harmonics with
the largest coefficients are those with αS = βS = 0. If the asteroid’s inclination
is moderate, then, for each m, the dominating harmonic is that with argument
m(5λS − λ− 4̟). Its coefficient is proportional to εSe

4m. Of course, one can
rewrite:

m(5λS−λ−4̟) = m(2λJ−λ−̟)+m(5λS−2λJ)−3m̟ = mσ+mϕJS−3m̟
(11.24)

where ϕJS denotes the so-called great inequality angle 5λS − 2λJ.
Because these dominating harmonics have coefficients that are much

smaller than that of the main harmonic associated with the 2/1 resonance
with Jupiter, their effect can be studied with the hierarchical perturbation
approach that characterizes this chapter (the opposite case – where the reso-
nances with the two planets have comparable strength – has been treated in
Section 9.2.2). One first introduces the variables (11.6) for the 2/1 resonance
with Jupiter. Then, each harmonic with argument (11.24) gives rise to a series
of harmonics with arguments

nψσ +mϕJS + 3mψν (11.25)

with n ∈ Z and coefficients exponentially decaying with |n|. Therefore, for
every resonance of type nψ̇σ ∼ mϕ̇JS there are corresponding harmonics with
nonnegligible coefficients in the perturbation function.

Because in general these terms are nevertheless quite small, in the process
of successive elimination of harmonics, the study of three-body resonances
logically comes after the consideration of the main secular terms. With the
introduction of action–angle variables Γjσ,Γ

j
z,Γ

j
ν , γ

j
σ , γ

j
z , γ

j
ν for the regular tra-

jectories outside a perihelion secular resonance with a planetary frequency gj ,
each harmonic (11.25) generates a multiplet of harmonics with arguments

nγjσ +mϕJS + (3m+ k)γjν + k̟∗
j , k ∈ Z (11.26)

where γjψ and γjν are the new angles, respectively “close” to ψσ and ψν ∼ −̟.
This can be more intuitively understood as follows: the use of the new variables
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Figure 11.10: The location of the main resonances inside the 2/1 commensura-
bility. The two thick lines denote the separatrices of the 2/1 resonance, plotted
for σ = 0 degrees. The bold solid and dashed curves are like in Fig. 11.2; the
light dotted curves refer to the secondary resonances ψ̇σ + n(ψ̇ν + g5) = 0
(n = 2, . . . , 5); the light dashed curves denote the location of the three-body
resonances ψ̇σ + 2ϕ̇JS − (6 − k) ˙̟ − kg5 with k ranging from 0 to 6 with
decreasing eccentricity; the light dashed dotted curves mark the resonances
ψ̇σ + ϕ̇JS − (3− k) ˙̟ − kg5 with k ranging from 0 to −4 with increasing eccen-
tricity. Remember that ψ̇σ < 0 for interior resonances.

is essentially equivalent to considering that the asteroid’s eccentricity has a
secular oscillation of type e = e0+δ cos(̟−̟∗

j ); by substituting this expression
into the term e4m cos(nψσ + mϕJS − 3m̟) one obtains the harmonics with
arguments nγσ + mϕJS − (3m + k)̟ + k̟∗

j with −4m ≤ k ≤ 4m, which
correspond to those in (11.26). As a matter of fact, these harmonics are already
present in the direct perturbation given by Saturn, with coefficients of order

εSe
|4m+k|
0 e

|k|
S ; the secular oscillation of the asteroid’s eccentricity generates

them again with coefficients not smaller than quantities of order εSe
4m−|k|
0 δ|k|.

As the amplitude δ is in general much larger than Saturn’s eccentricity eS,
the indirect effect produced by the asteroid’s secular eccentricity oscillation
largely dominates over the direct effect of Saturn’s eccentricity.
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Figure 11.10 shows the location of the resonances with critical angles ψσ+
2ϕJS − (6 − k)̟ − k̟∗

5 and ψσ + ϕJS − (3 − k)̟ − k̟∗
5 on the plane i = 0

for the 2/1 resonance with Jupiter, computed using the frequencies given by
(11.9). As one sees, these resonances form a very dense web over almost the
entire 2/1 resonant region. Although individually weak, the cumulative effect
of these resonances may be important to make chaotic those regions which are
not affected by notable secondary and secular resonances.

Up to now, the effect of three-body resonances inside two-body mean mo-
tion resonances has never been studied in detail with analytic or semianalytic
models. Only through numerical integrations has it been shown (see for in-
stance Ferraz-Mello et al., 1998a) that the dynamics may turn from regular
to chaotic when the effect of Saturn is introduced, and that the strength of
chaos depends on the frequency of the great inequality angle (which can be
varied by slightly changing Saturn’s orbit). On the other hand, we know from
Chapter 6 that it is very hard to analytically conclude whether a given system
is quasi-regular or completely chaotic, when a large number of thin high-order
resonances are involved. In these cases, for a clear understanding of the real
dynamical structure of the system it is necessary to resort to numerical explo-
rations, for instance using the tools described in Chapter 5.

11.3 The major resonances in the asteroid belt

In this section we discuss our present understanding of the dynamics inside
the most important mean motion resonances with Jupiter in the asteroid belt.
For a historical review of the progress of this understanding, we recommend
the paper by Moons (1997).

11.3.1 The 3/1 resonance

The 3/1 mean motion resonance with Jupiter at a ∼ 2.5 AU corresponds to
one of the most evident Kirkwood gaps in the asteroid belt.

The secondary resonances are not important for the dynamics inside the
3/1 resonance, as they are present only at small eccentricity (e < 0.1, see
Fig. 11.2). Therefore, the origin of the gap must be searched for in the secular
dynamics. Despite the fact that the exact location of the ν5 resonance is at
large eccentricity (e ∼ 0.8, see Fig. 11.4), this resonance dominates the secular
dynamics for all values of e (see Fig. 11.7). As a consequence, the 3/1 resonant
asteroids have large secular oscillations of the eccentricity, which force them
to temporarily cross the orbits of the inner planets.

Wisdom (1982) was the first to put this phenomenon in evidence, (see
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Figure 11.11: The time evolution of the eccentricity of an asteroid in the 3/1
resonance, in the framework of the planar elliptic restricted problem, according
to Wisdom’s symplectic mapping. Reprinted from Fig. 13 of Wisdom (1982),
with permission from the American Astronomical Society.

Fig. 11.11) with numerical simulations performed using a mapping which
can be thought of as the ancestor of the mixed variable symplectic integra-
tor (Wisdom and Holman, 1991). Later, Wisdom (1985) explained the ob-
served phenomenon with a semianalytic theory. His approach was similar
to that discussed in Section 11.2.3, but took into account also the secular
modulation of the separatrices of the 3/1 resonance and was limited, be-
ing based on series expansions, to low–moderate values of the eccentricity
(see Henrard and Caranicolas, 1990, for a commented review of Wisdom’s
theory). Figure 11.12 (from Wisdom, 1985) shows the secular motion of
x̄ = e cos(̟ − ̟∗

5), ȳ = e sin(̟ − ̟∗
5), obtained by averaging over the mo-

tion of σ. The shaded area denotes the separatrix of the 3/1 resonance; σ
circulates in the region enclosed by the shaded area, and librates otherwise.
As one sees, almost all the orbits that are in the 3/1 resonance (i.e. outside
of the shaded area) are forced by the secular dynamics to exceed e = 0.3, a
threshold value for which close encounters with Mars may occur. The trajec-
tories of Fig. 11.12 that hit the shaded area are all expected to be chaotic, so
that they can start their excursion to large eccentricity at random time, as
shown in the numerical integration of Fig. 11.11. This kind of behavior is also
visible in the top right panel of Fig. 11.7, computed following the recipe of
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Figure 11.12: The secular motion in the 3/1 resonance, for a specific value
of the averaged Hamiltonian of the planar elliptic three-body problem. The
coordinates are x̄ = e cos(̟ −̟∗

5), ȳ = e sin(̟ −̟∗
5), where e and ̟ are the

values of the eccentricity and perihelion longitude, averaged over the motion of
σ. The shaded area represents the separatrix of the 3/1 resonance. The angle
σ circulates for the trajectories enclosed by the shaded area, and librates for all
other trajectories. Reprinted from Fig. 5 of Wisdom (1985), with permission
of Academic Press.

Section 11.2.3; in that panel, the bottom border represents the separatrix of
the 3/1 resonance, and therefore corresponds to the shaded area of Fig. 11.12,
while the island of libration around q = ̟ −̟∗

5 = 0 at small N corresponds
to the banana-shaped curves on the right-hand side of Fig. 11.12.

For orbits with smaller amplitude of libration inside the 3/1 resonance
(top left panel in Fig. 11.7), the island of secular libration around ̟−̟∗

5 = 0
disappears, as first shown by Henrard and Caranicolas (1990). However the
orbits that have the lowest possible eccentricity when̟−̟∗

5 = 180◦ still reach
eccentricity larger than ∼ 0.3 (i.e. N ≥ 1.42) when ̟ − ̟∗

5 precesses down
to 0◦. Despite the fact that this evolution in itself is not chaotic, the acquired
large eccentricity is sufficient to allow encounters with Mars. Planetary en-
conters give random kicks to the asteroid’s semimajor axis, and can eventually
remove it from the 3/1 resonance. As a consequence of this interplay between
secular dynamics and Martian encounters, starting with a uniform distribu-
tion of particles a gap could open corresponding to the 3/1 resonance in an
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estimated time of several 100 My (Wisdom, 1983; Wetherill, 1975). However,
this is not the real way by which the resonance gets depleted of objects, as we
will discuss below.

In Fig. 11.7, the big island of libration around ̟−̟∗
5 = 180◦ is what prop-

erly corresponds to the ν5 resonance. The trajectories close to the bottom of
the two top panels are outside of this big island, and therefore reach only mod-
erate (although Mars-crossing) values of the eccentricity during the circulation
of ̟ −̟∗

5 or its libration around 0 degrees. On the contrary, the trajectories
with initially larger eccentricity (e ∼ 0.45 when ̟ − ̟∗

5 = 180◦) follow a
libration cycle around ̟ −̟∗

5 = 180◦ and reach an eccentricity that is close
to unity. For larger amplitude of libration (bottom left panel of Fig. 11.7) the
big island of libration touches the separatrix of the 3/1 resonance (the bottom
level of the panel) and thus also the orbits with the lowest inital eccentricity
are forced to acquire an eccentricity of order 0.8–0.9 when ̟ − ̟∗

5 = 180◦.
This property was first shown by Ferraz-Mello and Klafke (1991) by computing
Poincaré sections of the averaged planar elliptic three-body problem, which
has the form (11.13) with Sz = 0. The traces of the separatrices of the big
island of libration on the (a, e) plane at σ = 90◦ are shown in Fig. 11.4.

The same figure also shows the location and the separatrices of the ν6 res-
onance which, by itself, gives a secular dynamics very similar to that shown in
Fig. 11.7. When both resonances are taken simulatenously into account, as ex-
plained in Section 11.2.3, the secular dynamics changes completely (Fig. 11.8).
A chaotic region dominates almost the entire phase space and extends to ec-
centricity equal to 1 (top borders of the panels). Apart from small islands
embedded in the chaotic region, only the trajectories with low amplitude of
libration in the 3/1 resonance and low eccentricity (the invariant tori at the
bottom of the two top panels of Fig. 11.8) still have a regular dynamics. Re-
member however that these trajectories periodically reach a Mars-crossing
eccentricity; the encounters with Mars give impulse changes to the semima-
jor axis and the eccentricity of the asteroid, which – although generally very
small – effectively modify the asteroid’s amplitude of libration in the 3/1 res-
onance. At large amplitude of libration, the chaotic region generated by the
overlapping of the ν5 and ν6 resonances extends to all eccentricities (bottom
panels of Fig. 11.8), and the asteroid can therefore rapidly and chaotically
evolve to very large eccentricity.

This combination of large-scale chaos of the secular dynamics and weak
Martian encounters well explains the behavior of 3/1 resonant asteroids ob-
served in numerical integrations of the full equations of motion. As Fig. 11.13
shows, if the eccentricity and amplitude of libration are both initially small,
the asteroid may spend ∼ 1 My in a low-eccentricity mode, oscillating be-
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Figure 11.13: The typical evolution of eccentricity, inclination and semimajor
axis of a body initially in the 3/1 resonance with Jupiter, as resulting from
a numerical integration of the full equations of motion, in a model that in-
cludes all the planets of the Solar System. The body eventually hits the Sun.
Reprinted from Fig. 9 of Farinella et al. (1993a), with permission from Kluwer
Academic Publishers.
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tween e ∼ 0–0.1 and e ∼ 0.3–0.4 on a timescale of order 104 y. Meanwhile
the amplitude of libration of the semimajor axis is modified by Martian en-
counters. The asteroid eventually enters in the large chaotic region of the
secular dynamics and its eccentricity increases very rapidly to values close to
unity. Encounters with the Earth and Venus are now possible and frequent.
For their larger masses, these two planets are much more effective than Mars
in changing the asteroid’s semimajor axis; if a “strong” encounter occurs, the
asteroid is removed from the 3/1 resonance, otherwise – as in Fig. 11.13 – the
effect of the planetary encounters results only in a continuous modification of
the asteroid’s amplitude of libration, while its eccentricity continues its ran-
dom evolution due to the chaotic secular dynamics. In this case, the typical
endstate is a collision with the Sun. Note that, during the evolution, the aster-
oid’s inclination has also largely changed. This is the result of the existence,
inside of the 3/1 resonance, of secular resonances that act on the evolution of
the asteroid’s inclination, as the Kozai resonance, the ν16 resonance and the
ϑ̇ν + g6 + 2ϑ̇z = 0 resonance, whose locations are shown on the (a, e) plane in
Fig. 11.2.

The dynamical evolution shown in Fig. 11.13 results in the rapid formation
of a gap in the asteroid distribution corresponding to the 3/1 resonance. In
fact, the numerical integration of a statistically significant number of particles
(Gladman et al., 1997) shows that the median lifetime of a population initially
in the 3/1 resonance is 2 My; less than 10% of the population survives for more
than 10 My, but these surviving bodies have all been transported to a < 2 AU
by repeated strong encounters with the Earth or Venus, so that the resonance
is completely emptied in a few million years. This timescale is much shorter
than the ∼ 100 My timescale predicted by Wisdom’s scenario.

The same happens in many other major mean motion resonances with
Jupiter that are associated with a Kirkwood gap. Moons and Morbidelli (1995)
have shown that also the 4/1, 5/2 and 7/3 resonances are dominated by the
chaotic region generated by the overlapping of the ν5 and ν6 resonances, so
that also the asteroids in these mean motion resonances can reach very large
eccentricities on a “short” timescale. Gladman et al. (1997) have computed
that the median lifetime of the particles in the 5/2 and 7/3 resonances is
respectively equal to 0.6 and 19 My.

For their efficiency in pumping the eccentricity up to Earth-crossing val-
ues, the major mean motion resonances with Jupiter – in particular the 3/1
resonance – are considered to be the most important transport routes for sup-
plying new objects to the near-Earth asteroid population. In the generally
accepted scenario, the resonances are continuously refilled with asteroids from
the main belt population at low eccentricity, because of collisions (Farinella et
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al., 1993b, Menichella et al., 1996) and of the slow action of a weak nongravi-
tational force (the so-called Yarkovsky effect4). Because the chaotic region in
the 3/1 resonance allows the eccentricity to reach unity on a “short” timescale,
most of the resonant asteroids are rapidly eliminated by a collision with the
Sun (70% of the bodies in the Gladman et al. integrations), and therefore
– luckily for us! – do not significantly contribute to the maintenance of the
NEA population.

What would happen in the 3/1 resonance if Mars did not exist? The
dynamics of the trajectories that appear regular in the top panels of Fig. 11.8
has never been studied in detail, taking into account additional harmonics and
degrees of freedom of the secular dynamics. As Fig. 11.2 shows, the resonance
ϑ̇ν + g6 + 2ϑ̇z = 0 crosses this region, and may potentially destabilize the
motion. Also two three-body resonances cross this region, but their harmonics
should be of very large eccentricity order, because the lowest order resonance
with Saturn that may interfere with the 3/1 resonance with Jupiter is the 15/2
(order 13 in e). A numerical integration of the same particles as Gladman et
al. (1997), but without the presence of Mars, shows that the population in
the 3/1 resonance decays much more slowly. After 10 My, 15% of the particles
still survive in the resonance, while in Gladman et al. integrations the 3/1
resonant region is completely cleared on this timescale.

11.3.2 The 2/1 resonance

The 2/1 mean motion resonance with Jupiter is associated with the Kirkwood
gap in the asteroid belt of largest width in the semimajor axis. As a conse-
quence, it was the first resonance to be studied in detail, since the work of
Poincaré. Curiously, it is also the resonance for which it is most difficult to
explain the absence of asteroids, and a quite satisfactory understanding has
been achieved only very recently.

The dynamical structure of the 2/1 resonance has been revisited by Moons
et al. (1998) by applying, for the first time without simplifications, the ap-
proach explained throughout Section 11.2. The computation of the location
and the separatrices of the various resonances has been done for several values
of Jσ, and the results have then been collectively represented on the (a, e)
plane, for various values of the inclination (Fig. 11.14). In each panel, the

4This effect is produced by the thermal re-emission of the asteroid. Because of the diurnal
rotation, or of the obliquity of the spin axis, the hottest part of the body’s surface emits
infrared photons in a direction that is offset with respect to the Sun–body direction. This
results in a weak acceleration (positive or negative) of the body along its orbit, namely in
a slow drift of its semimajor axis. This phenomenon is directly observed for the Earth’s
artificial satellites. See Farinella and Vokrouhlický (1998); Bottke et al. (2000a)
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Figure 11.14: Strongly chaotic regions (dotted) and quasi-regular islands
(white areas labelled A or B) in the 2/1 resonance with Jupiter at differ-
ent inclinations. The two thick lines on the sides denote the separatrices of
the 2/1 mean motion resonance; the dotted curve marks the upper limit of
the secondary resonances; the dashed, light solid and bold solid curves denote
the separatrices of the ν16, Kozai and ν5 resonances, respectively. See text
for comments. Reprinted from Fig. 1 of Moons et al. (1998), with permission
from Academic Press.
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two thick lines on the sides denote the separatrices of the 2/1 mean motion
resonance, represented for σ = 0. Note that, with increasing inclination, the
region bounded by the separatrices of the 2/1 commensurability moderately
shrinks. The separatrices are in fact computed from the Hamiltonian (11.5),
which depends parametrically on the inclination through Sz. In between the
separatrices, the points color the regions concerned by one or more secular
or secondary resonances discussed below. This is aimed at highlighting the
regions where strong (chaotic) variations of the orbital elements are expected.

The light solid curves in Fig. 11.14 refer to the separatrices of the Kozai
resonance. The width of the Kozai resonance increases with the inclination,
because the coefficient of the Kozai harmonic is proportional to e2i2. A view
of the resonance in the (e, i) plane at the center of the 2/1 commensurability
is given in Fig. 11.6. At i ≥ 20◦ the upper Kozai separatrix is outside of the
eccentricity range covered by Fig. 11.14 for most values of the semimajor axis,
so that only the lower separatrix is plotted. The bold solid curves denote the
separatrices of the ν5 resonance. The angle ̟ − ̟∗

5 librates around 0 if the
semimajor axis oscillates in the range 3.22–3.33 AU and it librates around 180
degrees for orbits with larger amplitude of libration in the 2/1 resonance. The
ν6 secular resonance is also present (Morbidelli and Moons, 1993): it is located
above the ν5 and partially overlaps with the former, but its separatrices are not
represented in Fig. 11.14, for simplicity. The Kozai resonance stongly interacts
with the ν5 and ν6 resonances; partial overlapping occurs at all inclinations
and this is expected to give rise – as for the 3/1 resonance – to a large chaotic
region, where the eccentricity of the asteroid can grow to unity. Such chaos
covers the region at large eccentricity at the center of the 2/1 resonance, while
– at large libration amplitudes – it extends to all eccentricities, following the
location of the above mentioned secular resonances (see Fig. 11.10). Therefore,
considering only the Kozai, ν5 and ν6 resonances, the region with small to
moderate eccentricity at the center of the 2/1 resonance would be regular. In
contrast to the 3/1 resonance case, here one cannot invoke Martian encounters
to increase the amplitude of libration of the asteroids initially in this region,
because the eccentricity does not reach large enough values to cross the orbit
of Mars (remember that the 2/1 resonance is much further from Mars than
the 3/1 resonance).

Explaining the absence of asteroids in the small to moderate eccentricity
region requires further investigation of the dynamics. This region is crossed by
the ν16 resonance, whose separatrices are represented in Fig. 11.14 by dashed
curves. The ν16 resonance forces oscillations of the inclination of about 15–20
degrees in amplitude. Moreover, at lower eccentricity, there is the complex of
secondary resonances: the dotted curve marks the upper limit in eccentricity of
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the region concerned by the presence of secondary resonances whose orders in
eccentricity or inclination are no larger than 5. Therefore, accounting also the
ν16 resonance and for the secondary resonances, only the white regions labelled
by A and B in Fig 11.14 are expected to host regular dynamics. In a planar
problem, the bodies in the region of secondary resonances, although chaotic,
could not escape because they should cross the stable A and B regions (see
Fig. 11.3). In a complete problem, however, the secondary resonances of type
(11.10) and (11.12) pump the inclination of the asteroid. At larger inclination
the ν16 resonance overlaps with the secondary resonances (bottom panels of
Fig. 11.14), crunching the B region: the way is therefore open to escape to
large eccentricity, through the chaotic region generated by the Kozai, ν5 and
ν6 resonances. This tortuous path was first shown numerically by Wisdom
(1987) and later described in detail by Henrard et al. (1995), through a series
of numerical experiments.

Nevertheless, neither the secular nor the secondary resonances fully explain
why the A and the B regions are not densely inhabited by asteroids. These
regions, however, are not really regular, as shown by Franklin (1994) and
Ferraz-Mello (1994) by computing Lyapunov exponents for a limited set of
orbits. A few years later, Nesvorný and Ferraz-Mello (1997b) carried the first
detailed numerical survey of the dynamical structure of the 2/1 resonance.
They have integrated for several 105 y a large number of test particles initially
placed on a regular grid of the (a, e) plane at i = σ = ̟−̟J = Ω−ΩJ = 0, the
subscript J denoting Jupiter’s angles. For each test particle, they measured
the change over time of the frequency of ̟. As discussed in Section 5.3, the
change of the frequency is a measure of the degree of chaos of the orbit. The
results have been color coded in Fig. 11.15. Red denotes the strongest chaotic
regions, while dark blue indicates the initial conditions for which the change of
the frequency is below the dectection limit. The correspondence between the
left panel of Fig. 11.15 and the top left panel of Fig. 11.14, for what concerns
the location of the most chaotic regions, is remarkable. In addition, the power
of the numerical technique reveals that the A and B regions are characterized
by an extended weak chaos – as indicated by a almost uniform light blue
color – and not by the Nekhoroshev structure discussed in Chapter 6. For
this reason, one should expect that the asteroids initially in the A or B region
exhibit slow chaotic diffusion on the (a, e) plane, and may eventually join –
after a long timescale – the strong chaotic regions. In fact, the long-term
numerical integrations done by Nesvorný (private communication) show that
the bodies initially in the A and B region have a median lifetime exceeding
1 Gy. Mitchenko and Ferraz-Mello (1997) and Nesvorný and Ferraz-Mello
(1997b) suggested that the weak extended chaos of the A and B regions is
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Figure 11.15: The dynamical structure of the 2/1 and 3/2 resonances (left and
right panels respectively). The color scale codes the logarithm of the relative
change of the frequency of ̟ over 200,000 y, and should be considered as an
indicator of chaos. Reprinted from Fig. 2 of Ferraz-Mello et al. (1998b), with
permission from the Astronomical Society of the Pacific.
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caused by resonances between the libration period of σ and the period of the
great inequality angle ϕJS (see Section 11.2.5). For an indirect proof, they
slightly changed the orbit of Saturn, in order to reduce the period of the
great inequality angle by a factor of 2, showing that the degree of chaos of
these regions is strongly enhanced. As Fig. 11.10 shows, the A and B regions
are in fact crossed by the complex of “three body resonances” with critical
angles (in the notation of Section 11.2.5) ψσ + 2ϕJS − (6 − k)̟ − k̟∗

5 and
ψσ + 2ϕJS − (6 − k)̟ − k̟∗

6 with k = 0, . . . , 6 (the resonances involving ̟∗
6

are not plotted for simplicity, but lie close to the corresponding resonances
involving ̟∗

5). The absence of a visible Nekhoroshev structure in Fig. 11.15
indicates that these resonances should overlap each other. If the period of
the great inequality angle ϕJS is decreased by a factor of 2, this complex of
resonances is replaced by that with critical angles ψσ +ϕJS − (3− k)̟− k̟∗

5

and ψσ − ϕJS − (3 − k)̟ − k̟∗
6. These resonances have larger coefficients,

being of lower eccentricity order, and therefore generate stronger chaos.

It is generally accepted that, in the primordial epochs of the Solar System,
Jupiter and Saturn were somewhat closer than at the present time (Fernandez
and Ip, 1984). In this case, as pointed out by Nesvorný and Ferraz-Mello
(1997b), the period of the great inequality angle would have been shorter. It
is then plausible that the primordial asteroids in the A and B regions have
been removed during a phase when the period of ϕJS was half the present one.

In reality, the 2/1 resonance is not completely depleted of asteroids. There
are a few asteroids with strongly chaotic orbits, such as 1362 Griqua, which
have probably been temporarily captured into resonance from the populations
of near-Earth asteroids or of Jupiter family comets. In addition, modern
observations are discovering an increasingly large number of small asteroids in
the B region at low inclination. 3789 Zhongguo was the first of these asteroids
to be discovered. The small size of these objects (not exceeding 10 km) makes
their collisional lifetime shorter than the age of the Solar System, so that they
should not be primordial asteroids. As shown in the left panel of Fig. 9.19, the
Themis family should have injected, at the time of its collisional formation,
several asteroids into the 2/1 resonance; on the other hand, in the correct set
of coordinates, Zhongguo is perfectly aligned with the Themis family. This
allows one to make the appealing conjecture that the asteroids in the B region
are all members of the Themis family, injected into resonance in more recent
times, after the depletion of the primordial resonant population. This scenario
is detailed in Moons et al. (1998). Although the statistics are still poor, it
seems that the asteroids in the B region have a size distribution that is similar
to that of the Themis family and much steeper than that of nonfamily main
belt asteroids (Roig, private communication). If confirmed, this would validate
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the scenario of the genetic relation of these asteroids with the Themis family.

11.3.3 The 3/2 resonance

The 3/2 resonance is the only low-order mean motion resonance of the main
belt that hosts a large population of asteroids (see Fig. 9.12). From the name
of the first discovered asteroid, the 3/2 resonant bodies are usually called the
Hildas.

The existence of the Hildas shows that resonance is not synonymous with
gap in the asteroid distribution. In reality, the 3/2 resonance corresponds to a
peak in the asteroid distribution with respect to the background nonresonant
population. This is because nonresonant asteroids with a ∼ 4 AU and non-
negligible eccentricity closely approach Jupiter and become rapidly unstable,
while resonant bodies are phase-protected from close encounters with the giant
planet, as explained in section 9.1.1.

The secular dynamics of the 3/2 resonance is very similar to that of the
2/1 resonance. Figure 11.16 shows the location and the separatrices of the
ν5 and ν6 resonances. The libration of ̟ −̟∗

5 is around 180 degrees. The
two secular resonances overlap, thus generating a chaotic region that extends
over the domain approximately bounded by the lower separatrix of the ν5
resonance and the upper separatrix of the ν6 resonance. A region of regular
motion is therefore left at moderate eccentricity, where the Hilda asteroids are
located. In Fig. 11.16 a few Hildas appear inside the ν5 resonance, but this
is an artifact due to the fact that the separatrices of the ν5 resonances are
plotted for ̟ − ̟∗

5 = 180◦, while the current osculating elements are used
for the asteroids, independently of the value of ̟ −̟∗

5 . If the asteroids were
integrated until ̟ − ̟∗

5 = 180◦, they would all appear on the (a, e) plane
outside of the ν5 resonance.

As Fig. 11.17 shows, also the Kozai and the ν16 resonances are present
inside the 3/2 commensurability. Figure 11.9 shows on the (e, i) plane at
the center of the 3/2 commensurability the leftmost separatrix of the Kozai
resonance as well as the location and the borders of the ν16 resonance. As
one sees, the Hildas also avoid these resonances. Low-order secondary reso-
nances are relegated to the region with e < 0.15, and they do not generate an
important chaotic region as they do not overlap each other (Michtchenko and
Ferraz-Mello, 1995).

Nesvorný and Ferraz-Mello (1997b) have done the same kind of numerical
analysis of the 3/2 resonance dynamics that they successfully used for the
2/1 resonance. Their result is shown in the right panel of Fig. 11.15. In
this case, the correspondence between the strongly chaotic region shown in
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Figure 11.16: The same as Fig. 11.4, but for the 3/2 resonance with Jupiter.
The dots denote the osculating elements of the known Hilda asteroids.
Reprinted from Fig. 10 of Morbidelli and Moons (1993), with permission from
Academic Press.

Fig. 11.15 and the location of the separatrices of the secular resonance plotted
in Fig. 11.16 is not good, because the latter are computed for ̟ − ̟∗

5 = π,
while the initial conditions of the test particles integrated by Nesvorný and
Ferraz-Mello are taken with ̟−̟J = 0. As a consequence of this choice of the
initial phases, the chaotic region generated by the secular resonance overlap
is shifted to larger eccentricity in Fig. 11.15.

Figure 11.15 shows that the region that is not affected by secular resonances
in the 2/3 commensurability is characterized by much more regular dynamics
than the A and B regions in the 2/1 commensurability. In the range 0.2 <
e < 0.35 (at ̟−̟J = 0) at the center of the 2/3 resonance, no trace of chaos
is detected, suggesting that most of this region is filled by invariant tori. By
integrating all the asteroids until they have σ = ̟ − ̟J = 0 Nesvorný and
Ferraz-Mello showed that the vast majority of the Hildas are associated with
this stable and regular region.

Figure 11.17 shows the location of the “three body resonances” with critical
angles ψσ + 3ϕJS − 9̟ and 2ψσ + 3ϕJS − 9̟ in the plane i = 0. As for the
2/1 resonance, the resonances with arguments ψσ + 3ϕJS − (9 − k)̟ − k̟∗

5 ,
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Figure 11.17: The location of the main resonances inside the 3/2 commen-
surability. The meaning of the bold solid and dashed curves and of the light
dotted curves are like in Fig. 11.10. Instead, the light dashed curves denote the
location of the three-body resonances ψ̇σ+3ϕ̇JS−9 ˙̟ = 0 and 2ψ̇σ+3ϕ̇JS−9 ˙̟ .

ψσ+3ϕJS−(9−k)̟−k̟∗
6 (k > 0) and 2ψσ+3ϕJS−(9−k)̟−k̟∗

5, 2ψσ+3ϕJS−
(9−k)̟−k̟∗

6 (k < 0) fall in the region between the two resonances reported
in Fig. 11.17. There are two reasons for which the three-body resonances do
not introduce chaos into the central region of the 3/2 resonance, while they
do so in the 2/1 resonance: first, the lowest-order resonance with Saturn that
may interfere with the 3/2 resonance with Jupiter is the 15/4 (order 11 in e);
second, the period of libration in the 3/2 resonance is shorter than in the 2/1
resonance, which allows only higher-order resonances with the period of the
great inequality angle. For these reasons the harmonics related to three-body
resonances should have much smaller coefficients than in the case of the 2/1
resonance with Jupiter, so that the individual resonances presumably do not
quite overlap each other.

11.4 The major resonances in the Kuiper belt

The study of the dynamics inside the mean motion resonances in the Kuiper
belt started only a few years ago, with the discovery of the first resonant ob-
jects. It will presumably continue and achieve a more detailed understanding
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in the near future, in parallel with the gathering of more observational data
on the orbital distribution of the Kuiper belt population. In the following we
briefly discuss the present knowledge of the dynamics inside the 2/3 and 1/2
exterior mean motion resonances with Neptune, which seem to be those of
major importance for the Kuiper belt.

11.4.1 The 2/3 resonance

About 30% of the objects discovered so far in the Kuiper belt are in the 2/3
resonance with Neptune (a ∼ 39.5 AU). Taking into account the observational
biases that favor the discovery of these objects, Jewitt et al. (1998) estimate
that the population of bodies in the 2/3 resonance should amount to 10–15%
of the total Kuiper belt population in the 30–50 AU range. Pluto, the largest
Kuiper belt object known at the present time, is also in the 2/3 resonance.
For this reason, the bodies in the 2/3 resonance are usually called Plutinos.

The most detailed study of the dynamics inside the 2/3 resonance has been
recently done by Nesvorný and Roig (2000). Figure 11.18 shows the location
of the main secular, secondary and three-body resonances computed in the
(a, e) plane at i = 0◦ and σ = 180◦ (the stable center of libration in the 2/3
resonance) following the recipe of Section 11.2. In addition, the figure also
shows, with a color scale, the logarithm of the maximum Lyapunov exponent
computed for a set of test particles initially placed on a regular grid on the
(a, e) plane, also at i = 0◦ and σ = 180◦. Remember from Section 5.2 that the
value of the Lyapunov exponent is a direct measure of the strength of chaos.
As one sees from Fig. 11.18, the value of the Lyapunov exponent is very well
correlated with the location of the various resonances. It is very large close
to the borders of the 2/3 resonance, due to the presence of the ν8 secular
resonance and to its overlap with the ν18 resonance. It is smaller, but still
definitely positive, at small eccentricity (e < 0.05), because of the presence
of the ν18 resonance and of the secondary resonances, as well as along the
three-body resonance that corresponds to the 4:1 ratio between the libration
period in the 2/3 commensurability and the period of the great inequality
angle ϕUN = 2λN − λU of the Uranus–Neptune system. A body in the 2/3
resonance with Neptune is close to the 1/3 resonance with Uranus, so that
the harmonics related to three-body resonances may be generated with quite
large coefficients by the direct perturbation of Uranus on the body. The 4:1
three-body resonance is in fact a complex of two resonances with critical angles
4ψσ − ϕUN + (1 − k)̟ + k̟∗

8, with k = 0, 1. These two resonances are both
very close to the curve plotted in Fig. 11.18, so that the chaos generated by
the 4:1 three-body resonance is very localized in the (a, e) plane, unlike what
happens inside the 2/1 mean motion resonance with Jupiter.
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Figure 11.18: Lyapunov exponents and the location of the main resonances
inside the 2/3 commensurability with Neptune. The bold curves on both
sides of the figure denote the separatrices of the 2/3 resonance. The curves
labelled “nu8”, “nu18” and “Kozai” refer to the ν8, ν18 and Kozai resonances
respectively; the dashed curves labelled “4:1” and “5:1” denote the location of
the three-body resonances 4ψ̇σ− ϕ̇UN ∼ 0 and 5ψ̇σ− ϕ̇UN ∼ 0 (remember that
ψ̇σ > 0 for exterior resonances); the curve labelled by “sig5” denotes the upper
bound of the region affected by secondary resonances of eccentricity order
not larger than 5. The filled dots show the semimajor axis and eccentricity
attained by the currently known Plutinos when σ = 180◦ and ω = 90◦. The
crossed circle is the same for Pluto. The colors code the value of the decimal
logarithm of the maximum Lyapunov exponent, computed for test particles
initially placed on a regular grid in the plane i = 0◦. Reprinted from Fig. 2 of
Nesvorný and Roig (2000), with permission from Academic Press.
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At the center of the 2/3 resonance the Lyapunov exponent is of order
10−7 y−1. However, this is not the real value of the Lyapunov exponent, but
rather the one dictated by the 100 My timespan used for the integrations;
on a longer integration timescale, the value of the Lyapunov exponent would
presumably further decrease. Thus, the central region of the 2/3 resonance
appears characterized by a basically regular dynamics, similarly to the case
of the 3/2 resonance with Jupiter (curious coincidence!). Morbidelli (1997)
showed with numerical integration of the full equations of motion that the
bodies in this region are regular and stable for the age of the Solar System.
On the contrary, the bodies that are strongly chaotic at large amplitude of
libration escape from the resonance and encounter Neptune in less than 1 Gy.
The bodies at moderate amplitude of libration, close to the 4:1 three-body
resonance, exhibit slow chaotic diffusion, which may drive them to the strongly
chaotic region at large amplitude of libration on a timescale comparable to
the age of the Solar System. Nesvorný and Roig (2000) have developed an
interesting seminumerical model of this diffusion process.

The position of the Plutinos, projected on the (a, e) plane after having been
numerically integrated until the condition σ = 180◦ is satisfied, is shown in
Fig. 11.18 and unequivocably indicates their association with the stable central
region of the 2/3 resonance. Remember however that the orbital determination
of the Kuiper belt objects is still quite inaccurate.

Outside of the reference plane (i > 0) the most important feature of the
secular dynamics inside the 2/3 commensurability is the presence of the Kozai
resonance. Figure 11.19 shows its separatrices on the (e, i) plane, computed
at ω = ±90◦ at the center of the 2/3 commensurability. The corresponding
position of Pluto and of the Plutinos is also plotted. Pluto (the crossed circle in
Fig. 11.19) librates inside the Kozai resonance, as first shown by Williams and
Benson (1971). Curiously, very few other Plutinos share the Kozai resonance
with Pluto, which might be due to the destabilizing effects of low-velocity
encounters with the latter (Nesvorný et al., 2000). Pluto has a chaotic motion,
as first shown by Sussman and Wisdom (1988). This is due to a resonance
between the libration period of ω and the circulation period of Ω−Ω∗

8, as first
shown with numerical integration by Milani et al. (1989). This resonance,
however, gives rise only to local chaos, so that Pluto is stable (in the sense
that it does not leave the Kozai and the 2/3 resonances) for the age of the Solar
System (Kinoshita and Nakai, 1996). Figure 11.19 also shows the Lyapunov
exponent of test particles with small libration amplitude in the 2/3 resonance,
chosen on a regular grid of the (e, i) plane. The only remarkable feature is
the presence of a chaotic region at low eccentricity for all inclinations, which
is due to the presence of the ν18 and of secondary resonances.
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Figure 11.19: The Kozai resonance in the 2/3 commensurability. The bold
curves and the dashed curve denote the two separatrices and the center of
the Kozai resonance, respectively. The filled dots show the eccentricity and
the inclination attained by the currently known Plutinos when σ = 180◦ and
ω = 90◦. The crossed circle is the same for Pluto. The colors code the value
of the decimal logarithm of the maximum Lyapunov exponent, computed for
test particles initially placed on a regular grid on the (e, i) plane, at the center
of the 2/3 resonance. Reprinted from Fig. 8 of Nesvorný and Roig (2000),
with permission from Academic Press.

11.4.2 The 1/2 resonance

The 1/2 resonance with Neptune at 47.8 AU is at the outer border of the
presently known population of Kuiper belt objects.

This resonance is peculiar because, as discussed in Section 9.1, it presents
two islands of asymmetric libration of σ inside a larger island of symmetric
libration (see Fig. 9.4).

The first investigation of the dynamics inside the 1/2 resonance was done
by Nesvorný and Roig (2001). To represent both the regions of symmetric
and asymmetric libration on the same plot, they computed, for every value
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Figure 11.20: The same as Fig. 11.18, but for the 1/2 resonance with Neptune.
The leftmost and rightmost bold curves denote the separatrices of the sym-
metric libration island, while the two bold curves closer to the center mark the
position of the separatrices of the islands of asymmetric libration. Reprinted
from Fig. 5 of Nesvorný and Roig (2001), with permission from Academic
Press.

of the constant action N , the value σc(N) of the stable equilibrium point
of (11.5), at the center of one of the two islands of asymmetric libration;
then the correspondence between the values of the actions S,N and those of
a, e was computed for σ = σc(N). In fact, it is evident from Fig. 9.4 that
both symmetric and asymmetric librating orbits must cross twice the axis
σ = σc(N) (or equivalently the axis σ = 2π − σc(N)).

In this representation, the leftmost and rightmost bold curves in Fig. 11.20
denote the separatrices of the symmetric libration island, while the two bold
curves closer to the center of the resonance mark the position of the sepa-
ratrices of the islands of asymmetric libration. Inside the latter, Nesvorný
and Roig have analytically located the position of the Kozai resonance and
of the three-body resonance that corresponds to the 5:1 ratio between the
period of asymmetric libration and the period of the great inequality angle
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ϕUN = 2λN − λU. Also shown in Fig. 11.20 are the values of the Lyapunov
exponent for test particles initially placed on a regular grid of the (a, e) plane,
with i = 0 and σ = σc(N). As one sees, the Lyapunov exponent is large for
almost all orbits in symmetric libration, revealing strong chaos whose origin
has not yet been investigated in detail. Conversely, inside the asymmetric
libration island the Lyapunov exponent is in general very small. This allows
us to expect, in analogy with the 2/3 resonance, that bodies at the center of
the asymmetric libration islands could survive for the entire age of the Solar
System. At present, the only candidate body to be in the 1/2 resonance is
1997SZ10 but, as shown in Fig. 11.20, it seems to be in a strongly chaotic
symmetric libration state. Remember however the orbital indetermination of
Kuiper belt bodies is still quite large. Therefore, it is not yet possible to con-
clude whether the absence of bodies in the stable asymmetric libration islands
is an artifact of our limited knowledge of the Kuiper belt population, or a real
puzzling feature.

11.5 The 1/1 resonances

The secular dynamics inside a 1/1 resonance with a planet can be studied
with the same approach illustrated throughout this chapter. In fact, once
the variables (9.9) are introduced, the integrable approximation of the full
Hamiltonian is formally identical to (11.5), with k̄−k = 1. Therefore, action–
angle variables of type (11.6) can be introduced in the tadpole region and in
the horseshoe region, and the study of the secular dynamics then follows as
discussed in Section 11.2.

As an example of its application, Fig. 11.21 shows the dynamics related to
the ν6 resonance at the center of the tadpole region in the 1/1 resonance with
Saturn. The “real” ν6 resonance – that is, characterized by stable and unstable
equilibrium points and a separatrix surrounding the libration region – occurs
at larger eccentricity than shown in these diagrams. But at low eccentricity
a stable equilibrium point appears at ̟ −̟∗

6 = 60◦. The eccentricity of this
equilibrium point is close to the value of the M6,6 coefficient in (7.10). There
is no separatrix at the boundary between the libration and the circulation
regions of ̟ −̟∗

6. In a polar representation, the secular dynamics is simply
made of quasi-circular trajectories, offset with respect to the center e = 0.

As a consequence of the existence of this equilibrium point, all orbits with
initial e ∼ 0 reach an eccentricity larger than 0.15 when ̟ − ̟∗

6 = 60◦.
Remember from Section 9.2.2 that at the center of the tadpole region the
dynamics is chaotic above 0.12, for the overlap with the 2/5 mean motion
resonance with Jupiter. Chaos acts on a timescale that is shorter than the
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Figure 11.21: The ν6 secular resonance dynamics at the center of the tadpole
region in the 1/1 resonance with Saturn. The left panel shows a Cartesian
representation of the dynamics, while in the right panel a polar representation
is used (that is x = e cos̟, y = e sin̟). Here ̟ is expresed relative to ̟∗

6 .
The direct perturbations exerted by Jupiter, Uranus and Neptune – double
averaged over the mean longitudes of the planet and of the small body – have
also been included in this computation. Courtesy of D. Nesvorný.

precession period of ̟ −̟∗
6, because it is generated by mean motion degrees

of freedom, and therefore it allows the body to escape from the 1/1 resonance
before that the secular precession may bring the eccentricity back to smaller
values.

At larger amplitude of libration in the tadpoles region, the chaotic region
generated by the overlap with the 2/5 resonance with Jupiter is confined to
larger eccentricities (see Fig. 9.14). As a consequence, the secular dynamics is
not powerful enough to drive objects initially at e ∼ 0 into the chaotic region.

In conclusion, the combination of the secular dynamics with the effects
generated by the overlap with the 2/5 resonance with Jupiter does explain
the absence of Saturn’s Trojans with small amplitude of libration, but cannot
explain that of the bodies with larger libration amplitude. Long-term full
numerical simulations done by Holman and Wisdom (1993) show that large
amplitude tadpole librators are indeed stable on a several 2× 107 y timescale,



302 CHAPTER 11. INSIDE MEAN MOTION RESONANCES

while low libration amplitude tadpoles are rapidly eliminated. Therefore, the
cause of the absence of objects on large amplitude tadpole orbits should be
sought in the (still largely unknown) mechanisms that sculpted the early Solar
System.

Detailed numerical maps of the stability regions in the 1/1 resonances with
Saturn, Uranus and Neptune are provided in Nesvorný (2001).



Chapter 12

GLOBAL DYNAMICAL
STRUCTURE OF THE
BELTS OF SMALL BODIES

12.1 Detection of the chaotic zones

In the previous chapters we have analyzed the dynamical structure of two-body
and three-body mean motion resonances of various orders in the eccentricity.
In this final chapter we study how all these resonances are nested in the aster-
oid belt and in the Kuiper belt and the dynamical structure that results from
their interplay. In principle one could analytically compute the separatrices
of each resonance (or of each component of each resonant multiplet) in order
to obtain a picture similar to Fig. 9.12, but extended to two-body resonances
of much higher eccentricity order and to three-body resonances. In practice
this is infeasable, as one should compute and study thousands of mean motion
resonant normal forms.

The easiest and most efficient way to detect the resonant structure of
the belts of small bodies is to make numerical explorations, using the tools
detailed in Chapter 7. The knowledge of resonant dynamics acquired in the
previous chapters will allow us to interpret the results and understand their
implications.

Figure 12.1 is the analog of Fig. 10.8, but extends the exploration to the
entire asteroid belt. 5700 test particles were initially set on a regular grid
in the semimajor axis that ranges from 2.1 to 3.24 AU with a 2 × 10−4 AU
spacing. The initial eccentricity was chosen equal to 0.1, while the initial incli-
nation and phase angles were all set equal to zero with respect to the ecliptic
and the vernal point. The test particles were integrated over 2.3 My, together
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Figure 12.1: Maximum Lyapunov exponent as a function of the semimajor
axis for asteroids with initial eccentricity equal to 0.1 and initial inclination
equal to 0. Only the perturbations provided by the four giant planets are
taken into account in the model. The unit of the MLE is y−1. Labels m/n
denote the m/n two-body resonances with Jupiter, while labels m n k denote
the three-body Jupiter–Saturn–Asteroid resonances that correspond to the
equality mλ̇J + nλ̇S + kλ̇ = 0. Moreover the label S6/1 denotes the 6/1
resonance with Saturn and 4J-2U-1 refers to the three-body Jupiter–Uranus–
asteroid resonance. Reprinted from Fig. 1 of Morbidelli and Nesvorný (1999),
with permission from Academic Press.
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with their variational equations in order to estimate the maximum Lyapunov
exponent, under the gravitational influence of the four giant planets. The
figure shows the resulting estimate of the Lyapunov exponent (in logarith-
mic scale) as a function of the initial semimajor axis. As usual, the figure
shows several peaks which rise from a background level; remember from Sec-
tion 5.2 that peaks, dips and discontinuities correspond to chaotic or resonant
regions, while a flat background level reveals a “regular” region, and its value
(∼ 10−5.3 y−1 in Fig. 12.1) is dictated by the limited integration timespan:
increasing the latter, the background level would generally decrease.

Figure 12.1 shows that the chaotic regions become denser with increasing
semimajor axis. This is due to two reasons. First, the location of mean motion
resonances of a given order become denser approaching Jupiter. Second, res-
onances of higher eccentricity order can be detected, thanks to the fact that
the Lyapunov exponent is correlated with the size of the coefficients of the
resonant harmonics (see Section 12.3), and the latter grows with decreasing
distance from the main perturber.

Note also that the peaks are located according to a peculiar structure:
they form multiplets with a leading component at the center and secondary
components on each side. This structure should not be confused with the
multiplet structure of high-order mean motion resonances (see Section 9.3),
so that we prefer to refer to it as a supermultiplet structure. The latter is
a consequence of Jupiter and Saturn being close to the 5/2 mean motion
resonance. The combination ϕJS = 5λS − 2λJ is an angle which circulates
with positive derivative with a period of about 880 y. This period is much
longer than the typical asteroid orbital period, so that, for any fixed integer
numbers m, mJ and mS, the resonances given by the relations mλ̇ + (mJ +
2k)λ̇J+(mS−5k)λ̇S ∼ 0 with different integer k, must be located close to each
other (Murray et al., 1998). The leading component of each supermultiplet
is most often associated with the resonance of minimal eccentricity order or
with the resonance with mS − 5k = 0. In Fig. 12.1, labels show the integers
m mJ mS of the central components of most supermultiplets. Starting from
a central component, the resonances with k = 1, 2, . . . (resp. k = −1,−2, . . .)
are situated on the right (resp. left) side of the central component if m is
negative, and on the left (resp. right) side if m is positive.

Figure 12.1 shows that most of the chaotic regions are associated with
either ordinary two-body mean motion resonances with Jupiter (mS = 0) or
three-body Jupiter–Saturn–asteroid resonances, although a few smaller peaks
can be associated with three-body Jupiter–Uranus–asteroid resonances of low
order. Conversely, no peak is apparently associated with a secular resonance.
Secular resonances, in fact, should give Lyapunov exponents no larger than ∼
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10−6 y−1, because of the slow motion of the critical angles of secular resonances
(whose typical periods exceed ∼ 1 My). Only the ν6 secular resonance is
visible in Fig. 12.1, at the inner border of the asteroid belt. The test particles
in this resonance escape to very large eccentricity (see Section 8.4.2) and their
integration is stopped before 2.3 My, which results in an estimate of their
Lyapunov exponent exceeding 10−4 y−1.

As discussed in Chapters 8 and 9, the widths in the semimajor axis of
all mean motion resonances – with the exception of those of order zero in
the eccentricity – increase with increasing asteroid eccentricity. As a con-
sequence, the amount of chaos in the belt is enhanced at large eccentricity;
the chaotic regions associated with different resonances may overlap making
the belt globally chaotic. Beyond 3.1 AU this phenomenon has already been
shown in Fig. 10.8. In the inner belt, Morbidelli and Nesvorný (1999) have
checked that increasing the initial asteroidal eccentricity to 0.2 just causes
the overlapping of the resonances within the same supermultiplet, but distinct
supermultiplets are still well separated. Therefore, the inner asteroid belt, in
the approximation where only the outer planets are considered, appears to be
characterized by chaotic bands, separated by large regular regions.

However, the chaotic structure of the inner belt changes dramatically if
the effects of the inner planets are also considered. Figure 12.2a shows the
Lyapunov exponents in the inner belt resulting from a 2.3 My integration that
includes all of the Solar System planets except Mercury. It can be directly
compared with the top panel of Fig. 12.1 because the initial conditions of the
integrated test particles are identical. The comparison shows in a striking way
that the inner planets create a very large number of chaotic regions, which
become denser with decreasing semimajor axis. Moreover, the background
level of the Lyapunov exponent among the various peaks appears very irreg-
ular, in contrast with the flat shape that it had when only the outer planets
were considered. This is an additional indication of a dense concentration of
effective resonances and of the global chaoticity of the region. At semimajor
axes smaller than 2.16 AU no background level is visible: for all test parti-
cles the computation of the Lyapunov exponent reaches a positive limit value
within the integration timespan. Notice that the Lyapunov exponent tends
to increase with decreasing semimajor axis, until the ν6 secular resonance is
reached at 2.1 AU. The latter is moved to smaller semimajor axis with respect
to Fig. 12.1, because the presence of the inner planets slightly speeds up the
precession rates of the asteroids’ longitudes of perihelia.

The generally positive value of the Lyapunov exponent is not due to close
encounters between the test particles and Mars. Figure 12.2b shows the min-
imal approach distance to Mars over the integration time as a function of the
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Figure 12.2: Top panel: the same as the top panel of Fig. 12.1, but taking
into account also the perturbations exerted by the terrestrial planets. Bottom
panel: the test particles’ minimal distance to Mars as a function of the initial
semimajor axis. The peaks reveal the location of the outer mean motion
resonances with Mars. The labels Mn/k denote the n/k outer resonances
with Mars. Reprinted from Fig. 3 of Morbidelli and Nesvorný (1999), with
permission from Academic Press.

particles’ semimajor axis: the minimal distance is larger than 1 Martian Hill’s
sphere (7.25 × 10−3 AU) for all particles with a ≥ 2.103 AU and larger than
3 Martian Hill’s spheres for a ≥ 2.106 AU. Therefore, almost none of the test
particles undergoes close encounters with Mars, and their positive Lyapunov
exponent must be due to resonances with the inner planets. To identify some
of these, Fig. 12.2b is also very useful: the peaks that it shows reveal the pres-
ence of external mean motion resonances with Mars. Only in these resonances,
in fact, does the body avoid the closest approaches to the planet due to the
protection mechanisms that they provide (see Section 9.1.1). Figure 12.2b
labels the main external mean motion resonances with Mars. Note that the
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peaks in Fig. 12.2b are always correlated with peaks in the Lyapunov expo-
nent profile of Fig. 12.2a. Moreover, many small peaks appear in Fig. 12.2b for
a < 2.15 AU, showing that high-order external mean motion resonances with
Mars accumulate in this region. This explains why the Lyapunov exponent is
always positive in this semimajor axis range.

However the external mean motion resonances with Mars are not suffi-
cient to explain the entire chaotic structure of the inner belt. In fact, there
are many more peaks in the Lyapunov exponent profile than in the minimal
approach distance curve. Morbidelli and Nesvorný (1999) have checked that
many of these peaks are in fact related to three-body Mars–Jupiter–asteroid
mean motion resonances. Conversely, the mean motion resonances with the
Earth or Venus and the multibody resonances involving combinations of the
orbital frequencies of the terrestrial planets do not seem relevant to the origin
of chaos.

Because the mass of Mars is small (∼ 3.3× 10−7 solar masses) it might be
surprising that high-order Martian mean motion resonances or Mars–Jupiter–
asteroid three-body resonances are so relevant for asteroid motion. However,
one should not forget that the asteroids in the inner belt come close to Mars, so
that its small mass is compensated by the small distance. Moreover, because
of the smaller approach distance, the perturbation function related to Mars
has a radius of analyticity that is much smaller than that of the perturbation
function related to Jupiter, so that the coefficients of its Fourier expansion
decay much more slowly with the order of the harmonics. Finally, because
the eccentricity of Mars is comparable to the eccentricity of the considered
asteroids, the coefficients of the harmonics of the different critical angles, which
correspond to different relative powers of eM and e (resp. the eccentricity of
Mars and of the asteroid), are of the same order of magnitude, producing a
strong time modulation of the amplitude of the resonances (see Section 9.4).
As an example, the coefficient of the harmonic cos(16λM − 27λ+ 3̟M + 8̟)
of the 16/27 mean motion resonance with Mars is −5.6032 × 107εMe

3
Me

8/aM,
where εM and aM denote the mass and the semimajor axis of Mars. Therefore,
when both e and eM are equal to 0.1, the width of the 16/27 resonance is equal
to ∼ 1.6 × 10−4 AU. For comparison, the 15/4 mean motion resonance with
Jupiter, which is located very close to the 16/27 resonance with Mars, has
the coefficient of its leading harmonic cos(15λJ − 4λ − 6̟J − 5̟) equal to
−6857εJe

6
Je

5/aJ which, for e = 0.1 and eJ = 0.05, gives the resonance a width
of only 6.5 × 10−6 AU. Note that the test particles used for the computation
of the Lyapunov exponent in Figs. 12.1 and 12.2 have an initial separation of
2 × 10−4 AU, so that in principle these figures could miss a large number of
peaks related to thinner resonances.
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Figure 12.3: The same as Fig. 12.1, but for the Kuiper belt. LabelsNm : n and
Um : n denote the m/n two-body resonances with Neptune and with Uranus,
respectively. LabelsmN+kU+j denote the three-body Neptune–Uranus–body
resonances that correspond to the equality mλ̇N + kλ̇U + jλ̇ = 0. Reprinted
from Fig. 2 of Nesvorný and Roig (2001), with permission from Academic
Press.
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An analogous study has been recently done by Nesvorný and Roig (2001)
for the Kuiper belt. They set 2800 test particles regularly spaced in the
semimajor axis between 38.8 and 50 AU, with initial eccentricity equal to 0.1
and inclination and phase angles equal to zero, and integrated their evolution
under the effect of the four giant planets for 100 My. Figure 12.3 shows the
resulting maximum Lyapunov exponent as a function of the initial semimajor
axis and reveals that the Kuiper belt also has a complex chaotic structure.

In analogy to Fig. 12.1, most features visible in Fig. 12.3 are related to
mean motion resonances, the secular resonances typically having smaller Lya-
punov exponents due to their longer dynamical timescales. The only exception
is the 40–42 AU interval, where the ν8, ν17 and ν18 secular resonances overlap
(Knežević et al., 1991; Fig. 8.10) and force many test particles to escape to
Neptune-crossing orbit within 100 My.

Some of the mean motion resonances are labeled in Fig. 12.3. While for
a < 46.5 AU the largest peaks are associated with the mean motion resonances
with Neptune, for a > 46.5 AU, most peaks correspond to the three-body
resonances with Neptune and Uranus. Note that the latter are placed on both
sides of the 1/2 resonance with Neptune, following a supermultiplet structure
analogous to those discussed above for the asteroid belt. This is a consequence
of Uranus and Neptune being close to the mutual 1/2 resonance, so that the
angle ϕUN = 2λN − λU slowly circulates with positive derivative and a period
of about 4230 y.

Notice also from Fig. 12.3 that the chaotic regions become denser with de-
creasing semimajor axis. This is a phenomenon analogous to the accumulation
of mean motion resonances with Mars in the inner asteroid belt and of mean
motion resonances with Jupiter in the outer asteroid belt. Notice however
that the major mean motion resonances with Neptune in the inner Kuiper
belt (2/3, 7/11, 5/8, 8/13, 3/5, but also the 1/3 resonance with Uranus) cause
a general decrease of the value of the Lyapunov exponent. The orbits in these
resonances are less chaotic than the neighboring nonresonant orbits, because
of the phase-protection mechanism offered by these resonances and of the dif-
ferent secular dynamics. The dynamics inside the 2/3 and 1/2 resonances has
been already described with some detail in Section 11.4.

An exploration of the dynamics of small bodies, extended to basically the
entire Solar System, has recently been accomplished by Robutel and Laskar
(2000) using frequency analysis. They numerically integrated the evolution
of 192,000 test particles, initially placed on the (a, e) plane, with inclination
and all phase angles equal to zero. The grid of initial conditions covered 80
values evenly spaced between 0 and 1 in eccentricity, 200 values in each of the
semimajor axis intervals [0.38,0.9], [0.9,2.0], [2,5], [5,10], and 1800 values in
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Figure 12.4: Frequency map of small body dynamics over all the Solar System.
Initial conditions are chosen with inclination and all phase angles equal to 0.
The color codes the value of Log σ (unit: My−1), where σ is the relative
change of the frequency of the particle’s mean longitude. The black color
denotes bodies that are recognized as being in some two-body mean motion
resonance. The solid curves mark the planet-crossing conditions. Reprinted
from Fig. 2 of Robutel and Laskar (2001), with permission from Academic
Press.
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the semimajor axis range [10,100] (AU). The integrations covered 0.5 My for
the test bodies in the inner solar system, under the gravitational influence of
all planets, and 2 My for the test bodies in the outer solar system, under the
influence only of the giant planets. The integration time [0,T ] was divided into
two subintervals [0,T/2], [T/2,T ], on each of which the frequency of the mean
longitude λ of each small body was numerically determined. Denoting by n(1)

and n(2) the frequencies measured on the first and second subinterval respec-
tively, the frequency change is defined as σ = 1−n(2)/n(1). Figure 12.4 shows
the value of Log σ as a function of the initial conditions, using a color code
and the additional convention that the initial condition of a body undergoing
a close encounter with a planet within the integration timespan is colored in
white (the same color as the background), while the initial conditions of bod-
ies recognized to be in mean motion resonances are plotted in black, whatever
their dynamical behavior (regular or chaotic).

Figure 12.4 provides a nice global view of the dynamics of small bodies
in the Solar System. The resolution is much lower than that of Figs. 12.1,
12.2 and 12.3, so that the fine structure given by high-order mean motion
resonances and three-body resonances is not recognizable. However, the figure
provides a useful indication of where regular or quasi-regular orbits are most
likely to be located. It is remarkable that in the asteroid belt these orbits
(colored in dark blue) can be found in significant number only in the region
with 2.15 < a < 3.2 AU and e < 0.2. Concerning the Kuiper belt, only the
region with a > 50 AU shows an essentially regular structure over a large
range of eccentricities. Unfortunately, no real objects have yet been detected
in the deep Kuiper belt.

A second remarkable consideration is that the moderately chaotic regions
(colored in green in Fig. 12.4) in the asteroid belt and in the Kuiper belt
are actually inhabited by real objects, suggesting that chaos is too weak to
cause the escape of the majority of objects over the age of the Solar System
(see Section 12.2); conversely, the green regions that are visible in Fig. 12.4
in between the terrestrial planets and in between the giant planets are not
associated with populations of small bodies. This difference might provide
important indications on the process of planetary formation and/or on the
primordial evolution of the Solar System.

12.2 Chaotic diffusion and macroscopic instability

If the detection of the chaotic structure can be achieved with relatively short
numerical integrations, the study of the effects of weak chaos on the long-term
dynamical evolution of the orbits requires numerical integrations on timescales
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as long as possible. Numerical integrations covering 100 My or 1 Gy are now
possible thanks to the new generation of fast computers and fast integration
algorithms (Wisdom and Holman, 1991; Levison and Duncan, 1994; Duncan
et al., 1998; Chambers, 1999). We therefore begin to have a first, partially
complete, view of the evolution of the asteroid and Kuiper belts on timescales
comparable to the age of the Solar System, which will be rapidly improved in
the near future.

The slow chaotic diffusion of orbits in the inner asteroid belt has been
studied in the papers by Migliorini et al. (1998) and Morbidelli and Nesvorný
(1999). A sample of 412 real asteroids has been integrated over 100 My.
These bodies have been chosen among those with osculating perihelion dis-
tance smaller than 1.8 AU, semimajor axis smaller than 2.5 AU, inclination
smaller than 15 degrees and which are not Mars-crossers in the first 300,000 y.
The last property allows the exclusion from the sample population of the
“hidden Mars-crossers”, namely those bodies that cross the orbit of Mars on
a short timescale due to the secular oscillation of their orbital elements. The
perturbations of all planets have been taken into account, with the exception
of Mercury.

To highlight small changes of the orbital elements over long timescales,
the asteroid’s proper elements and their change over the integration timespan
have been numerically computed. This was done by averaging the orbital
elements, originally output every 500 y, using a running window that covers a
10 My timespan. In other words, denoting generically the semimajor axis or
the eccentricity by x, the proper value xp(t) has been computed as

xp(t) =
1

N

t′=t+5My
∑

t′=t−5My

x(t′) (12.1)

where N denotes the number of output values of x over the considered time
interval; the time t has been incremented by 105 y steps from the initial value
t = 5 My. A 10 My window is long enough to average out all important
quasi-periodic oscillations of the osculating elements, and therefore – as ex-
plained in Section 5.4.4 – the change over time of proper elements reveals
non-quasi-periodic evolution, i.e. chaotic diffusion. Conversely, regular bod-
ies, having only quasi-periodic oscillations of their osculating elements, have
proper elements that are constant with time.

The initial proper semimajor axis and eccentricity of the bodies integrated
by Migliorini et al., computed using formula (12.1) on the first 10 My of inte-
gration, are shown in the top panel of Fig. 12.5. Red denotes bodies that will
become Mars-crossers within the integration time. Only three bodies have a
dynamical lifetime shorter than 10 My, so that their initial proper elements
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Figure 12.5: Top panel: The proper semimajor axis and eccentricity computed
over the first 10 My of evolution of the integrated asteroids in the inner belt.
Red dots denote objects that will become Mars-crossing before the end of the
simulation. Bottom panel: the subsequent evolution of the integrated bodies
in the proper (a, e) plane. Regular bodies appear as a dot, while chaotic bodies
migrate, leaving a trace in the plot. The red color distinguishes the evolution
of the bodies after that they become Mars-crossers. The two curves denote a
proper perihelion distance equal to 1.92 and 1.84 AU. Reprinted from Fig. 8
of Morbidelli and Nesvorný (1999), with permission from Academic Press.
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cannot be computed. The bottom panel of Fig. 12.5 shows the evolution of
the proper semimajor axis and eccentricity of the integrated bodies: only very
few bodies have regular dynamics (those which appear as a dot), while the
vast majority exhibits macroscopic diffusion in eccentricity – that is, a signifi-
cant change of the proper eccentricity. This is in agreement with the result of
Fig. 12.2 that most of the bodies in the inner belt are chaotic. In the bottom
panel of Fig. 12.5, the red color is used to distinguish the evolution of the bod-
ies when they are in the Mars-crossing regime, namely when their osculating
perihelion distance becomes smaller than 1.665 during the timespan covered
by the computation of the corresponding proper elements. Under the effect
of Martian encounters, these bodies start to random-walk in the semimajor
axis, roughly following a curve of invariant Tisserand parameter with respect
to Mars (see Öpik 1976). Consequently, their proper semimajor axes change
with time. This change is moderate for shallow Mars-crossers, and much big-
ger for deep Mars-crossers. Conversely, for most bodies chaotic diffusion keeps
the proper semimajor axis basically constant until the Mars-crossing status is
reached. This implies that the bodies diffuse in eccentricity always staying in
the same mean motion resonance or alternating among closely located reso-
nances. Only the few nonMars-crossing asteroids that show macroscopic diffu-
sion of the proper semimajor axis should migrate along a chain of overlapping
resonances.

The amount of chaotic diffusion is not the same over all the inner aster-
oid belt. Figure 12.5 shows regions characterized by large proper eccentricity
variations, and a background characterized by smaller, but still nonnegligible,
eccentricity changes. To distinguish, we denote hereafter the first as the main
diffusion tracks and the second as the diffusion background. The main diffu-
sion tracks are: (i) at 2.256 AU, related to the almost coincident locations
of the 7/2 mean motion resonance with Jupiter and of the 5/9 mean mo-
tion resonance with Mars (curiously, the latter can be computed to be more
effective than the former); (ii) at 2.213 AU, related to the presence of the
4/7 mean motion resonance with Mars; (iii) the region with semimajor axis
smaller than 2.17 AU, where Martian mean motion resonances overlap each
other and give rise to global chaos, as shown in Fig. 12.2. The 3/5 mean
motion resonance with Mars at 2.142 AU is the most important among these
resonances. Moving to the outer part of the inner belt, the two remarkable
diffusion tracks at 2.398 and 2.419 AU are respectively related to the 4 −2 −1
three-body Jupiter–Saturn–asteroid resonance and to the 1/2 mean motion
resonance with Mars.

Figure 12.6 compares the semimajor axis distribution of the Lyapunov ex-
ponent with the semimajor axis distribution of the proper eccentricity change.
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Figure 12.6: Comparison between the semimajor axis distribution of the max-
imum Lyapunov exponent (top panel) and of the proper eccentricity change
(bottom panel). Labels Mn/m and Jm/n denote the m/n mean motion
resonances with Mars and Jupiter respectively, while 4J−2S−1 denotes the
Jupiter–Saturn–asteroid three-body resonance 4λ̇J − 2λ̇S − λ̇ ∼ 0. Reprinted
from Fig. 9 of Morbidelli and Nesvorný (1999), with permission from Academic
Press.

The latter is obtained by computing, for each test particle of Fig. 12.5, the
maximal change of proper eccentricity de that occurs before being a Mars-
crosser. Both distributions in Fig. 12.6 have been smoothed using a suitable
running window average. The comparison between Fig. 12.6a and Fig. 12.6b
is striking. Not only do the main peaks – associated with the main diffusion
tracks discussed above – correspond, but also the minor peaks that structure
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the diffusion background appear to correspond to peaks in the Lyapunov ex-
ponent profile. In particular, in both panels peaks are particularly dense in the
region with semimajor axes smaller than 2.25 AU, while they are less promi-
nent and more separated in the more regular region between 2.3 and 2.4 AU.
Moreover, both the MLE and de tend to increase with decreasing semimajor
axis in the region a < 2.15 AU.

The phenomenon of slow chaotic diffusion of asteroids in the inner main
belt is important because it may explain how the Mars-crosser population is
kept in a sort of steady state (Migliorini et al., 1998; Morbidelli and Nesvorný,
1999). The population of Mars-crossers, in turn, is believed to be one of
the major transient sources of Earth-crossers, in addition to the 3/1 and ν6
resonances (Bottke et al., 2000b; Michel et al., 2000).

An analogous study of the slow chaotic diffusion of small bodies, but for
the Kuiper belt, has recently been done by Nesvorný and Roig (2001). They
integrated over 4 Gy the evolution of 101 test particles, with initial semima-
jor axis evenly distributed in the [37,39] AU range, initial eccentricity and
inclination set respectively equal to 0.01 and 2 degrees and randomly cho-
sen phase angles. Figure 12.7 shows the evolution of the proper semimajor
axis and eccentricity of these particles, computed as described above for the
asteroids. The dark points denote the trajectory before the particle’s peri-
helion distance first becomes smaller than 32 AU; larger gray symbols show
the evolution of the trajectory after this instant. In total, 16 test particles
reach Neptune-crossing orbit during the simulation. The two leftmost parti-
cles are at the borders of the 3/4 mean motion resonance with Neptune (the
latter being centered at 36.48 AU), while the rightmost escaping particle is
close to the chaotic border of the 2/3 resonance. The remaining 13 particles
which become Neptune-crossers evolved from their respective initial locations
due to the slow increase of their proper eccentricity, driven by higher-order
mean motion resonances with Neptune. Most of them (10) are in the 5/7 res-
onance and the mean time required to reach Neptune-crossing orbit is 666 My.
The others are in the 8/11 (crossing time: 641 My), 7/10 (620 My) and 9/13
(1419 My) mean motion resonances. Some other particles significantly diffuse
in proper eccentricity due to three-body resonances with Uranus and Neptune,
but do not reach Neptune-crossing orbit within the integration timespan. As
for the asteroid case, the proper semimajor axis stays almost constant until
the particles start to have close encounters with Neptune, while afterwards it
macroscopically changes with time.

A more extended view of the dynamics in the Kuiper belt has been provided
by Duncan et al. (1995). They integrated over 4 Gy the evolution of a few
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Figure 12.7: The same as the bottom panel of Fig. 12.5, but for test particles
in the inner Kuiper belt. The gray dots denote the evolution of the bodies
after their perihelion distance has first decreased below 32 AU. The labels
denote the main resonances with Neptune and three-body resonances with
Uranus and Neptune. Reprinted from Fig. 3 of Nesvorný and Roig (2001),
with permission from Academic Press.

thousand fictitious particles, with initial conditions chosen on regular grids on
the (a, e) plane at low inclination and on the (a, i) plane at small eccentricity,
and a ranging from 32 to 50 AU Figure 12.8 associates to each initial condition
its dynamical lifetime. The latter is defined as the time spent before Neptune
is first encountered within a distance of 3 Hill’s sphere radii. The yellow color
denotes the particles that never encounter Neptune within the integration
time, but it does not imply that these bodies have a regular motion: the
motion may also be chaotic, provided that encounters with Neptune do not
occur. In this respect, Fig. 12.8 should be considered as a map of the regions
that lead to macroscopic instability, rather than a map of the chaotic regions.

The main dynamical properties of the Kuiper belt illustrated in Fig. 12.8
are the following. The (a, e) plane is basically divided by the curve q = 35 AU
into a part which is characterized by lifetimes as long as 4 Gy and a part
which is unstable on a much shorter timescale. Above the q = 35 AU curve,
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Figure 12.8: The dynamical lifetime of test particles in the Kuiper belt, as a
function of their initial semimajor axis and eccentricity. The initial inclination
is set to 1 degree. The lifetime is defined as the time required to encounter
Neptune within 3 Hill’s radii, for the first time. The labels n : m denote the
main mean motion resonances with Neptune. Reprinted from Fig. 1 of Duncan
et al. (1995), with permission from the American Astronomical Society.

the only orbits with long lifetimes are those associated to first-order mean
motion resonances, as the latter provide an effective phase protection against
close encounters with Neptune (see Section 9.1.1). Below the q = 35 AU curve,
the main unstable regions (where even particles on initial circular orbits have
short dynamical lifetimes) are those between 35–36 AU and 40–42 AU, where
the perihelion secular resonances ν7 and ν8 are located (see Fig. 8.10). The
40–42 AU instability region divides the Kuiper belt into two parts. In the
inner belt (a < 40 AU), stable orbits are associated with first-order mean
motion resonances, or are located in the 36–39 AU region at low eccentricity.
In this region – as shown in Fig. 12.7 – only a minority of bodies, associated
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with specific tiny resonances, may escape. In the outer belt (a > 42 AU, also
called the classical belt) most of the stable orbits are nonresonant. In this
respect, the dynamical structure of the Kuiper belt seems to be the mirror
image of that of the asteroid belt.

Figure 12.8 also shows the existence of orbits which encounter Neptune
after only a few billion years of evolution. Some of these orbits are evidently
associated with the main mean motion resonances, and they are presumably
related to the slow diffusion regions at moderate amplitude of libration dis-
cussed in Section 11.4. The location of the remaining ones correlate quite well
with the main peaks of the Lyapunov exponent distribution shown in Fig. 12.3.
It is then likely that these orbits slowly diffuse in proper eccentricity, driven
by high-order two-body and three-body resonances, analogously to what is
shown in Fig. 12.5 for the asteroid belt and in Fig. 12.7 for the inner Kuiper
belt.

12.3 Analytic estimates of Lyapunov time and
instability time

The previous sections have undoubtedly shown that two-body resonances of
quite large eccentricity order and three-body resonances are important for the
generation of chaos and for the slow diffusion of the small bodies’ eccentricities
and inclinations. However, the results illustrated above are purely numeric; it
would be important and useful to achieve a theoretical understanding of the
phenomenon of weak chaos in mean motion resonances, and to obtain analytic
estimates for the Lyapunov exponent and the diffusion timescale.

An important attempt in this direction has been recently made by Murray
and Holman (1997). Because it is very difficult (if not impossible) to treat
the problem rigorously and in a general way, their work involves a number
of approximations; nevertheless it gives estimates that are correct within an
order of magnitude in most cases.

As discussed in Chapters 9 and 10, the origin of chaos is attributed to the
partial overlapping of the resonances in the mean motion resonant multiplet.
To follow Murray and Holman in the notation of this book, we start from
Hamiltonian (9.18) and we restrict it to the planar elliptic three-body problem.
Namely, of all the harmonics cm,u,v,s,r cos σm,u,v,s,r in (9.18) we retain only
those with v = 0, r = 0 and uj = 0 for j 6= ̄, where ̄ is the index of
the resonant planet. Moreover, for simplicity we consider only the terms with
m = 1, which sets ū = −(k̄−k−s). With the abridged notation cs = c1,ū,0,s,0
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and c0 = c0,0,0,0,0, our model Hamiltonian becomes:

HR3B = H0(Λ,Λ̄)+c0(Λ, P )+

k̄−k
∑

s=0

cs(Λ, P ) cos(k̄λ̄−kλ+sp−(k̄−k−s)̟̄) ,

(12.2)
where ̟̄ is the perihelion longitude of the resonant planet. The latter is
assumed to be fixed, so that the part of H0 that depends on Λgj ,Λsj (see
formula 9.16) has been dropped. For simplicity, we will assume below that
̟̄ = 0, so we drop it from (12.2). The coefficients cs are all of order |k̄ − k|
in the sum of the powers of the eccentricities of the small body and of the
resonant planet. We now define the canonical variables

Ψ = (Λ− Λ0)/k , ψ = kλ− k̄λ̄

I =P , ϕ = p

Λ̃̄=Λ̄ + k̄(Λ− Λ0)/k , λ̃̄= λ̄ ,
(12.3)

where Λ0 is the unperturbed location of the mean motion resonance given by
Kepler’s law. Retaining from the Taylor expansion of H0 and c0 in (12.2) only
the lowest-order terms in Ψ, I, we get:

HR3B =
1

2
βΨ2 + 2εAI +

k̄−k
∑

s=0

cs(I) cos(ψ − sϕ) , (12.4)

where β = ∂2H0/∂
2Λ(Λ0,Λ̄), 2εA = ∂c0/∂I(Λ0, 0) and cs(I) = cs(Λ0, I). Al-

though derived in the simple framework of the restricted three-body problem
for a two-body resonance, (12.4) can be considered as a more general planar
model of the multiplet structure of a mean motion resonance, that is valid
also for three-body resonances. In this respect, the coefficient 2εA should be
regarded as the frequency of precession of the secular angles, which is explic-
itly indicated to be of order ε (the mass of the planet that dominates the
secular dynamics); the coefficients cs are instead proportional to the mass of
the resonant planet for two-body resonances, or the product of the masses of
the resonant planets for three-body resonances, and they are typically smaller
than ε; the sum of the harmonic terms should be extended to all combina-
tions of the secular angles that give resonant harmonics of the lowest possible
eccentricity order.

To obtain a general model that can be handled analytically, Murray and
Holman assume that all coefficients cs are equal to the leading one cs0 , and
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that the sum over s is extended from −∞ to +∞, thus obtaining:

HR3B =
1

2
βΨ2 + 2εAI + cs0(I) cos(ψ)

+∞
∑

s=−∞

cos(sϕ)

=
1

2
βΨ2 + 2εAI + cs0(I) cos(ψ)δ(ϕ) (12.5)

where δ(ϕ) is Dirac’s delta function with periodic argument ϕ. Integrating
the equations given by (12.5) for Ψ and ψ over a period of ϕ one gets the
symplectic mapping (see Chirikov, 1979; Wisdom, 1983)

Ψ′ = Ψ+
πcs0(I)

εA
sinψ , ψ′ = ψ +

πβ

εA
Ψ′ . (12.6)

Recalling now from (12.4) that İ ∼ −s0Ψ̇ one gets the supplementary map for
the evolution of the action I:

I ′ = I − s0
πcs0(I)

εA
sinψ . (12.7)

With the rescaling Ψ̄ = Ψπβ/(εA), the mapping (12.6) is analogous to the
standard map in the form

Ψ̄′ = Ψ̄ +Keff sinψ , ψ′ = ψ + Ψ̄′ , (12.8)

where

Keff(I) ≡
(

cs0(I)

β

)(

πβ

εA

)2

. (12.9)

It is well known (see Chapter 4 in Lichtenberg and Lieberman, 1983 and Sec-
tion 6.1) that the standard map (12.8) exhibits large-scale chaos ifKeff > Kcrit,
with Kcrit ∼ 1. Notice that the condition Keff > 1 is similar to the condition
for the overlapping of the resonances in the resonant multiplet of model (12.4);
in fact, the separation among the resonances is δΨ = 2εA/β while their width
is ∆Ψ ∼ 2

√

cs0/β, so that Keff = (π∆Ψ/δΨ)2. The factor π2 between Keff

and (∆Ψ/δΨ)2 accounts for the fact that, as explained in Section 6.1, the
transition to global chaos occurs before the low-order resonances in the mul-
tiplet overlap, due to the existence of overlapping higher-order resonances in
between them.

To estimate the value of the Lyapunov exponent, Murray and Holman
write the tangent map for the mapping (12.6):

δΨ′ = δΨ + δψ
πcs0(I)

εA
cosψ , δψ′ = δψ +

πβ

εA
δΨ′ , (12.10)
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whose eigenvalues are given by the equation

(1− λ)(1 +Keff cosψ − λ)−Keff cosψ = 0 , (12.11)

with Keff given by (12.9). Solving (12.11) for λ one gets

λ = 1 +
1

2
Keff cosψ ±

√

Keff cosψ +

(

1

2
Keff cosψ

)2

. (12.12)

In a chaotic layer, it is reasonable to expect that ψ ergodically assumes all pos-
sible values between 0 and 2π, so that the Lyapunov exponent of the mapping
can be estimated by averaging the logarithm of λ over ψ:

γ =
1

2π

∫ 2π

0
lnλdψ . (12.13)

Murray and Holman approximate1

γ ∼ ln



1 +
Keff

4
+

√

Keff

2
+

(

Keff

4

)2


 . (12.14)

As the period of the map (12.6) is π/(εA) (the period of ϕ in the Hamiltonian
12.4), the Lyapunov time of the considered mean motion resonance will be

TL =
π

εA

1

γ
∼ π

εA

/

ln



1 +
Keff

4
+

√

Keff

2
+

(

Keff

4

)2


 . (12.15)

To test the validity of this estimate, Murray and Holman have performed a
series of numerical tests. Figure 12.9 shows the Lyapunov time of test bodies
in the elliptic planar restricted three-body problem in various mean motion
resonances with Jupiter in the outer asteroid belt (the initial eccentricity was
chosen equal to 0.05). The solid squares give the Lyapunov times as mea-
sured in the numerical integrations, while the predictions (12.15) are shown
as open circles. As one sees, the agreement is generally good within an order
of magnitude, although a few exceptions can be noted.

To estimate the diffusion of the eccentricity of bodies in mean motion
resonances, Murray and Holman start from the known result (see Chapter 5
of Lichtenberg and Lieberman, 1983) that, when Keff > Kcrit in (12.8), the
transport of the action Ψ̄ can be described by the Fokker–Plank equation.
This means that, given a large ensemble of particles, their distribution with

1There is a missprint in the corresponding formula given in Murray and Holman (1997).
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Figure 12.9: Lyapunov time as a function of the semimajor axis in the outer
asteroid belt, in the framework of the elliptic restricted three-body problem.
The labels kj : k denote the major mean motion resonances with Jupiter. Solid
symbols are numerical measurements: triangles report data obtained through
integrations including the effects of the four giant planets, while squares are
obtained taking into account the sole effect of Jupiter. The circles represent the
predictions of formula (12.15). Reprinted from Fig. 1 of Murray and Holman
(1997), with permission from the American Astronomical Society.

respect to Ψ̄ can be represented by a function P (Ψ̄, t) evolving under the
equation

∂P

∂t
=

∂

∂Ψ̄

(

D

2

∂P

∂Ψ̄

)

, (12.16)

where D = K2
eff/2 is called the diffusion coefficient. Recalling the scaling

relationship Ψ̄ = Ψπβ/(εA), the diffusion coefficient for the action Ψ becomes

DΨ =
K2

eff

2

(

εA

πβ

)2

=
1

2

(

cs0
β

)2 (πβ

εA

)2

. (12.17)

Now taking into account that the timescale for the mapping (12.6) is π/(εA),
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one finally obtains that the diffusion coefficient for Ψ is

DΨ =
1

2
c2s0(I)

π

εA
. (12.18)

Because the map (12.7) for the evolution of I differs from that for Ψ by a
factor s0, the action I will respond to a Fokker–Plank equation with diffusion
coefficient

DI =
s20
2
c2s0(I)

π

εA
. (12.19)

Therefore, in Murray and Holman’s model the resonant particles random walk
in both the semimajor axis (or Ψ) and eccentricity (or I). However, both ran-
dom walks are subject to certain boundary conditions. The semimajor axis
is restricted to lie in the interval defined by the overlap of the components of
the resonant multiplet, which in reality does not have an infinite extension.
This can be modeled by reflecting boundaries at specific values of Ψ. The
eccentricity is restricted to be positive, which can be modeled by a reflecting
boundary at I = 0. Because of this reflecting boundary, test particles on
chaotic orbits at small initial I diffuse from small eccentricities to large ec-
centricities. When they reach an eccentricity that is large enough to cross the
orbit of a planet, they are removed by close encounters. This is modeled by an
absorbing boundary at I = Imax. Solving the Fokker–Plank equation, Murray
and Holman computed that the typical removal time, that is the timescale for
particles started at I0 to reach Imax, is

TR ∼ ImaxI0
√

DI(Imax)DI(I0)
. (12.20)

Again, Murray and Holman tested the validity of their estimate with numer-
ical simulations. Fig. 12.10 is the analog of Figure 12.15 but compares the
predicted with the observed removal times (respectively indicated by circles
and filled squares). Because in (12.20) TR depends strongly on the eccen-
tricity used to evaluate I0, Murray and Holman used the average eccentricity
computed from the numerical integrations over the first few thousand orbital
periods. The scatter in the values of I0 thus obtained accounts for the scatter
of the predicted removal times in each resonance, shown in Fig. 12.10. Some
caution must also be paid to evaluate DI(Imax). In fact if one chooses Imax

from the value of the eccentricity that allows a body to cross the orbit of
Jupiter, the coefficient cs0(Imax) is infinite, because the Hamiltonian is not
analytic and cannot be expanded in a Fourier series as in (12.2). As a conse-
quence, also DI(Imax) is infinite and TR is zero. Therefore, one has to choose
a somewhat smaller value of Imax. To remove the arbitrariness of this choice,
the best strategy is to choose Imax so as to maximize the value of TR.
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Figure 12.10: The same as Fig. 12.9, but for the removal time. Solid symbols
are numerical measurements, while circles represent the predictions of formula
(12.20). Arrows indicate the integration timespan for those resonances where
none of the particles has been removed. Reprinted from Fig. 2 of Murray and
Holman (1997), with permission from the American Astronomical Society.

As one sees from Fig. 12.10, the agreement between predictions and nu-
merical tests is generally good within an order of magnitude, although some
exceptions can be noted. This is remarkable, given the large number of approx-
imations involved to achieve the final estimates. We stress that the diffusion
coefficient (12.19) for the action I does not take into account the possible ef-
fects of the purely secular dynamics, which – as we have seen in Chapter 11 –
may force the eccentricity to increase in a shorter timescale. Moreover, the
assumption made at the beginning of this section, that approximates the res-
onant multiplet by an infinite chain of resonances, is not very suitable for
resonances of low eccentricity order, which behave as a modulated pendulum
(see Section 9.4). In this case, still neglecting the important effects of the
purely secular dynamics, the diffusion coefficients for orbits in the chaotic
layer would be simply proportional to the cube of the modulation frequency,
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i.e. (εA/π)3 (Bruhwiler and Cary, 1989), i.e. smaller than (12.18) and (12.19).
This might explain some of the major discrepancies visible in Fig. 12.10.

Despite the limitations, Murray and Holman’s estimate of the removal time
is an important attempt to go beyond classical perturbation theory and cope
with the statistical properties of chaotic evolution.

12.4 Do the KAM and Nekhoroshev theorems

apply for small body dynamics?

At this point, it is natural to ask whether the view of the global dynamics
provided by the KAM and the Nekhoroshev theorems (see Chapters 3 and 6
respectively) is suitable to describe small body dynamics in the framework of
our Solar System.

Of course both theorems cannot be straightforwardly applied, as they are
designed for nondegenerate dynamical systems, but they must be first adapted
to the case of the perturbed Kepler motion. Arnold (1963c) and Nekhoroshev
(1977) already worked in this direction, and, more recently, Guzzo and Mor-
bidelli (1997) reformulated both theorems taking into account most features
of small body dynamics.

It should be evident from the previous chapters of this book that, what-
ever the values of the planetary masses and eccentricities, there is no hope of
proving a Nekhoroshev-like stability result that holds over all the non-planet-
crossing phase space. In fact, the mean motion resonances whose eccentricity
order and Fourier order2 are both low to moderate (the threshold order de-
pending on the small body’s eccentricity) generically give rise to a multiplet
of resonances which overlap (see Section 9.3). In this case, it is possible to
show with a plausible model (see Section 12.3) that macroscopic changes of the
small body’s eccentricity may occur in a short time, i.e. in a time that is pro-
portional to some power of the perturbation parameters (see formula 12.20).
It is true that the resonances of lowest order behave as a modulated pendulum
(see Section 9.4), and therefore have a central island where the motion might
be stable, but we have seen in Chapter 11 that in these cases the stability or
instability properties ultimately depend on the specific features of the secular
dynamics, which vary from resonance to resonance. Therefore, it might be
possible to prove a Nekhoroshev-like stability result restricted to some spe-
cific resonance (for instance restricted to the central core of the 3/2 resonance
with Jupiter), but it is not possible to achieve a general result valid for all
resonances of low order.

2See Section 9.1 for their definition.
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As a consequence, a general Nekhoroshev-like stability result might be es-
tablished only on the nonconnected domain that excludes all the mean motion
resonances with low to moderate order. This domain exists only if the low to
moderate-order resonances do not overlap each other, which gives a condition
on the maximal value ε of the planetary masses, on the minimal distance from
the resonant planet and on the maximal value of the small body’s eccentricity.
For reference we will call this domain the Nekhoroshev domain.

A detailed description of how a Nekhoroshev result can be established
goes beyond the scope of this section, and we report just a brief guideline. The
interested reader can refer to Guzzo and Morbidelli (1997). In the Nekhoroshev
domain, one first considers the subdomains where there are no mean motion
resonances of Fourier order smaller than 1/ε. On these subdomains one can
construct the secular normal form with a remainder that is exponentially small
in 1/ε, and restrict the study of the stability to the secular problem. The latter
being nondegenerate, the Nekhoroshev theorem can be applied in its classical
form (see Chapter 6). A technical complication is that the condition (6.2) does
not hold for the secular Hamiltonian, but in general one can bound the secular
resonant motion using the third-order derivatives in the actions. In this way,
one can still obtain a stability time that is exponentially long in 1/η, where
η is some small parameter – typically related to the planetary eccentricities
and inclinations. The ν6 secular resonance is an exception, and indeed the
eccentricity of ν6 resonant bodies can grow from 0 to 1 on a “short” timescale,
as shown in Section 8.4.2.

Elsewhere in the Nekhoroshev domain, one has to cope with mean motion
resonances of nonnegligible order (i.e. smaller than 1/ε). However, by defini-
tion of the Nekhoroshev domain, these resonances have a resonant multiplet in
which the resonant components do not overlap. Therefore, with a procedure
analogous to that sketched in Section 6.2.1 one can still achieve a stability
result, also valid for a time that is exponentially long in 1/η.

Once a Nekhoroshev-like stability result is proved over the Nekhoroshev
domain, the procedure can be iterated as discussed in Section 6.2.2, thus prov-
ing also the existence of KAM tori. Therefore, the Nekhoroshev-like stability
result is intimately related to the existence of a specific dynamical structure,
analogously to the case of nondegenerate systems.

These results show that a suitable adaptation of the KAM and Nekhoro-
shev theorems can be applied, in principle, to describe the small body dy-
namics, at least in parts of the phase space. However, it is beyond current
possibilities to analytically determine if these theorems do really apply in the
framework of our Solar System (characterized by specific values of the plan-
etary masses, semimajor axes, eccentricities and inclinations), and in which
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regions. However, as explained in Section 6.2.2, the numerical simulations are
very useful to understand whether the dynamical structure of a given system
is that described by these theorems. Although a detailed analysis has never
been done (it would require the study of how the dynamical structure changes
with increasing accuracy of detection of the chaotic zones), Fig. 12.1 suggests
that if only the four giant planets are taken into account, the inner and cen-
tral part of the asteroid belt might have the dynamical structure described by
the Nekhoroshev theorem, at least at moderate eccentricity. The outer belt,
conversely, is much more perturbed by Jupiter, so that the chaotic regions
related to two-body and three-body mean motion resonances rapidly overlap
with increasing asteroid eccentricity (see Fig. 10.8). When the inner planets
are taken into account, Fig. 12.2 does not leave much hope that the Nekhoro-
shev structure might persist in the inner belt (at least up to 2.15 AU), the
mean motion resonances with Mars densely filling the region. Therefore, in
the framework of the complete planetary system one should expect that the
Nekhoroshev structure is present only in the central belt, at small eccentricity.
This is also an indication of the frequency map analysis illustrated in Fig. 12.4.
The same figure also shows that nowhere else in the inner Solar System and
in the giant planet region should one expect the Nekhoroshev theorem to hold
for small body dynamics. Only in the Kuiper belt, far enough from Nep-
tune, can one find again a Nekhoroshev-like structure. Between 43 and 50 AU
the Nehoroshev structure is confined at very small eccentricity, while beyond
50 AU a more considerable region seems to be dominated by regular motion,
segmented by well-separated individual resonances. It is possible that a more
accurate numerical investigation would show that, of the entire Solar System,
only the deep Kuiper belt is characterized by a real Nekhoroshev structure.

Notice, however, that the search for a Nekhoroshev structure is more a
mathematical curiosity than an astronomical exigency. The stability times
associated with the Nekhoroshev structure are likely to exceed the physical
lifetime of the solar system by many orders of magnitude. Small bodies can
therefore live for the age of the Solar System also in mean motion resonances
that are characterized by an overlapping resonant multiplet, providing that
the resulting removal time (12.20) is long enough. For instance, this seems to
be the case of the asteroid Helga in the 12/7 resonance with Jupiter, whose
removal time, from analytic estimates and numerical integrations, is about
5 Gy (Murray and Holman, 1997).

The problem of the possible validity of a Nekhoroshev-like stability result
is also complicated by the fact that the perturbing planets themselves exhibit
chaotic behavior (see Chapter 7 and Section 10.4). This must destroy at some
level the Nekhoroshev structure of small body dynamics, and prevent the exis-
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tence of invariant tori, as can be understood as follows. A non-quasi-periodic
perturbation has a continuous Fourier spectrum. In the case of weak chaos,
such as that of the planets, one can reasonably assume that the continuous
Fourier spectrum is nonzero only on bounded intervals of width ∆ω around
the discrete values of the frequencies characterizing the quasi-periodic approx-
imation of their motion. As a consequence of the continuous spectrum, each
resonance splits into a continuous package of resonances. The width of this
package in the space of frequencies is ∆ω, whatever the order of the resonance
is. Then, the width of each resonance domain must be larger than ∆ω, instead
of decaying exponentially with the order of the resonance as in the usual case.
Referring to formula (6.5) the volume filled by resonances of order K becomes
larger than

VK ∼ 2nKn−1 [√ε exp (−Kσ) + ∆ω
]

, (12.21)

which indefinitely increases with K. Therefore, at some order K resonances
must overlap, thus destroying the Nekhoroshev structure and the existence of
invariant tori. Consequently, if the numerical analysis on asteroid dynamics
is pushed to high enough accuracy, eventually a chaotic continuum should be
detected even in the regions that seem to be the most regular ones. Whatever
the initial conditions, the maximum Lyapunov exponent should be positive.

However, in the case of our Solar System, the size of the intervals ∆ω,
defined with respect to some cut-off level, is also quite small, since the fre-
quencies of the inner planets (which are the most chaotic ones) have a relative
change of a few percent only (see Section 7.3). Therefore, the effects of chaotic
perturbations might not be relevant to the stability of small body motion over
the age of the Solar System.
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Bretagnon P. (1974) Termes à longues périodes dans le système solaire. Astron.
Astrophys., 30, 141.

Bretagnon P. (1982) Theory for the motion of all the planets: the VSOP82
solution. Astron. Astrophys., 114, 278.

Bretagnon P. (1984) Improvement of analytic planetary theories. Celest.
Mech., 34, 193.

Bretagnon P. (1990) An iterative method for the construction of a general
planetary theory. Astron. Astrophys., 231, 561.

Brouwer D. and Clemence G.M. (1961) Methods of Celestial Mechanics. Aca-
demic Press, New York.

Bruhwiler D.L. and Cary J.R. (1989) Diffusion of particles in a slowly modu-
lated wave. Physica D, 40, 265.

Cameron A.G. (1997) The origin of the Moon and the single impact hypothesis.
Icarus, 126, 126.

Canup R.M. and Esposito L.W. (1996) Accretion of the Moon from an impact-
generated disk. Icarus, 119, 427.

Carpino M., Milani A. and Nobili A.M. (1987) Long-term numerical integra-
tions and synthetic theories for the motion of the outer planets. Astron.
Astrophys., 181, 182.

Cellino A., Michel P., Tanga P., Zappalà V., Paolicchi P. and dell’Oro A.
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Ferraz-Mello S., Nesvorný D. and Michtchenko T.A. (1998b) Chaos, diffusion,
escape and permanence of resonant asteroids in gaps and groups. In
Solar System Formation and Evolution, D. Lazzaro, R. Vieira Martins,
S. Ferraz-Mello, J. Fernandez and C. Beaugé, eds. Astron. Soc. of the
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Gröbner W. (1960) Die Lie–Reihen und ihre anwendungen. Springer-Verlag,
Berlin.

Gronchi G.F. and Milani A. (1998) Averaging on Earth-crossing orbits Celest.
Mech., 71, 109.

Gronchi G.F. and Milani A. (1999) The stable Kozai state for asteroids and
comets with arbitrary semimajor axis and inclination. Astron. Astro-
phys., 341, 928.

Gurzadyan V.G. and Kocharyan A.A. (1987) Relative chaos in stellar systems.
Astr. Sp. Sci., 135, 307.

Gurzadyan V.G. and Ruffini R. (2000) The Chaotic Universe, World Scientific
Publishing Co., River Edge, New Jersey

Guzzo M. and Morbidelli A. (1997) Construction of a Nekhoroshev-like result
for the asteroid belt dynamical system, Celest. Mech., 66, 255.

Hartmann W.K. and Davis D.R. (1975) Satellite-sized planetesimals and lunar
origin. Icarus, 24, 504.
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Secular resonances from 2 to 50 AU. Icarus, 93, 316.
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Nesvorný D. and Roig F. (2000) Mean motion resonances in the trans-
neptunian region: Part I: The 2:3 resonance with Neptune. Icarus, in
press.
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Zappalà V., Bendjoya Ph., Cellino A., Farinella P. and Froeschlé C. (1995)
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N -body problem, see planetary prob-
lem

action–angle variables, 28–29
resonant, 74–77

Amor asteroids, 4

angle
helicity, see helicity angle
of great inequality, see great in-

equality
resonant, see resonance, critical

angle

twist, see twist angle
anomaly

eccentric, see eccentric anomaly

mean, see mean anomaly
true, see true anomaly

aphelion, 13

distance, 13
apocenter, 13
apocentric librator, 201

apogee, 13
Apollo asteroids, 4
argument of perihelion, 15

Arnold
diffusion, 118
web, 114

Arnold–Liouville theorem, 28–29, 74,
166

asteroid belt, see main asteroid belt
asteroid family, 4, 172–174, 179, 229,

291
Aten asteroids, 4

attractor, 25
averaging, see also Birkhoff normal

form, 51–57

Bessel functions, 217, 237
Birkhoff normal form, 45, 47

canonical transformation, 22–24

Cassini
division, 8

states, 142

chaos, 1, 27, 81–114, 121–122

in planet motion, 134–147, 254–
256

in small body motion, 210–229,
240–254, 262–266, 274, 280–
330

chaotic

diffusion, see diffusion
region, 70, 81, 84

Chirikov

criterion, 109

diffusion, 111, 122
circulation, 73

close encounter, 138, 159, 283, 285,
315, 317

protection from, 206–207, 292,
319

collision

curve, 206, 210

with the Sun, 165, 187, 285

Colombo’s top, 142
comet, 6–8, 162–165
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Halley-type, 7
Jupiter-family, 7

long-period, 7, 162–165
Sun-grazer, 165

commensurability, see mean motion
resonance

constant of motion, 25, 27, 28
of the Keplerian problem, 30, 38

convexity, 115, 118, 188
coordinates, 18

barycentric, 11
heliocentric, 11, 17, 22–24

rotating, see rotating frame
spherical, 19

D’Alembert rules, 35–36
degeneracy, 37–38, 53, 159, 195, 222

degrees of freedom, 18
Delaunay variables, 29–35

mean, 54, 127, 149
modified, 35

semimean, 57, 196, 233
diffusion, 66, 111, 312–327

Arnold, see Arnold, diffusion

Chririkov, see Chirikov, diffusion
coefficient, 323–327

diophantine condition, 44
Dirac delta function, 322

domain
Nekhoroshev, see Nekhoroshev,

domain
nonresonant, 44, 117, 119, 122,

126

resonant, see resonance, domain

Earth, 138, 142–147
eccentric anomaly, 14

eccentricity, 13
Edgeworth–Kuiper belt, see Kuiper

belt
elliptic function, 76, 156

Encke division, 8
equation

Fokker–Planck, see
Fokker–Planck equation

homologic, see homologic equa-
tion

Kepler, see Kepler, equation

Lagrange, see Lagrange equations
equilibrium point

elliptic, see equilibrium point,
stable

hyperbolic, see equilibrium point,
unstable

stable, 72, 73

unstable, 72, 73, 81
equinox precession, 141

expansion
Fourier, see Fourier expansion

Legendre, see Legendre expansion
Taylor, see Taylor expansion

fast drift direction, 118
Fokker–Planck equation, 323

Fourier expansion, 43
frequency, 37

analysis, 97–103
completely resonant, 37

diophantine, 44, 60, 63
nonresonant, 37
proper, see proper frequency

space, 66, 117
function

Bessel, see Bessel functions
Dirac, see Dirac delta function

disturbing, see perturbation
elliptic, see elliptic function
generating, 24

Hamiltonian, see Hamiltonian
time evolution of, 25–26

Galactic tide, 8, 160
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great inequality, 278, 295

Greek asteroid, 4, 209

Hamiltonian, 18

flow properties, 24–26

generating, 24, 41–45

integrable, 26–29

nonautonomous, 21

of the N -body problem, see
Hamiltonian, of the planetary
problem

of the planetary problem, 21–24,
52

of the restricted problem, 21, 52

quasi-integrable, 39

time-dependent, see Hamiltonian,
nonautonomous

harmonic

generation of, 49–51, 232–239

order of, 43

successive elimination of, 257–260

helicity angle, 104

heteroclinic

intersection, see heteroclinic,
point

point, 111–114

Hildas, 292–293

Hill’s radius, 210

homoclinic

intersection, see homoclinic,
point

point, 83, 84, 86

tangle, 84

homologic equation, 41

horseshoe

librator, 209

of Smale, see Smale horseshoe

hyperbolic point, see equilibrium
point, unstable

hyperbolicity, 81, 94

inclination, 14

integrability, 27
invariant plane, 131

island, 70, 80, 162, 164, 165, 214, 224

isochronous system, 38

Jupiter, 1, 217, 254–256

KAM

theorem, 59–63, 327–328

torus, see torus, KAM
Kepler

equation, 14

laws, 12

problem, 11–16, 29
Kirkwood gap, 3, 8, 214, 229, 280,

285, 286

Kolmogorov

normal form, 62
theorem, see KAM, theorem

Kozai

dynamics, see Kozai, resonance
Hamiltonian, 155, 268

resonance, 154–167, 172, 177, 179,
185–186

inside mean motion resonance,
266–271, 285, 288, 292, 297,
299

KS–entropy, 92, 94

Kuiper belt, 5–7, 179, 187, 214–216,
253–254, 294–300, 310, 312,
317–320, 329

Lagrange equations, 17, 34

Lagrange–Laplace solution, 130

coefficients of, 133–135
Lagrangian points, 209

Laplace

resonance, 9, 217, 231
solution, see Lagrange–Laplace

solution
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Legendre expansion, 235
libration

region, 73, 199
torus, see torus, librational

librator
apocentric, see apocentric libra-

tor
asymmetric, 202, 205, 206, 209,

298
horseshoe, see horseshoe, librator
tadpole, see tadpole librator

Lie series, 26, 40–42
Liouville’s theorem, 25, 27
longitude of node, 15
longitude of perihelion, 16
Lyapunov

exponent, 92–97
fast indicator, 103–104

orbit, 210

main asteroid belt, 2–4, 156–160, 170–
179, 183–193, 212–214, 247–
253, 280–294, 303–308, 313–
317, 323, 325–327, 329

manifold
stable, 82–86
unstable, 82–86

Mars, 138, 147
mean anomaly, 14
mean elements, 54
mean longitude, 16
mean motion, 14
mean motion resonance, 3, 6, 8, 9, 54,

55, 195–229, 257–330
1/1, 207–210, 218–220, 300–302
1/2 with Neptune, 297–300
2/1 with Jupiter, 286–292
2/3 with Neptune, 295–297
3/1 with Jupiter, 280–286
3/2 with Jupiter, 292–294
critical angle, 197

eccentricity order, 197
exterior, 199
interior, 199
modulation of, 224–229, 272, 281,

308
multiplet, see multiplet
normal form, 57, 196, 260
of 1st eccentricity order, 199–202,

286–300
of 2nd eccentricity order, 205,

280–286
of 3rd eccentricity order, 206
of 4th eccentricity order, 206
overlapping, 210–220
with Mars, 306–308, 315

mean variables, see Delaunay vari-
ables, mean

MEGNO, 104–106
Melnikov integral, see Poincaré–

Melnikov integral
Mercury, 138, 140, 147
module of the resonance, see reso-

nance, module
momenta, 18
Moon formation, 140, 146
motion

chaotic, see chaos
constant of, see constant of mo-

tion
Keplerian, see Kepler, problem
periodic, 37
quasi-periodic, 37

multiplet, 220–224, 231, 240–246, 305,
320–322, 326

multiplicity, see resonance, multiplic-
ity of

near-Earth asteroids, 4–5, 177, 187,
285, 317

Nekhoroshev
domain, 328



INDEX 353

structure, 119–124, 126, 328–330

system, 122

theorem, 114–119, 327–330

Neptune, 217, 254–256

nodal distance, 157

node, 14

longitude, see longitude of node

node crossing curve, 159–165

normal form

Birkhoff, see Birkhoff normal
form

Kolmogorov, see Kolmogorov,
normal form

mean motion resonance, see mean
motion resonance, normal
form

optimal, 48–49

remainder of, 48, 78–79

resonant, see resonance, normal
form

secular, see secular normal form

secular resonant, see secular reso-
nance, normal form

three-body resonance, see three-
body resonance, normal form

obliquity, 141

Oort cloud, 7, 160

orbital elements

mean, see mean elements

osculating, see osculating ele-
ments

proper, see proper elements

semimean, see semimean ele-
ments

semiproper, see semiproper ele-
ments

order

in eccentricity, see mean motion
resonance, eccentricity order

of the harmonic, see harmonic, or-
der of

of the resonance, see resonance,
order of

osculating elements, 12–16, 18
formal, 18, 34

pendulum, 72–74, 82
modulated, 223–224, 326–327

pericenter, 13

perigee, 13
perihelion, 13

argument, see argument of peri-
helion

distance, 13

longitude, see longitude of perihe-
lion

perturbation, 16–18, 20–22, 39
perturbation theory, 39–49

phase space, 18
planetary problem, 16–17, 22–24

Plutinos, 216, 295, 297
Pluto, 5, 6, 206, 216, 271, 295, 297

Poincaré section, 67–68, 80, 89, 218,
224, 243, 264, 274

Poincaré variables, 36

Poincaré–Melnikov integral, 84–86
Poisson bracket, 22
practical stability, 114, 115, 179, 256

proper elements, 4, 167–174, 250,
313–315

linear, 154

proper frequency, 131, 169
linear, 154

proper variables, 169
linear, 154

reduced mass, 20, 23

remainder, see normal form, remain-
der of

resonance
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action–angle vari-
ables, see action–angle vari-
ables, resonant

critical angle, 72

of mean motion resonance, see
mean motion resonance, crit-
ical angle

of secular resonance, see secular
resonance, critical angle

definition of, 37

domain, 118–119, 122

interactions, 107–126

island, see island

Kozai, see Kozai, resonance

mean motion, see mean motion
resonance

module, 47

multiplet, see multiplet

multiplicity of, 37

normal form, 44–48, 71

of Laplace, see Laplace, resonance

order of, 37

overlapping, 108–111, 114, 122–
126, 145–146, see also mean
motion resonance, overlap-
ping, see also multiplet

region, 68, 73, 78, 199, 214

secondary, 78, 262–266

secular, see secular resonance

separatrix, see separatrix

single resonance, 71–88, 107, 118,
122

three-body, see three-body reso-
nance

torus, see torus, resonant

web, see Arnold, web

restricted problem, 17, 21

planar circular, 196

dynamics of, 196–220

Ricci curvature, 92

ringlets, 9

rings, 8–9

rotating frame, 19–20

satellite

Galilean, see satellite, of Jupiter

of Jupiter, 9, 217

of Uranus, 160

prograde, 210

retrograde, 210

shepherding, 9

Saturn, 1, 217, 254–256

secular dynamics

of planets, 127–147

of small bodies, 149–193, 266–277

secular normal form, 53–57, 127, 149,
328

secular resonance, 3, 6, 152, 169, 174–
193, 270–277, 310

ν5, 177, 183–185, 188, 271, 272,
274, 280–283, 285, 288, 292

ν6, 177, 182, 187–193, 271, 274,
283, 285, 288, 292, 300, 306,
328

ν16, 177, 182, 185–186, 276, 285,
288–289, 292

ν17, 179, 187, 310

ν18, 179, 187, 276, 295, 297, 310

ν7, 179, 187, 319

ν8, 179, 187, 271, 295, 310, 319

critical angle, 181

in mean motion resonances, 270–
277

Kozai, see Kozai, resonance

linear, 152, 174

normal form, 180–181, 184, 186–
188, 190

of first order, 152, 180

semimajor axis, 13

semimean elements, 57
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semimean variables, see Delaunay
variables, semimean

semiproper elements, 182
semiproper variables, 180, 181
separatrix, 73, 77, 108

splitting of, 81–88, 118
Smale horseshoe, 84
small divisors, 42–44
spin axis dynamics, 140–147
splitting, see separatrix, splitting of
standard map, 68–70, 79–81, 109,

113–114, 322

tadpole librator, 209
Taylor expansion, 26
three-body resonance, 231–256

(5 −2 −2), 241–245
(6 1 −3), 245–246
in mean motion resonances, 277–

280, 291, 293, 295
in planet motion, 254–256
multiplet, see multiplet
normal form, 234, 240

torus, 37
complex, 43
invariant, 37, 59, 60, 63–67
KAM, 59–70, 93, 98, 102, 106–

108, 111, 121–122
exponential stability, 67
golden, 109
isolating property, 64–66
measure, 64
persistence of, 63
superexponential stability, 122
translation of, 63

librational, 79
resonant, 79–81

transformation
canonical, see canonical transfor-

mation
close to the identity, 40

polar to cartesian coordinates, 24,
36

Trojan asteroid, 4, 209, 219, 301
true anomaly, 14
twist angle, 104
two-body problem, see Kepler, prob-

lem

Uranus, 140, 147, 217, 254–256

variables
action–angle, see action–angle

variables
conjugate, 18
Delaunay, see Delaunay variables
mean, see Delaunay variables,

mean
Poincaré, see Poincaré variables
proper, see proper variables
semimean, see Delaunay vari-

ables, semimean
semiproper, see semiproper vari-

ables
Venus, 138, 147
volume conservation, 25

web, see Arnold, web

Yarkovsky effect, 286


