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With this paper we complete our review on the dynamics in
mean motion resonances. Here we investigate the 4/1, 3/1, 5/2,
and 7/3 commensurabilities and show that, due to the interaction
between the v; and v, secular resonances, chaotic motion is present
almost everywhere in the phase space. This chaotic motion is
responsible for the large jumps in the eccentricity (up to 0.8 or
more) that one usually observes in the realistic numerical simula-
tions, which force the asteroids to cross the orbits not only of Mars,
but even of Earth. In this way we achieve a better understanding
of the effective mechanisms for the depletion of the 3/1, 5/2, and
4/1 resonances, and we are able to explain, for the first time,
the existence of the gap associated with the 7/3 mean motion
commensurability, © 1995 Academic Press, Inc.

1. INTRODUCTION

Up to now all previous analytic works on mean motion
commensurabilities were developed within the simple
framework of the planar elliptic restricted problem; con-
versely, many numerical works have been conducted
within the framework of more realistic models, giving
results which cannot be interpreted on the basis of the
theories (for a review on mean motion resonances, see
Froeschlé and Greenberg (1989)).

In our theoretic perturbation approach we investigate
the secular motion in 3-D space within the framework of
the Sun—-Jupiter—Saturn-asteroid model, therefore taking
account of the relevant role played by secular resonances
inside mean motion commensurabilities. In this way, we
ar¢ able to understand the dynamics observed in the realis-
tic numerical simulations.

We recall that the secular resonances are the commen-
surabilities among the precession rates of the asteroid
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orbit and the precession rates of the planetary orbits. In
particular the v (respectively, v,) resonance is given by
the 1/1 commensurability between the frequency of the
longitude of perihelion of the asteroid and the average
frequency gs {respectively, g of Jupiter’s {respectively,
Saturn’s) longitude of perihelion. The v, resonance is the
corotation of the node of the asteroid with that of Jupiter.
In the classical restricted three-body problem, the vs secu-
lar resonance is approximated by the resonance that oc-
curs when the frequency of the asteroid’s perihelion is
locked around 0. Conversely, the other secular reso-
nances are completely absent, since the orbit of Jupiter
is assumed to be fixed.

The present work is the logical completion of our previ-
ous paper (Morbidelli and Moons 1993) devoted to the
3/2 and 2/1 mean motion commensurabilitics. There, we
found that, concerning the 3/2 mean motion commensura-
bility, the interaction between the v and », secular reso-
nances generates a wide chaotic region which bounds the
eccentricities of the Hilda group in the (a, ) plane, while
the v\, resonance marks its boundary in the (e, i) plane.
Conversely, in the 2/1 mean motion commensurability,
the location of secular resonances is different, and a group
like that of the Hilda’s would be crossed (instead of
bounded) by the v, secular resonance. However, this fact
is not enough to explain the Hecuba gap completely, since
the v, resonance does not much influence the behavior
of the eccentricity. One could conjecture the existence
of slow chaotic diffusion associated with higher order
secular and secondary resonances, but this has not yet
been proved.

Concerning the mean motion commensurabilities we
investigate here, the existence of the gaps associated with
the 4/, 3/, and 5/2 resonances is usually considered
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as a solved problem. As a matter of fact, since these
commensurabilities occur in the inner part of the asteroid
belt, it is enough to show that the eccentricity is temporar-
ily forced up to moderate values to invoke depletion mech-
anisms due to close encounters with Mars. This is what
was done first by Wisdom (1985) for the 3/1 and by Yoshi-
kawa (1989, 1991) for the 4/1 and 5/2 within the framework
of the simple model of the planar restricted three-body
problem. However, we stress that this simple approach
is not completely satisfactory. Indeed, explaining a hypo-
thetical mechanism for the origin of the gap is not enough;
one should be able to understand the dynamical behaviors
usually observed in realistic numerical simulations which
take the full Solar System into account. Now, the deple-
tion of the gap due to temporary Mars-crossing, as pro-
posed by Wisdom, would be efficient on a typical time
scale of 100 myr. Conversely, the numerical simulations
(see, for instance, Farinella et al. (1993), Froeschlé et
al. (1995), Morbidelli and Moons (1993)) show that the
eccentricity behaves very chaotically, with jumps to 0.8
or even larger values; therefore, the asteroid becomes
an Earth-crosser and is gjected from the resonance on a
typical time scale of 1 myr only.

In this paper we show that the interaction between the
vs and the vg secular resonances generates wide and wild
chaotic regions which cover most of the phase space. In
particular, in these chaotic regions, the eccentricity is
free to jump to relevant values, even larger than 0.8, as
observed in the numerical simulations. The time scale of
this phenomenon is typical of secular dynamics, i.e., 1
myr.

As a matter of fact, in some cases these chaotic regions
generated by the interaction between v and vg do not
attain orbits with small eccentricity. However, we are
confident that the presence of secondary resonances
among the several degrees of freedom, as well as the
small “‘kicks’’ provided by temporary Mars-crossing, can
extend the chaotic regions almost everywhere, so that
any orbit can wander all over the full range of eccentricity.
We will provide a numerical example of this fact in the
frame of the 5/2 commensurability in Section 6.

For what concerns the 7/3 mean motion commensura-
bility, the approach based on the restricted three-body
problem, as in Yoshikawa (1989, 1991), fails to explain
the existence of the evidently associated gap. Here, we
show that, again, the interaction between the main secular
resonances vs and v creates a chaotic layer which extends
all over the phase space. The eccentricity can increase
up to 0.7, which is an Earth-crossing value, so that the
7/3 commensurability is quickly depleted.

In light of these results, we can therefore state that the
consideration of a more realistic model, which includes
the secular motion of Jupiter, changes also from the quali-
tative point of view the usual results provided by the

three-body model and allows a deeper understanding of
the observed (simulated) phenomena.

We also stress that our perturbation approach, based
on the introduction of Arnold action-angle variables and
on the successive elimination of harmonics, makes it pos-
sible to investigate all the mean motion resonances with-
out adaptive arrangements. This is particularly satisfac-
tory from a mathematical viewpoint, but is a nonnegligible
feature also from an astronomical viewpoint, since it
makes possible a straightforward comparative study of
all mean motion commensurabilities in the main asteroid
belt.

The remainder of this paper is structured as follows.
Section 2 is devoted to recalling the general settings and
the perturbation approach already described in our previ-
ous paper (Morbidelli and Moons 1993} in a more detailed
way. This section, important only from a mathematical
viewpoint, can be skipped in order to go directly to Sec-
tion 3, which discusses the common aspects of the dynam-
ics in the different commensurabilities. The next sections
are devoted to a more specific discussion on the 4/1,
3/1, 5/2, and 7/3 commensurabilities. We point out that,
in contrast to our previous paper, we restrict our study
to the planar case only, since the dynamics turns out to
be chaotic already without introducing the third degree
of freedom associated with the inclination.

2. RECALL OF THE GENERAL SETTINGS AND OF THE
PERTURBATION SCHEME

Our approach, presented in detail in (Morbidelli and
Moeons 1993), is based on the philosophy of the successive
elimination of perturbation harmonics (Morbidelli 1993)
and makes use of the Henrard’s seminumerical first-order
perturbation method (Henrard 1990). For the reader’s
convenience, and in order to provide a self-contained
paper, we will recall here the ditferent steps of the theory
we have constructed. This will be done without entering
into details as these can be found in Morbidelli and Moons
(1993).

We start with the Hamiltonian of the restricted three-
body Sun-Jupiter-asteroid problem (see, for instance,
Szebehely (1967))

TR Sl N I
x=L 2a ,u(

#) (1)

|r~—r’]_ r

where r is the heliocentric position vector of the asteroid,
r' that of Jupiter, p the mass of Jupiter, and L’ the conju-
gate momentum to the mean longitude of Jupiter. In what
follows we will adopt the usual notations for the Keplerian
elements of the asteroid (respectively, Jupiter); a (respec-
tively, a') for the semimajor axis, e (respectively, e') for
the eccentricity, i (respectively, i') for the inclination, A
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(respectively, L") for the mean longitude, & (respectively,
@') for the longitude of perihelion, and € (respectively,
Q') for the longitude of node. We will also use the usual
Delavnay’s momenta: L = V(1 — w)a, G = LV1 ~ ¢2,
and # = & cos i. The universal gravitational constant,
the semimajor axis of Jupiter, and the total mass of the
Sun—Jupiter system are chosen as units.

We immediately extend the problem by taking account
of the changes in orbital parameters of Jupiter due to the
presence of Saturn. This is achieved by incorporating the
most important terms of the synthetic theory of Jupiter
LongstoplB (Nobili ef af. 1989) into our theory:

e' cos @' = m;scos(gst + A + msqcos(ggt + A,
e’ sin@' = msssin(gst + A + ms g sin(get + 2D,
i (2)

sinicos O = nsgcos (st + ud),

H

i .
; = i 0
sin sin V' = nsqsin(sgt + ug.

By introducing variables appropriate to (p + g)/p a
mean motion resonance and averaging with respect to the
short periodic oscillations (mean longitude of Jupiter), we
end up with the six-degree-of-freedom Hamiltonian

#H = gsAs + gelg + sehie

_pta; l-p < 1
p 2a

r| r'> (3)

r—r| 3

where {.) denotes the average over A" and the phase space
variables are

—y=2Edy By N=E24p - H,
q q p

@5 = gst, As,

@6 = ge! Ag,

0 = s, Ale-

The averaged Hamiltonian (3) is composed of a main
part ¥y(o, S, o,, ., V) and a perturbation (o, S, o, 5.
v, N, @5, &g, '), which contains the terms proportional to
¢’ and i'. This Hamiltonian is neither expanded in power
series with respect to the eccentricity and the inclination
of the asteroid nor in Fourier series with respect to the

asteroidal angular variables; its value, and the value of
its derivatives, are numerically computed very precisely
for any given value of the phase space variables using
regular variables, as in (Ferraz-Mello and Sato 1989). In
order to prevent from any confusion, we make clear that
we do not perform the final expansion about the libration
center given in that paper. The theory is thus valid for
any value of the eccentricity and/or the inclination of the

- asteroid as well as for any value of the critical angles.

The perturbation #,, on the other hand, is truncated at
the first order in ' and i";

¥, = ms K, (o, S, 0,5,,v,N, @)

+ mj‘ﬁ%l,ﬁ(a', S, T, SZ’ v, N, (Bé (5)
+ n’5,6?€1,16(0" S! Uz: Sz! v, N; Q’)'

In order to study the dynamics associated with the
Hamiltonian (3), we look in the different regions of the
phase space for the harmonics with the predominant effect
and we proceed to their elimination like in (Morbidelli
1993); finalty, we apply the Henrard’s seminumerical first-
order perturbation method (Henrard 1990).

2.1. Reduction to the Planar Problem

As announced in the introduction, we restrict our ap-
proach in this paper to the planar problem where we
impose i = i' = n55 = 0. In this case, the Hamiltonian
(3) is reduced to

H = gAs + goAg + Hyla, S, N)
+ ms K (o, S, v + @5, N) {6

+ mS.G%I,ﬁ(Ur S5 v+ (Ilé, N)!

whose main part ¥, is integrable but highly nonlinear
(see, for instance, Henrard and Lemaitre (1983), Lemaitre
(1984), Moons and Morbidelli (1993)).

We introduce suitable action-angle variables for ¥,
(Henrard 1990)

o L
b= J‘zwﬂgs‘i"’

7

W =v - p, J,J), J=N,

which can be evaluated numerically for each periodic
trajectory of #Hy(a, §, N), T being the period of the trajec-
tory and p a periodic function.

With this choice of variables, the Hamiltonian (6) is
reduced to
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H = gsAs + gehg + HolJ,J")
+ ms sl s, S + @5, J) (8)
+ ms el O, T, ' + &g, '),

the unperturbed frequencies of the system being given by

In order to locate the secular resonances v and v, intro-
duced by the perturbation, we compute the level curves
w, = —gsand w, = —gg in the (a, e) plane as functions
of the initial conditions of integration (a, e, o = o*), a*
being the value of o at the stable equilibrizm point of the
first degree of freedom (o * = 0 for the 3/2, 2/1, 5/2, and
4/1 resonances; o* = #/4 for the 7/3 resonance; o* =
/2 for the 3/1 resonance). Results have been presented
in Moons and Morbidelli (1993) and are reproduced here
in Figs. 2, 6, 10, and 15 for the 4/1, 3/1, 5/2, and 7/3 mean
motion commensurabilities. In these figures, the solid
bold curve corresponds to the v secular resonance and
the dashed bold curve to the v secular resonance. As
shown in these figures, the two secular resonances v; and
v are relatively close to each other in general.

Moreover, we have also computed in the (a, ¢) plane
the level curves e/, = jin order to locate the secondary
resgnances introduced by the perturbation. In the 4/1,
512, and 7/3 cases, they seem to be embedded in a zone
very near the separatrix of the first degree of freedom.
Inthe 3/2, 2/1, and 3/1 cases, on the contrary, they appear
clearly at the center of the resonance, but for small to
moderate values of the eccentricity, very far from the
zone where the secular resonances v; and v, are found;
these results have already been published in Moons and
Morbidelli (1993) and are pot reproduced here.

The fact that ¢ is a much faster variable than ¢’ in the
region of the phase space near the secular resonances
allows us to average the Hamiltonian (8) with respect
to . Intreducing the canonical change of variables (the
momentum I’ is constant)

7 7
wr, Hr =Jf A_ Ag _
W=+ A (10

V= a A

and using the seminumerical first-order method of Hen-
rard (1990), we then get the two-resonance model Hamil-
tonian

T = g AL+ gl + Fy(1, T
+ ms s AT, ') cos(yss + o¥) (1)

+ m5,61_16(‘75 jl) COS(E& + 0-*)’

where the action J = J + O(e') is now an integral of
motion. The coefficients A,{J, J') are such that

AT, Ty cos(@) + %)

=BAJ, F)cos ¥ + C(J, ) sing), (12)

f A0 (0), S, v() — wyt,
N, &

pulley

=0)dt. (13)

The integral is computed along the periodic trajectories
of #, as in (7), the initial condition »(0) being 0. The
coefficients C,(J, J') are also given by the integral (13)
but with the initial condition ¥(Q) = =/2.

As said previously, the two secular resonances vs and
vg, are relatively close to each other. On first making an
approximation, however, and in order to have an idea of
their extent by means of a semianalytical theory, we will
consider these resonances separately, taking one of them
into account while neglecting the other one and vice versa.
This will lead us to study the two-degree-of-freedom integ-
rable Hamiltonian
H=gd + Ty T, J) + mg , A(T, T) cos(y] + a*), (14)
describing the secular dynamics associated with »; in the
plane.

We have computed the location of the separatrices of
(14) for different levels J = ! as well as their traces in
the plane (a, e, o = o*, ¥} = %), ¢* being the value of
i corresponding to the stable equilibrium point of (14).
For the 3/! mean motion commensurability, the traces
of the separatrices, computed from the two independent
models, are shown in Fig. 6: continuous lines for the
separatrices of the v; secular resonance and dashed lines
for the separatrices of the ¢ secular resonance. Results
for the 4/1, 3/1, 5/2, and 7/3 commensurabilities are dis-
cussed in detail in the next sections. As in the 2/1 and
the 3/2 cases {see Morbidelli and Moons (1993)), we find
a very wide overlapping region of the two secular reso-
nances and, therefore, the approximation we have made
in studying v while neglecting v, (or vice versa) is here
also too crude.

In order to have a realistic model of the dynamics in
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the region of the v + v, secular resonances, we thus
must consider the whole two-resonance model Hamilto-
nian (11). This Hamiltonian has been integrated numeri-
cally and the results are discussed in the next sections.

3. SECULAR DYNAMICS IN MEAN MOTION
COMMENSURABILITIES: COMMON ASPECTS

This section describes the common features of the dy-
namics in the mean motion resonances and explains the
meaning of the figures presented in the next sections.

In a first approximation, we assume the orbit of Jupiter
to be circular, thus considering the eccentricity of Jupiter
as a perturbation parameter. From the physical point of
view, this is justified by the fact that the motion described
by the circular problem is the one with the shortest time
scale. Moreover, we restrict our analysis to the plane of
Jupiter’s orbit,

After averaging over the mean longitude of Jupiter (A"),
the planar circular problem is integrable. For our pur-
poses here it is sufficient to recall that the dynamics de-
scribed by the averaged planar circular problem has a
constant of motion

> (15)

N=V{- ,u.)a(p a4 1= ez),
where a and e are the semimajor axis and the eccentricity
of the asteroid. Figures 1, 5, 9, and 14 show the curves
N equal constant in continuous lines, Moreover, in these
figures, the central bold line denotes the main stable family
of equilibrium points. The two thick lines on the sides of
each figure denote the separatrices, which can be consid-
ered as the real bounds of the mean motion resonance in
consideration. Indeed the critical angle of the resonance,
ie.,

(» and @ being the mean longitude and the longitude of
perihelion of the asteroid) librates for all orbits under
initial conditions at & = o * in between the two thick lines
{(a* = O for the 5/2 and the 4/1 resonances, c* = #w/4 for
the 7/3 resonance, and o* = 7/2 for the 3/1 resonance).
For these orbits, a and e oscillate, together with the libra-
tion of o, on a line N = constant, passing from the left
side to the right side of the stable branch and vice versa.
The maximal distance from the stable branch is reached
when ¢ = o* {& < 0 on the left side and & > 0 on
the right sidej. Therefore, the separatrices denote the
maximal libration amplitude.

We now analyze the effects produced by the eccentric-
ity of Jupiter’s orbit.

The main effect is that the action N is no longer a
constant of motion. N changes on a longer time scale
together with the motion of the asteroid’s longitude of
perihelion and with time (since Jupiter’s eccentricity and
peribelion change with time). However, the area -2/
enclosed by the trajectory during the ¢-libration (rigor-
ously defined in Section 2} is an adiabatic invariant. In
Figs. 1, 5, 9, and 14, the dashed lines denote some curves
J = constant on the (a, ¢) plane at ¢ = o*. This picture
should be interpreted as follows: the dynamics changes
slowly, changing the value of N, but in such a way that,
any time o = o*, a and ¢ are always on the same dashed
line.

The variation of N can have different behaviors (small,
large, regular, or chaotic) in the different regions of the
phase space. In particular, relevant phenomena can occur
near the two secular resonances v; and »,. In Figs. 2, 6,
10, and 15 we report the location of these two secular
resonances for each mean motion commensurability, the
bold solid line denoting the v and the bold dashed line
the v, resonances (in the case of the 4/1 mean motion
commensurability only the v; is found), Moreover, the
pair of solid lines (for ;) and the pair of dashed lines (for
v} delimit the amplitudes of the two secuiar resonances,
defined by the location of the corresponding separatrices
which are computed by taking only account of one reso-
nance at a time. However, the amplitudes are plotted
only when the dynamics associated with the resonance
is pendulum-like. This is not always the case, especially
concerning the vs resonance in the 4/1 and 7/3 cases.
Therefore, Figs. 3,7, 11, and 16 show the dynamics given
by the v; resonance (completely neglecting the v effect)
on different J-level surfaces. These figures can be directly
compared with Yoshikawa’s (1990, 1991); however,
Yoshikawa's figures report @ — &; on the x axis and the
eccentricity on the y axis while ours report q = & ~
gst — o* and N. The conversion can be easily made by
using the N and J levels plotted in Figs. 1, 3, 9, and 14,
The agreement between our results and Yoshikawa’s is
very good in all cases, At this stage, indeed, our results
are equivalent to those provided by the planar elliptic
restricted three-body problem.

However, the dynamical effects of the v, resonance
and, in particular, the strong interaction between v and
v, cannot be neglected in order to get a realistic picture of
the motion. We have therefore dealt with a two-resonance
model (see Section 2) that we have integrated numerically.
Figures 4, 8, 12, and 17 show several numerical sections
of this model. The coordinates reported on the axes are
Nand q = & — g — o¥, the angle g + o* being the
critical angle of the v, secular resonance. The section is
made on the critical ' = & — gg¢ — o* = 0, the angle
q" + o* being the criticai angle of the v, secular reso-
nance. It is worth noting that, g5 being the average fre-
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quency of Jupiter’s longitude of perihelion @, and g, the
average frequency of Saturn’s longitude of perihelion Gy,
the critical angles ¢ + o* and q' + o* are usually indi-
cated in the literature as & — @;and & — @y, respectively.

We stress that our surfaces of section are not transver-
sal to the dynamics, namely that they are not Poincaré
sections. This is due to the fact that the angle q' may
circulate in both directions or librate. However, they are
very useful to distinguish chaotic motion from guasi-inte-
grable motion. The lines N = constant and J = constant
of Figs. 1, 5,9, and 14 permit the translation of the results
into the original variables a and e.

The numerical sections recall the corresponding Yoshi-
kawa-like figures but, at the stage of the elliptic problem,
the secular dynamics turned out to be quasi-integrable.
Conversely, taking both secular resonances into account,
we can detect the existence of considerable chaos in all
the mean motion commensurabilities in study. This strong
chaotic behavior is well known from many numerical sim-
ulations. In this paper we provide, for the first time, a
semianalytical interpretation of this phenromenon. As a
matter of fact, few regular regions (of smail volume) are
still visible in the numerical sections. However, all of
them correspond to an eccentricity which is (at least tem-
porarily) sufficient to cross the orbit of Mars. We can
imagine that the close encounters with Mars, although
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FIG. 1. Dynamics in the 4/1 commensurability: the central thick

line is the stable family of periodic orbits of the planar circular restricted
problem; the two thick lines on the sides denote the separatrices at o

= 0; the solid straight lines mark some levels N=
V(1 - a4 — V1 — ¢%) = constant and the dashed lines dencte some

level J = constant (ail J values multiplied by — 10~°). The semimajor
axis unit is a’.
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FIG. 2. Secular resonances in the 4/1 commensurability on the plane
i = 0: the solid bold curve marks the location of the v resonance; the
vg resonance is absent. The dotted lines are the J levels on which the
phase space portraits of the »; resonance (Fig. 3) and the numerical
integrations of the two-resonance secular model (Fig. 4) are performed.

not very effective in general (they are effective only on
time scales on the order of 107 to 10® years), can easily
kick the astercids out from these small regular regions
and throw them in the surrounding chaotic layer.

Since the dynamics turns out to be predominantly cha-
otic at this stage, which takes into account only the planar
motion, we skip the investigation of the dynamics outside
the plane. Indeed, the extension of degrees of freedom of
the model can only increase the chaoticity of the resulting
dynamics, as remarked by Wisdom (1983).

4. THE 4/1 MEAN MOTION COMMENSURABILITY

The 4/1 mean motion commensurability lies at the inner
boundary of the main asteroid belt. Assuming the maxi-
mum aphelion distance of Mars equal to 1.703 AU and
that of Earth equal to 1.058 AU (Quinn ef al. 1991), the
threshold values of the eccentricity to become Mars- and
Earth-crossers are respectively 0.175 (N = 1.898) and
0.487 (N = 1.968) (see Fig. 1). As one sces in the Yoshi-
kawa-like pictures of Fig. 3, each orbit is at least forced
to reach the value N = 1.94 with the libration/circulation
of @ — @,. This mechanism is therefore accepted as the
general explanation for the existence of the gap.

As one sees in Fig. 3, the full phase space is dominated
by the v; resonance. Each surface J = constant cuts twice
the resonance curve (see Fig. 2) and this gives very com-
plicated phase diagrams instead of the typical pendulum-
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J=1.28

200
q

FIG. 3. The phase space diagrams of the »; resonance in the 4/1 commensurability for different values of J (all 7 values muftiplied by — 107%);
on the x axis, g = & — gs. These figures are equivalent to those obtained on the basis of the elliptic restricted three-body problem.

like portrait (in the two pictures at the bottom of Fig. 3,
for example, the saddle point and the stable equilibrivm
have the same value of q). Since the »5 dynamics is not
pendulum-like, in Fig. 2 we have not plotted the location
of the separatrices as an indicator of the resonant width
since this would not be particularly meaningful.

The 4/1 commensurability is the only one where we

cannot find the v, resonance, at least for 0.393 < g <
0.400 (the unit is a” = 5.2026 AU). Therefore this is the
mean motion commensurability which has the largest reg-
ular regions as shown in Fig. 4 (neglecting, of course, the
close encounters with the inner planets). For example,
for small amplitude o-librating orbits (first level J =
—1.58 x 1077 the regular tori fill the phase space up to
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FIG. 4. Surfaces of a section of the numerical integrations of the secular system vs + yg for the same J levels of Fig. 3. Top left: J =
—1.58 x 1075, Top right: J = —6.33 x 107, Bottom left: J/ = —1.27 X 107", Bottom right: J = — .90 x 1072

N =193, ie., ¢ = 0.36. However, the existence of the 5. THE 3/1 MEAN MOTION COMMENSURABILITY
second secular degree of freedom generates a wide chaotic
region around the main island where several secondary This resonance has been the object of the largest num-

resonarices between the period of libration of ® — &;and  ber of studies up to now. Since it is located in the inner
that of circulation of @ — @ are visible. part of the asteroid belt, the values of eccentricity which
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-
0.490

FIG. 5. The same as Fig. | for the 3/1 mean motion commensurabil-
ity; N= VI = wa w)a(3 — V1 — ¢?} and the separatrices are computed
at ¢ = 7/2. The J values are multiplied by —10-3.

are required to cross the orbit of Mars and that of Earth
are quite low, i.e., ¢ = 0.318 (N = 1.421) and ¢ = 0.577
(N = L.512) respectively (see Fig. 5).

Since the work of Wisdom (1985) the planar restricted
three-body problem has been extensively used in order
to explain the existence of the 3/1 Kirkwood gap. Figure
7 summarizes these results. At small [J| (orbits with small
amplitude of ¢-libration) orbits with starting eccentricity
¢ = 0.1 approach the Mars-crossing limit, at least tempo-
rarily (bottom of the top left picture of Fig, 7), consistently
with the results of Henrard and Caranicolas (1990); the v,
resonance is at much larger eccentricity (see also Ferraz-
Mello et al. 1993). At larger {J] (top right picture of Fig.
7} we can see Wisdom’s mechanism in action. A small
libration zone appears at moderate eccentricity and q =
0. This libration seems regular in Fig. 7, although one has
to recall that the bottom of the picture corresponds to
the separatrix of the first degree of freedom (i.e., the o-
resonance of the circular problem); therefore the curves
which look tangent to the bottom border are indeed cha-
otic, and they are the responsible for the famous **Wisdom
jumps.”’

In the 3/1 commensurability, however, the v, resonance
is also present and plays a relevant role. As one sees from
Fig. 6, the vs and v, resonances largely overlap. Taking
both of them together into account in a two-resonance
model, we find out that most of the dynamics becomes
chaotic (Fig. 8). In particular, the main pendulum-like

resonance at large eccentricity is destroyed and only an
island of regular motion persists embedded in a large cha-
otic layer, thus opening the door to large jumps of the
eccentricity (up to 0.9). This is typical of what one ob-
serves in the pure numerical simulations, rather than the
small reversible jumps to e = 0.3 first pointed out by
Wisdom’s mapping.

It is true that, according to Fig. 8, in the region with
moderate eccentricity (N < 1.45) and small |J], some
invariant tori seem to persist. However, along these tori
the asteroid has an eccentricity which forces it to cross
the orbit of Mars, and we can guess that the encounters
with the planet can move it from the invariant torus to
the main chaotic region where then the eccentricity goes
up 1o extremely large values; this mechanism could be
more efficient than the direct expulsion from the mean
motion commensurability due to a close encounter with
Mars.

6. THE 5/2 MEAN MOTION COMMENSURABILITY

For this resonance the threshold values of the eccentric-
ity to become Mars- and Earth-crossers are respectively
e = 0,397 (N = 1.165) and e = 0.625 (N = 1.266) (see
Fig. 9). Thus, even in the framework of the restricted
three-body problem, and invoking the Mars-crossing
depletion mechanism, one can explain the existence of

<
L T
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]

0.470 0.475 0.480

a

0.485 0.490

FIG. 6. The same as Fig. 2 for the 3/1 commensurability. In this
case also the v, resonance is present (bold dashed curve). The pair of
continuous lines and that of dashed lines mark respectively the location
of the separatrices of the v; and of the v, resonance.
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FIG. 7. The phase space diagrams of the v; resonance in the 3/1 commensurability for different values of J (all J values multiplied by —10-3);
on the x axis, q = & — gst — w/2.

this Kirkwood gap, since most orbits come to cross the cluding the effects of the v, resonance in our two-reso-

orbit of Mars. Indeed, looking at Fig. 11 one sees that nance model one essentially confirms this scenario. More-

only asteroids with very small |/| and librating with very  over, we see again (Fig. 12) that large scale chaos is the

small amplitude around the stable equilibrium at ¢ = 0 dominating feature of the dynamics, which is precisely

could escape the Mars encounters. what one typically finds in the pure numerical integrations
Taking the full secular problem into account, i.¢., in- of fictitious bodies in the 5/2 resonance.
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FIG. 8. Surfaces of a section of the numerical integrations of the
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As amatter of fact, like in the 3/1 case, this large chaotic
region does not seem to attain the invariant tori with small
N (see bottom of Fig. 12 top left). However, taking into
account the encounters with Mars, one can imagine jumps
from one torus to the next up to the large chaotic sea.
This conjecture is confirmed by the numerical simulation
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secular system »s + w, for the same J levels of Fig. 7. Top left: J =
x 1073 Bottom right: J = —6.71 x 1073,

of Fig. 13, which has been kindly provided by R. Gonczi.
This shows the evolution of a real object in the 5/2 com-
mensurability, when the full solar system is taken into
account. One can observe several regular circulations of
the critical angle of the » resonance @ — @, associated
with oscillations of the eccentricity. The fact that the
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FIG. 9. The same as Fig. 1 for the 5/2 mean motien commensurabil-
ity; N=V{1 — wa(5/2 — V1 ~ ¢}, The J values are multiplied by
—107%,

amplitude of these oscillations changes proves that the
orbit passes from one torus of the secular theory to the
other. Finally the orbit is captured in the chaotic region,
@ — d;inverses the direction of motion, and the eccentric-
ity jumps to 1.

7. THE 7/3 MEAN MOTION COMMENSURABILITY

This is the mean motion commensurability with the
largest semimajor axis that we analyze here. The thresh-
old values for the eccentricity in order to become Mars-
and Earth-crossers are e = 0.424 (N = 1.076) and ¢ =
0.642 (N = 1.180) respectively (see Fig. 14). Therefore,
in this case the gap cannot simply be explained on the
basis of the restricted three-body problem. Indeed, as one
sees in Fig. 16, the resonance forces large variations of
the eccentricity only on the diagrams corresponding to
small |J| (i.e., small amplitude of o-libration), but, even
in these cases, the orbits with N < 1.02 (t.e., with ¢ <
0.15) are not characterized by large eccentricity changes
and therefore never become Mars-crossers. This is indeed
the conclusion stated in Yoshikawa’s (1991) paper where
no definite explanation for the existence of the gap is
found.

However, the picture changes completely when the v
resonance is taken into account. In Fig. 17 we report the

results of the numerical integration of the two-resonance
model. Chaos is the dominating feature up to at least
N = 1.2, which delimits the region of overlapping between
the »; and v, resonances. Only microscopic islands of
regular motion persist below this value, which are anyway
above the Mars-crossing limit.

As a matter of fact, in some numerical integrations
of the Sun-Jupiter—Saturn—asteroid system, Yoshikawa
(1989) also found somes cases of large eccentricity varia-
tions and chaotic behavior even in the case of wide varia-
tion of o (large |J|). We show in this paper that this is not
true only for a few trajectories but that large eccentricity
variations are a general characteristic of the motion inside
of the 7/3 mean motion resonance. We can therefore con-
clude that the complete secular model makes it possible
to explain the origin of this Kirkwood gap.

8. CONCLUSIONS

With this paper we conclude our review on the dynam-
ics in the main mean motion commensurabilities in the
asteroid belt. All the commensurabilities analyzed here
are associated with evident gaps in the real asteroid distri-
bution. Most of these gaps have been explained in earlier
works on the basis of the planar restricted elliptic three-
body problem, showing that the eccentricity is pumped
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FIG. 10. The same as Fig. 6 for the 5/2 commensurability.
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FIG. 11. The phase space diagrams of the »; resonance in the 5/2 commensurability for different values of J (all J values mubtiplied by —10~5);
on the x axis, @ = @ — gq.
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FIG. 13. Results of a numerical integration of asteroid 1991 VPS5,
taking into account the full Solar System. On the left, the eccentricity
as function of time (in years); on the right, the critical argument of the
vs secular resonance @ — @, (in degrees) as function of time (in years).
See text for comments. -

up to Mars-crossing values, leaving to Mars the job of
depleting the commensurability region. However, realis-
tic numerical integrations of fictitious bodies which take
into account the perturbations given by the full Solar
System show that the orbits in these commensurabilities
are wildly chaotic and that the eccentricity wanders up
to very large values (~0.8), which leads to encounter not
only Mars, but also Earth and, sometimes, Jupiter on
a typical time scale of 1 myr. This behavior cannot be
explained on the basis of the simple elliptic three-body
problem. In this paper we take into account the effects
of the secular variations of Jupiter’s orbit which are due
to the presence of Saturn. We find that the two main
secular resonances vs and v4 exist inside the mean motion
commensurabilities. The interaction and the overlapping
between these two resonances generate wide chaotic lay-
ers of large scale chaos, which extend up to ¢ ~ 0.8, 1.0.
In this way we can provide a semianalytic interpretation
of the phenomena usually observed and understand the
origin of the 7/3 Kirkwood gap.
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FIG. 14. The same as Fig. | for the 7/3 mean motion commensurabil-
ity; N = V(1 — p}a(7/3 — V1 — ¢?) and the separatrices are computed
at ¢ = 7/4. The J values are multiplied by — 1075,
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FIG. 15, The same as Fig. 6 for the 7/3 commensurability. The
separatrices of the »; resonance are not plotted.
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1=6.21 1186,

FIG. 16, The phase space diagrams of the w5 resonance in the 7/3 commensurability for different values of J (all J values multiplied by
—107%: on the x axis, q = & — gy — =/4.
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