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A practical algorithm for the computation of the dynamic evolu-
tion of asteroids which are inside or close to a secular resonance
has been developed. The results are checked with many numerical
simulations of both real and fictitious objects. These tests prove
that the algorithm is able to identify the dynamic nature of resonant
objects and distinguish between future planet crossers and regular
bodies. The short CPU time necessary for its execution makes it
a useful tool for studying the mechanisms of meteorite transport
to the inner Solar System. For this purpose, the sets of initial
conditions which lead to large eccentricity in the »; secular reso-
nance are identified. Finally, the dynamic behavior of 44 numbered
asteroids very close to the v, resonance is analyzed. Only 4 of these
astereids are found in regions dangerous for their stability. A few
others become temporary Mars crossers. The rest of them, as 6
Hebe, have a moderate eccentricity during all their quasi-periodic
dynamic evolution. © 1993 Academic Press, inc,

1. INTRODUCTION

In this paper 1 present a method for the fast computation
of the dynamic evolution of objects of the asteroid belt
which are close to a secular resonance and discuss the
quality of the results.

It is well known that the theories for the computation of
proper elements (see Williams 1969, Milani and KneZevié
1990, 1992, Lemaitre and Morbidelli 1992) cannot work
in presence of secular resonances. On the other hand,
the existing theories on secular resonances (Nakai and
Kinoshita 1985, Yoshikawa 1987, Morbidelli and Henrard
1991b) describe, more or less qualitatively, their dynamic
properties, but do not provide a direct way to compute for
any desired object its secular resonant dynamic evolution,

The scarce interest in the quantitative analysis of secu-
lar resonances seems motivated by the fact that actually
only a small fraction of real asteroids are near or inside
secular resonances; therefore, owing to their limited num-
ber, the best way to study the dynamic evolution of these
objects is by direct numerical integration. A lot of numeri-
cal work has been done in this direction by Froeschlé and
Scholl {1987} and Scholl and Froeschlé (1990).
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However, the situation changes drastically when one
wants to study the dynamics of thousands of fictitious
fragments of asteroids, in order to investigate in a statistic
way the efficiency of secular resonances in delivering
meteorites to the Earth. In a recent paper by Farinella ef
al. (1993), for example, only 18 of thousands of fragments
of 6 Hebe were numerically integrated. A numerical inte-
gration of 1 Myr takes approximately 10 hr of CPU time
on a HP720 machine. Here 1 propose a semianalytic quan-
titative method for the computation of the secular evolu-
tion of a resonant object as well as for obtaining a picture
of the phase space around it that takes less than 1 min of
CPU time on the same machine.

The name ‘‘resonant proper clements™ is somewhat
ambiguous and needs to be explained. One can speak of
“‘proper elements’ any time one can find an integrable
approximation of the problem under study. Now, an iso-
lated secular resonance can be easily approximated by an
integrable model. Indeed, secular resonances are not very
chaotic: they induce large but regular variations of the
eccentricity or the inclination. Chaos exists only close {o
the critical curve which connects the unstable equilibrium
point to itself. It is true that the large variations of the
ecceatricity often cause the resonant object to become a
planet crosser and subsequently have a chaotic motion;
however, up to the first close approach, the evolution is
deterministic and can be computed with accuracy. There-
fore, once an integrable model to approximate the real
dynamics has been constructed, one can define a resonant
proper element as any identifier of the trajectories of the
model. For objects which are in regions of the phase space
which are protected from close approaches, one could
choose, for example, the values of eccentricity and incli-
nation when the critical angle of the resonance is 0 or
180°. In this paper, however, I prefer to give a picture of
the fuli phase space so that one can easily see the dynamic
evolution of the object and understand it by looking at
the global resonant topology. Of course, the evolution
with respect to time can be provided also.

The algorithm for the computation of the integrable
approximation of the resonant dynamics is derived from
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the general theory of secular resonances by Morbidelli
and Henrard (1991a) and the theory for the computation
of proper elements by Lemaitre and Morbidelli (1992). Its
guidelines are explained in Section 2. Briefly put, starting
from mean elements {derived from Milani & KneZevi¢’s
program, see Milani and KneZvi¢, 1990), instead of elimi-
nating all secular perturbation terms, as in the case of the
computation of the usual proper elements, I eliminate only
the nonresonant harmonics. What I get is an integrable
Hamiltonian K{/J, Z, o), where ¢ is the critical angle of
the resonance in study, canonically conjugated to a linear
combination of the actions J and Z. Therefore, the compu-
tation of the resonant proper elements of an asteroid pro-
ceeds in two steps. First 1 compute its **semiproper ele-
ments,”” i.e., a set of values of the action-angle variables
J, Z, o after the elimination of the nonresonant terms.
Second, using the semiproper elements as initial condi-
tions, I compute the secular evolution integrating the reso-
nant Hamiltonian K, Alternatively, I plot the initial condi-
tions onto the picture of the phase space of K, thus getting
a global view of the dynamics,

In Section 3 I discuss the results from the real resonant
asteroids, the numerical integrations of which are avail-
able in the literature. These objects are in the main secular
resonances vs, vq, or ¥i5. The vs resonance occurs when
the precession rate of the asteroid’s longitude of perihe-
lion is in 1/1 resonance with the precession rate g of the
perihelion of Jupiter; the v, resonance is the 1/1 commen-
surability with the precession rale g, of the perihelion of
Saturn; the v resonance is the corotation between the
nodes of the asteroid and of Jupiter—Saturn (the nodes of
Jupiter and Saturn are alligned, i.e., £, = 180° + (., in
the approximation which neglects the perturbations of the
other planets). I will discuss also the connection with the
nonresonant proper elements (Lemaitre and Morbidelli,
1992) for those objects which are close to the resonance,
like 582 Olympia (close to v¢) and 739 Mandeville (close
to v).

Section 4 is devoted to a deeper investigation of the v,
resonance. The phase space associated with this reso-
nance has a peculiar topology, somewhat different from
the classical picture provided by the **second fundamental
model” (see Henrard and Lemaitre, 1983). This makes
this resonance much stronger than the other ones, in the
sense that it can pump the eccentricity up to extremely
large values (>>0.8). The semianalytical results have been
tested with many numerical integrations by R. Goncazi,
and some comparisons are shown in this paper. In order
to have a good correspondence with al/l the numerical
results, the frequency of the longitude of perihelion com-
puted for the asteroids has been corrected by 0.4 arcsec/
year. This correction is of the same order as the contribu-
tion of the inner planets, which are not taken into account
in the model.
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Moreover, by running the resonant proper elements
program for several initiat conditions, I carry out a sys-
tematic exploration of the v resonance, which allows me
to point out the locations of the regions of danger in the
space of mean elements, where the eccentricity is forced
to increase up to at least 0.4.

Finally, I examine the behavior of the numbered aster-
oids which currently have moderate eccentricity and
which are very close to the resonance, so that nonresonant
proper elements are not convergent or have a poor accu-
racy. I find that only four of these asteroids are actually
in regions dangerous for their stability and should be con-
sidered as temporary objects in the main asteroid belt. A
few others, although stable from the point of view of
resonant dynamics, become temporary Mars ¢rossers.
The rest of them, such as 6 Hebe, have a moderate eccen-
tricity during all their quasi-periodic dynamic evolution.

2. THEORETICAL BACKGROUND FOR THE
COMPUTATION OF RESONANT
PROPER ELEMENTS

This section is devoted to a brief explanation of the
algorithm for the computation of the resonant dynamics.
Actually, this algorithm is nothing but a modification of
the one for the computation of nonresonant proper ele-
ments {see Lemaitre and Morbidelli, 1992), so | refer
to that paper for a more detailed description and for all
common technical details.

In my model, I take into account the perturbation ef-
fects of Jupiter and Saturn. The Hamiltonian of the prob-
lem is averaged with respect to the mean longitudes of
the asteroid and the planets, provided that they are not
in 2 mean motion resonant configuration. The averaging
operation introduces, following the Li¢ algorithm, terms
of higher order in the perturbing masses of the planets,
Here I take into account only the guadratic term in the
mass of Jupiter. The averaged Hamiltonian is computed
without any expansion in power seri¢s of the eccentricity
and the inclination of the asteroid, in order to have an
accurate model also for large values of these variables.,
The Hamiltonian and its derivatives are stocked once for
ever in a three-dimensional grid in the a—e—i space as in
(Lemaitre and Morbidelli, 1992). By spline interpolation
one then computes the Hamiltonian at any desired point
of the phase space.

The key point of our theory of secular motion (and of
Williams® one, see Williams 1969) is the expansion of the
averaged Hamiltonian in power series of the eccentricity
and inclination of the planets, which are small and there-
fore assumed as perturbation parameters. Then, only the
linear terms in {(¢’, i’) (the ' symbol referring to the planets)
are retained, consistent with our perturbation approach,
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which is a first-order one. With these settings, the secular
Hamiltonian K is split into K, + K,, where K, is the
averaged perturbation caused by the planets, assumed to
be on coplanar circular orbits, and K, is the linear part
in (e, i').

Itis easy to prove (Kozai 1962} that K is a two-degrees-
of-freedom integrable Hamiltonian, although its dynamics
are not trivial. In particular, at a critical inclination (~35°
in the asteroid belt) the argument of perihelion can librate,
while, at lower inclination, the argument of perihelion
always circulates. On the other hand, K| is time depen-
dent, since it depends on the variables of the planets
which are assumed to change with time following the
linear theory relationship,

e; cos(@) = M, s cos(gst + AJ) + M, cos(ggt + A
e sin(@/) = M;ssin(gst + A + M ¢ sin(ggr + A
sini; cos Qj = N;gcos(sgt + ug)

sinij sin )} = N;gsin(sgr + ug)

the index j referring to Jupiter (j = 3) and Saturn (j =
6).

In the following we assume K, to be a perturbation of
K. In order to study this dynamic system, we first intro-
duce suitable canonical Arnold action-angle variables (J,
¥, Z, z) in order to transform K|, into a Hamiltonian inde-
pendent of the angles v and z. A detailed discussion on
these action-angle variables and on the way to handle
them numerically can be found in previous papers (Morbi-
delli and Henrard, 1991a) and (Lemaitre and Morbidelli,
1992). Here I recall only the ‘‘meaning’ of these vari-
ables. Since X is integrable, its phase space is foliated
into invariant tori. The values of the actions J and Z
identify each torus. Z turns out to be \/E(I - V1 =g
cos {), while J is the area (divided by 2w) enclosed by
the orbit obtained integrating K, in the coordinates
(Va(l — 31 — cos i), w), where @ is the argument of
perihelion. Moreover, the angles  and z are linear func-
tions of time; i.e., they have constant frequencies », and
v, (functions of the torus (J, Z)). The frequency v, is equal
to 27/T, where T is the period of circulation/libration of
the argument of perihelion; the frequency v, is the average
frequency of the longitude of perihelion (with opposite
sign).

The action-angle variables (J, ¥, Z, z) are then intro-
duced in the perturbation K . Here lies the main difference
with respect to our work on nonresonant proper elements
(Lemaitre and Morbidelli, 1992): instead of evaluating K|
in the new variables in closed form, I compute here its
Fourier expansion; specifically, I write it in the form

K =D iU, Z)costky — z — gz — AY)
k
+ > (s, Z) coslhkyr — 7 — get — M)
k

+ > dJ, Z)cos((k + D — z — sgt — I,
k

with £ running on the set of even integers. The coefficients
ci, ¢?, and df can be computed numerically by F.F.T. on
each torus (J, Z). Of course, in practice the series must
be truncated; the results shown in this paper are obtained
by truncating with |&| < 100.

The following step is the elimination of the angular
terms in K. This is done by applying the Lie algorithm,
here up to the first order only. In other words, I look for
a function W, such that

{wl,Ko} + Kl = 0,

where { } denotes the Poisson bracket.

The explicit knowledge of the (truncated) Fourier
expansion of K|, allows an explicit computation of W,
which turns out to be:

¢, 2)
vV, — &;

X sin(ky — z — gst — AD)

W|=Z"

% kvlb -

4 2 _ Cg(.], Z}
T kv, — v — g (D
X sin(kr — z — gef — AD
dyJ. 7}

+ > -

3 (k"'l)i}uJ*VZ_SG

X sin((k + Ih — z — s¢t — o).

The advantage of this formulation with respect to that
in Lemaitre and Morbidelli (1992), which makes no use
of explicit Fourier series expansion, is that the effect of
each perturbation term can be analyzed separately. In
particular, close to a secular resonance, one of the denom-
inators in (1) becomes small, and the effect of the corre-
sponding term is particularly large.

In the complete nonresonant case (none of the denomi-
nators is very small), all angular terms in K, can be re-
moved. In this case I obtain a procedure for the computa-
tion of nonresonant proper elements which is perfectly
equivalent to that in (Lemaitre and Morbidelli, 1992). In
short, the function W, generates a canonical transforma-
tion to new variables (J, ¢, Z, 7), implicitly defined by
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=1+ J.v.Z.7

J J a!’[, J,'\b’zszsr)

Z=E+aa_“/l(31$32azst)
z 2)
W, ~

T Z.7,t

=1 aJ(J',lb, .z, 1)

_; W 7o -

Z BP (J,'JJ3Z’Z![)

This implicit equation is solved in an iterative way. The
new variables (J, ¥, Z, 7) are called proper action-angle
variables, since they are constant of motion up to the first
order in the perturbation parameters (e, i'). They are
directly related to the nonresonant proper elements. [The
limits of definition of the actions (which correspond to
e = 0 ori = 0) are singularities for the solution of (2},
which could be eliminated using suitable Cartesian coordi-
nates: the use of the latter, however, gives rise to many
difficulties of technical type, so action-angle variables are
still preferred].

Let us assume, on the contrary, that we are in presence
of one isolated secular resonance (i.e., only one denomi-
nator in (1) is very small); in this case the dynamics are
much more complex, and one cannot eliminate all the
perturbation harmonics at one time. However, one can
still define in a perturbative way an integrable model of
the dynamics as a useful tool to approximate the real
behavior. The perturbation approach is explained in the
following.

First I proceed to the elimination of all angular terms
in K, except the resonant one. Therefore, I look for a
function W, such that

{W,, K;} + K| = resonant term,

so that W, has the form (1) after dropping the term with
the small denominator. The implicit Eq. (2) defines new
variables (J, 41, Z, 7) which I call now semiproper action-
angle variables, since the resonant term has not been
eliminated from X,. From the practical point of view, I
simplify this procedure, by setting in (2) ¥ = Y and z =
Z: as a matter of fact, the correction of the angles is of
order of a couple of degrees only and has a second-order
effect on the computation of the semiproper actions. This
simplification has the advantage that the derivatives of
W, (and therefore of K;) with respect to J and Z are no
longer necessary, thus speeding up the execution of the
algorithm.

In the semiproper action-angle variables, the new Ham-
iltonian reads

K7, Z) + ad. Z)costhp ~z2— vt — B), (3

where « indicates generically one of the coefficients ¢},
8, or d¢, and (v, 8) one of the pairs (g5, A9, (g¢. Ad), or
(s¢, 19, according to the resonance under study. It is
easy to see that (3) is the integrable model of the resonance
that 1 am looking for. Indeed, one can introduce new
canonical variables,

o= —k$+7+wvt+B S=Z

- (4)
8= ¥, ®=kZ+J,

so that (3) becomes

Ko(S,0) + 85 + oS, B) coso. (5

The dynamics described by (5) are confined on a surface
® = constant. The values of the semiproper actions ob-
tained solving (2) define the value of this constant. There-
fore, on the surface ® = constant, I compute for several
values of S the functions Ky(S, @) and «(S, ©). Actually,
I compute 3K,/98 (which is nothing but &), and « on 10
points covering the interval of definition of §, and I inter-
polate by monodimensional cubic splines. The value of
K, is computed integrating the interpolation function, and
da/dS by taking the derivative of the interpolation
function.

At this point, the integrable model of the secular reso-
nance is completely determined. The last step is the com-
putation of the dynamical evolution of the asteroid. The
values of the semiproper action-angle variables obtained
solving (2) define the values of § and o associated to
the present state of the asteroid. These are the initial
conditions for the integration of the equations of motion
given by (5), which describe the evolution {(S(¢), o(}} over
the time 7. Equivalently, one can have a global picture of
the resonant phase space by simply plotting the level
curves of (5) and putting the present position of the aster-
oid (S, o) on it. This is what has been done for the test
asteroids analyzed in Section 3.

Of course, one is interested in obtaining the dynamic
evolution of an asteroid in terms of the usual Keplerian
variables instead of the new action-angle variables (S,
). The conversion from the new variables to the more
familiar Keplerian ones is straightforward and is analo-
gous to that discussed in Lemaitre and Morbidelli (1992).
Given a pair (S, ®), by inversion of {4) I compute the
semiproper actions J and Z. These identify one orbit of
the integrable averaged Hamiltonian K, which describes
the periodic evolution of the mean values of ¢ and i along
with the circulation/libration of the argument of perihelion
. By choosing a reference value of w (surface of section)
one finally associates to (S, ®) a pair (e, i).
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3. TESTS OF THE RESULTS ON THE BEHAVIOR
OF SOME REAL ASTEROQIDS

In this section I analyze the numerical integrations of
real resonant asteroids which I have found in the litera-
ture. The aim is to compare these simulations with the
theoretical results of the resonant proper elements algo-
rithm and to show how the latter allows one to recover,
in a unitary scheme, all the known numerical results.

The first asteroid I analyze here is 945 Barcelona. This
object has been numerically integrated by Scholl and
Froeschlé (1990), who found it to be in the v resonance.
The picture on the left of Fig. 1 shows my theoretical
result. The coordinates are x = ¢ cosg and y = ¢ sing,
where o is the critical angle of the v; resonance; i.¢c., @ —
gst — A, or, approximately, @ — &, the subscript J
referring to Jupiter. The dot denotes the present position

astercid: 945
T 1T T 771

FIG. 1.

of Barcelona in the semiproper elements space, defined
by removing all perturbation terms except the resonant
one (see Section 2). The picture provides a global view
of the resonant dynamics, the curves denoting the lines
of motion. Barcelona is in the banana-shape region of
libration.

The two pictures on the right show the results of the
numerical integration and are taken from Scholl and
Froeschlé paper (1990}. The top picture shows the forward
integration, the bottom one the backward integration,
both on a time scale of 1 Myr. The coordinates are ] =
[20 — VI —eH]'? cos(@ — @) and ¢ = [2(1 —
V1 — )]V sin(@ — &,), which are close to my x and y.
The numerical integration shows essentially a two-time-
scale behavior. The ‘‘epicycles’” which cause large varia-
tions of the eccentricity are associated to the rotation of
the argument of perihkelion w, which is the secular motion

-04

Asteroid 945 Barcelona in the »; resonance: on the left the results of the theoretical model. On the right the results of the numerical

integration. (Top) The ferward integration for 1 Myr; (bottont) the backward integration for 1 Myr.
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with the shortest time scale. The banana-shape libration
is the real dynamical effect of the v resonance. In order
to compare the numerical integration with the theoretical
result, one should remember that the theoretical picture
shows the resonant motion on the surface of section w =
0, which corresponds to select the minimal value of the
eccentricity on each ““epicycle.”” Therefore, one should
compare the inner edge of the banana in the numerical
integration with the theoretical curve. Doing so, one sees
that in the numerical integration Barcelona cuts the ¢} =
0 axis at ¢ = 0.15 in the forward integration and ¢ =
0.20 in the backward integration. This is in very good
agreement with the result of the theoretical model.

The next asteroid 1 analyze is 582 Olympia. This aster-
oid is very close to the »; resonance, as the theoretical
model shows (Fig. 2, left). The critical angle of the reso-
nance circulates very close to the critical curve which

asteraid: 582

separates librating orbits from circulating ones. The
eccentricity (referring again to the section @ = 0) is
computed to be equal to 0.10 when o = 7 and 0.18 when
o = 0. The two pictures on the right of Fig. 2 show
the results of the numerical integration, taken again from
Schoell and Froeschlé (1990). The top picture concerns the
evolution of the critical angle with respect to time, which
circulates very slowly; the bottom picture shows the ec-
centricity as a function of the critical angle, in rectangular
coordinates. Again, to compare with the theoretical pre-
diction, one has to logk at the minimal eccentricity on
each epicycle; the values of the eccentricity when @ —
@y = (and & — @y = 7 (about 0.18 and 0.10, respectively)
are again in good agreement with the predictions of the
model.

Since 582 Olympia is not inside the secular resonance,
but only close to it, it is possible to compute for this

(582) OLYMPIA

v

90 180

(degrees)
4]

(J'—GJJ

—-90

-180

TIME (10® YEARS)

(582} OLYMPIA
N - A
T FRA 7

ECCENTRICITY

! n 5 ! 1 " ll

-90 0 90
O — & (degrees)

o . R
-180 180

FI1G. 2. Asteroid 582 Olympia close to the v; resonance. On the right the phase space given by the theoretical model. On the left the results

of the numerical integration.
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asterplid: 759
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FIG. 3.

asteroid also its nonresonant proper elements. As a
matter of fact, in this case the accuracy of nonresonant
proper elements is somewhat poor, due to the resonance
not being far away. However, apart from these accuracy
problems (which causes the nonresonant proper ele-
ments to be unsuitable, e.g., for family searches), the
connection between resonant and nonresonant proper
clements is simple, in principle: the resonant proper
elements program gives the evolution of the eccentricity
as a function of ¢, and, in particular, its minimal and
maximal value assumed at ¢ = 7 and ¢ = 0; the
nonresonant proper elements program gives the average
of the eccentricity with respect to the motion of o. In
this case the proper eccentricity is found to be about
0.15.

I come now to analyze some real asteroids which are
in the v, secular resonance or close to it.

The first one is 759 Vinifera. In Fig. 3, the picture on
the left shows my result. The coordinates x and y are
defined with respect to the critical angie of the v, reso-
nance whichis @ — ggr — A (again called o for simplicity).

o MODEL 9 BODY 10  {759) VINIFERA
g T T T T T T T Bl N ™
=<y i
[4¥]
=
L'
e
Py
£3)
<h
!
=g 4
o ! +
5 10
TIME (10° YEARS)
MODEL 8 BODY 10 (759) VINIFERA
—_— ~ ek e il
48]
£o .
g
o
E
=
[£3)
[ &)
0D v
& =] -
g T -
) 90 180 270 360

@ — @ (degrees)

Asteroid 759 Vinifera in the v, resonance.

According to the theoretical model, the critical angle of
the resonance librates with very small amplitude around
a stable equilibrium point at ¢ = ar. The picture in the
upper right corner shows the results of the numerical
integration, this time taken from Froeschlé and Scholl
(1987). A remark is necessary: the authors plot the evolu-
tion of @ — &g (the subscript S referring to Saturn) instead
of the evolution of o; the difference is &g — g4f and is
responsible for the oscillations with about 50,000 years
period and 50° amplitude which are clearly visible on
the plot. Therefore, in order to compare the numerical
simulation with the theoretical result, one should mentally
average out such oscillations and look at the long periodic
oscillation (the period of which is about 1| Myr}, which
has indeed a small amplitude (some 15°). The picture be-
low shows the evolution of the eccentricity as a function
of @ — @g. The average value (about 0.2) is close to that
predicted by the theory.

The asteroid 1222 Tina, which has been also mtegrated
in Froeschlé and Scholl (1987), has a very similar dynamic
behavior (see Table II).
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asterpid: 739
\O_+||1|||—|—[1 |||1||\I|L~j
O -
~
o
MODEL 9 BODY & (739) MANDEVILLE
o~ 0.4 T T T T T
o ‘
D - -
o
o ]
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e F
DI‘ t—
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O‘E’_L|IIJ;|I]4L [ I I T I L L 1 ! " . —
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FIG. 4. Asteroid 739 Mandeville close to the v, resonance.
o {2335) JAMES
Q .;\
ST |
‘—;'ﬂ‘ o
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o . bt =
0.5 0 0.5
1
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FIG. 5. Asteroid 2335 James, in the v resonance and in the region of libration of the argument of perihelion w.
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Figure 4 refers 1o the asteroid 739 Mandeville. On the
left I report the results provided by the resonant proper
elements program; on the right the numerical integrations
of Froeschlé and Scholl, plotted in the coordinates @} =
R - Vi—-e)'"? cosi@ — ag) and ¢5 = [2(1 -

1 — ¢)]"2sin(@ — @g). Although the numerical simula-
tion shows the superimposition of all secular modes, one
can do a qualitative comparison with the theoretical re-
sult. Also in this case, it is possible to compute nonreso-
nant proper elements, although with a poor accuracy; the
nonresonant proper eccentricity turns out to be about 0.23
and should be interpreted qualitatively as the average of
e over the circulation of . The behavior of 631 Philippina,
also integrated in Froeschlé and Scholl (1987), is very
similar to that of Mandeville.

The final case [ analyze in this section is 2335 James.
This asteroid, probably the nicest one from the dynamic
point of view, is presently in a double resonance: the
argument of perihelion librates around 90°, and the node
librates around that of Jupiter in the »,, resonance. The
perturbation approach followed in Section 2 allows one
to compute also the dynamic behavior of objects the argu-
ment of perihelion of which is in libration. On the left of
Fig. 5 1 show the results of my program on James. The
coordinates are polar ones: the radius is the inclination;
the angle is the critical one for the v 4 resonance; i.¢.,
Q — s¢¢ — pl, or, equivalently, 3 — Q,. Curves are
plotted only in the region of libration of the argument of
perihelion w and are cut when they encounter the Kozai
critical curve which separates the w-libration region from
the w-circulation region, Superimposed, I plot a scale for
the inclination, ranging from 30 to 60°. James appears
evidently in the banana-shape libration region of the vy
resonance. On the right of Fig. 5 the results of the numeri-
cal simulation taken from Froeschlé et al. (1991) are
shown. The coordinates are ¥ = [2(1 — e}/l
cos DY cos(Q — Qy), ¥3 = [2(1 — )V — cos '
cos(Q — ). The integration confirms the banana-shape
libration of James predicted by the model.

4. SYSTEMATIC EXPLORATION OF THE »; RESONANCE

Many numerical simulations of fictitious objects in the
asteroid belt show that the v, resonance is able to pump
up the eccentricity up to very large values (~0.8), unlike
all other secular resonances (see Froeschlé and Scholl,
1992). This fact suggests that the v, resonance is an active
mechanism for the transport of objects to the inner Solar
System. On the contrary, the previous examples of real
asteroids lying in the v¢ resonance show that the phase
space can also be very regular and the evolution of the
eccentricity bounded to moderate values. Therefore, this
section is devoted to a systematic exploration of the v,

resonance in order to understand better its associated
dynamic phenomena.

The v resonance has an unusual topology in the sense
that the resonant phase space is different from the typical
one described by the second fundamental model of reso-
nance (Henrard and Lemaitre, 1983). In the second funda-
mental model one assumes that the Hamiltonian of the
resonance has the form Hy(§)} + &H,(S) coso, with §,
o conjugated variables, and e small. This assumption is
satisfied in principle by secular resonances, £ being of
order of e’ or i’; however, the », resonance is particular,
at least in the inner part of the asteroid belt (a < 2.5 AU),
since H, is unusually smail, of the same order of eH,. An
example is provided by Figs. 6 and 7, which show the
energy profiles of the resonance for the two phase spaces
illustrated later in Figs. 9and 11. In Figs. 6and 7x = ¢
cosa (o = 0, m); the dashed curve is the value of Hyle),
i.e., K8, 8 + vS§ in formula (5), the dotted curve is
eH (e} coso, i.e., a(§, @) cosg in formula (5), and the
solid curve is their sum H. As one sees, H, and aH are
of the same size, so that the profile of A has a very unusual
shape compared with the typical one (see Ferraz-Mello,
1989).

The fact that H, is unusually small can be understood
in a qualitative way looking at Fig. 8, taken from
Morbidelli and Henrard (1991a) (simitar to that in
Williams and Faulkner, 1981}, on the location of the v
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FIG. 6. The energy profiles of the phase space of Fig. 9 on the x
axis. The dashed line is Hj, the dotted line is e, and the solid line is
H = Hy + eH,. See text for further explanation.
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resonance on the a—e plane for different values of the
inclination. The striking feature is that, at least in the
inner asteroid belt, the location of the v, resonance is
described by almost vertical lines, specifically, for given
inclination and semimajor axis, the resonance occurs
at all values of the eccentricity. Now, on a surface
©® = J = constant, on which the resonant dynamics
are confined, the inclination is almost constant; therefore
dHy/a8 = o is almost zero for all eccentricities. This
explains why, in Figs. 6 and 7, H; does not change
more than 107% in the range —0.65 < x < 0.65): the
same order as £H,.

As a consequence of these facts, the phase space of
the v, resonance can be quite ‘‘exotic,”” forcing the eccen-
tricity of the asteroid to become very large; some exam-
ples are provided in Figs. 9, 10, 11. Figures 9 and 10 are
computed for two fictitious fragments of the asteroid 6
Hebe which have been numerically integrated by Farinella
et al. (1993). Their initial conditions are reported in the
figure captions. The pictures on the left show the global
aspect of the phase space in the usual coordinates x and
v, the dots denoting the initial states of the fragments in
the semiproper elements space. The pictures on the right
show the results of the numerical integrations, in the same
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coordinates, up to the time when strong close encounters
with Mars and the Earth start to happen. Figure 11 con-
cerns a fictitious asteroid which has the same osculating
elements as 6 Hebe but with the inclination increased to
18.7 degrees (for Hebe i is 14.7°); two unstable equilibrium
points are visible in the picture! (The one at ¢ = 180°
could be an artifact of the model, which does not take
into account the secular effects of the inner planets). The
picture on the right of Fig. 11 shows the numerical simula-
tion of this fictitious object up to the occurrence of strong
close encounters with Mars. In the three cases, the numer-
ical integrations match with the corresponding theoreti-

cally computed phase space, proving that these exotic
pictures of the phase space describe properly the v, dy-
namics, at least at moderate eccentricities.

Some more details must be added on the comparisons
with the numerical integrations in this section. First of
allI changed the value of the secular frequency g, (usually
that given in Nobili er al., 1989) accordingly to the value
resulting from the numerical integrations, which is differ-
ent from the real one because Uranus and Neptune were
not included. Second, I increased the frequency of o given
by my model of 0.4 arsec/year, This empirical correction
of the theoretical results has turned out to be necessary
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in order to match a/f the numerical integrations of objects
lying deeply inside the v, resonance (for objects relatively
far from critical curves like Vinifera and Mandeville this
correction has no appreciable effect). The necessity of an
empirical correction should not be surprising. All models
are simplified and have some systematic error, due to the
fact that some perturbations are neglected or considered
in an approximate fashion. In this case, for example, I
neglect the direct effect of the inner planets (which are
taken into account in the numerical simulations) and the
terms proportional to the square of Jupiter's eccentricity
and inclination. As a matter of fact, the contribution of
these neglected perturbations to the final frequency of o
can be estimated to be just of the order of my “‘empirical
correction” in the neighborhood of the v resonance.

At this point, 1 am ready to make a systematic explora-
tion of the vy resonance. Figures 12 and 13 show the
topology of the phase space on surfaces ® =.J = constant,
fora = 2.349 AU and a = 2.425 AU, respectively. Essen-
tially, the inclination increases from picture (a) to picture
(d), therefore passing from ‘‘below’’ the resonance to
‘‘above’’ the resonance. It is important to observe that
the unstable equilibrium point is at ¢ = 180° when a =
2.349 AU, whileitisat o = 0° when a = 2.425 AU. The
reason of this basic change in the resonant structure of
the phase space should be looked for in the different
relative sizes of H, and eH,, as shown in Figs. 6 and 7.
The topology of the phase space changes again in corre-
spondence with the 3/1 mean-motion commensurability:
for a in between 2.5 and 2.7 AU, the unstable equilibrium
point is again at ¢ = 0 (see Fig. 3 in Morbidelli and
Henrard, 1981b). A new change occurs further away,
since in between 2.7 and 2.8 AU the resonant structure
of the phase space is again similar to that in Fig. 13,
R. Goncezi has kindly made many numerical simulations
(apart from those shown here) in order to test these results
of the resonant proper elements program. The agreement
between the numerical integrations and theoretical model
is always good. The only cases of evident inconsistency
have been found for fictitious objects lying in mean motion
resonances even of high order, like 11/4 or 8/3. This is
not surprising, since the double average of the Hamilto-
nian with respect to the mean anomalies is at the base of
the construction of my analytical model of secular dy-
namics.

Figure 14 points out which are the dangerous regions
of the v, resonance, i.e., the sets of the initial conditions
which lead to large eccentricity. The initial conditions are
in the space of mean elements. The eccentricity is as-
sumed to be equal to 0.15; the semimajor axis is chosen
on a grid ranging from 2 to 2.8 AU with a stepsize of
0.025 AU; the inclination has a stepsize of 1°. For what
concerns the angles, I choose four values of @ and ().
Figure 14a is made for w = (° and 2 = 124.19° (o = 07);
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FIG. 14.  The sets of the initial conditions in the »4 resonance, which
lead to e > (.4.

Fig. 14b is for w = I80° and Q = 124.19° (¢ = 180°);
Fig. l4c is for @ = 180° and O = 304.19° (o = 0°; Fig.
14d is for @ = 0° and ) = 304.19° (o = 180°). The dashed
region denotes the sets of initial conditions which lead to
e > 0.4; the two gaps around 2.5 and 2.7 AU are due to
the presence of the 3/1 and 8/3 resonances, in the vicinity
of which the averaged theory does not work. The 8/3 is
a faint resonance, but, being located at 2.70 AU, is de-
tected by the grid of initial conditions; conversely, other
resonances like the 7/2 are not detected by my grid. Their
dynamic effect, however, is taken into account through
the computation of the quadratic term in the masses. The
fact that the location of the dangerous region changes
quite significantly is Figs. 14c and 14d with respect to 14a
and 14b is due to the initial phase of the node, which acts
on the inclination, especially in the inner belt, near to
the v, resonance. All computations have been made by
applying the empirical correction of 0.4 arsec/year.
Finally, I analyze by the resonant proper elements pro-
gram a list of 46 numbered asteroids selected with the
following criteria: (1) their perihelion distance is larger
than 1.1 AUj; (2) they are close to the v resonance, so
nonresonant proper elements cannot be provided or have
a poor accuracy. From the dynamic point of view, these
are among the best candidates to become Earth crossers
in the set of all numbered asteroids with current moderate
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TABLE 1
Mean Elements of the Asteroids Close to the »; Resonance Analyzed in This Paper

No. w Y3 i e a No. w 2 ) € a

6 2353 1389 13.438 0.202 2.4253 2038 186.1 66.5 13.510 0.090  2.43520

31 67.1 244 26008 0.222 3.1530 2064 5.3 295.6  7.236 0.329 2.17819%
234 187.7 1449 14135 0.244 2.3857 2368 42.2 284.2 6.826 0.412 210536
413 252.0 1005 17.187 0.343 2.5830 2350 1249 3046 3.321 0.059 2.19194
426 222.0 306.6 20.966 0.104 2.8885 2548 291.7 2954 19.698 0.101 2.63317
512 2488 1037 7.174 0.253 2.1895 2604 1324 1215 13320 0.232  2.38790
623 126.9 3030 15634 0.113 2.4603 2642 158.6 203.8 14.674 0,184  2.42605
739 416 1356 19330 0.142  2.7376 2645 85.0 341.1 14.588 0,106 2.39138
759 2.8 313.0  21.304 0.206 2.6176 3050 58.4 262.8 2.644 0.188 2.22488
330 333.8 3333 16304 0.144 2.4310 a2 143.7  179.2 7.865 0.448 2.15157
1022 1248 109.2 19.530 0.170  2.8077 3356 156.8 1054 2,516  0.113 2.19285
1159 318.6 339.0 13888 0.058 2.3796 3402 3186 339.2 5.578 0.279  2.13181
1182 69.1 3266 10,499 0.117 2.25956 3558  309.1 336.3 14.300 0066 2.44138
1222 55.6 245.7 20.88¢ 0.250 2,79135 3665 278.7 1128 13.492 0.088 2.41829
1468 25.5 302.7  11.433 0.270 219577 3833 1665 1738 11.355 0.388 2.19571
1492 713 1440 4759 0.116 2.17308 3858 3440 3355  8.595  0.242  2.18949
1620 1016 1340 8299 0.154 221821 3939 2549 260 24405 0005 3.11376
1706 335.0 280.0 3.445 0.114  2.12550 4002 1936 1149 13.221 9.027 2.51556
1739 57.9 223.8 3.898 0.123 2.26114 4095 77.1 264.7 3.947 0.118 2.12014
1892 95.6 309.7 15394 0.089 246170 4320 263.1 201.7 6.460 0.113 2.19688
1916 340.6 332.2 13.848 0.449 227276 4547 418 3506 18.598 0.068 2.61353
2015 299.7 3354 12835 0.104 2.33541 4770 1999 1275 23.650 0.303  2.86497
2033 1394 3132 9.809 0111 2.22539 4923 943 1988 6.610 0.20F 2.14491

eccentricity. The list of the mean elements of these aster-
oids as provided by Milani and KneZevicis reported in
Table L.

For only two of these asteroids, i.e., 1706 Dieckvoss
and 2380 Heilongjiang, the algorithm for the computation
of semiproper elements does not converge, since the incli-
nation and the eccentricity are both small ( = Oand e =

0 are both singularities for the action-angle variables used
here, as explained in Section 2); for all the others, resonant
proper ¢lements can be computed and are reported in
Table II. For the same reason (small initial eccentrigity
and inclination) the resonant proper elements of 1739,
3050, 3356, and 4095 are somewhat poor, but not enough
to put in doubt their dynamic stability. Table II gives
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TABLE II
Numbered Asteroids Close to the v, Resonance

T{10%y)

No. a T e T(10%y)

6 2.425 0 0.08 107
180 0.28 316

234 2.386 1] 6.08 187
180  0.27 430

426 2.889 180 0.27 106
0 0.15 230

623 2.460 0 0.09 33
180 0.23 190

759 2.618 180 0.14 271

180 0.26 610

1022 2808 180 0.2¢9 53
0 0.06 211

1182 2.260 0 6.04 54
186  0.20 249

1468 2196 180 011 386
143 0.60 2080

1629 2,238 180 0.28 167
0 0.06 447

1892  2.462 0 0.03 68
180 0.20 288

2015 2335 180 0.17 99

0 0.01 330

31 3.153 0 0.21 73
180  0.38 398

413 2.583 0 0.13 163
180 037 400

512 2.1%0 0 0.03 202
180 0.33 623

739 2738 180 040 199
0 0.17 443

930 2431 130 0.14 271

180  0.17 524

1159 2,380 180 0.13 196
180 0.05 399

1222 2.791 180 0.29 30
136 0.18 280

1492 2173 180 030 230
0 0.05 542

1739 2.261 180 0.13 18
0 0.07 128

1916  2.273 0 0.25 227
180 0.46 472

2033 2.225 0 0.10 18

180  0.28 237

for each asteroid its number, its semimajor axis, and the
configuration angle, eccentricity, and time (in thousands
of years starting from the present epoch} corresponding
to two successive passages through the axis o = 0, o0 =
180. This allows one to understand completely the dy-
namic behavior of the asteroid; for example, o is 6 Hebe
circulates, while in 759 Vinifera librates around 180°. Con-
versely, if the asteroid’s eccentricity increases up to more
than 0.6, and therefore is such that my model (which
does not take into account the perturbations of the inner

planets) is no longer accurate, Table II gives the final
angle, eccentricity, and time (this occurs for exampie for
2368 Beltrovata), In Table II, the eccentricity is computed
on the section w = 90° and therefore is the largest one
assumed during the circulation of w. Table Il shows that
most of these asteroids, like 6 Hebe, are outside the dan-
gerous regions of the » resonance and have a moderate
eccentricity along all their secular evolution. Some of
them, although regular from the point of view of resonant
dynamics, become temporary Mars crossers. Only four
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TABLE [D—Continued

No. a o e T(103y) No. a o e T{10%y)
2038 2435 180 0.17 97 2064 2,178 180 0.33 7
0 0.02 325 0 0.14 257
2368 2.105 180 0.35 170 2548 2,633 180 0.30 200
130 0.60 585 0 0.01 537
2604 2388 180 0.31 90 2642 2.426 0 0.07 113
0 0.10 345 180 (.24 318
2645  2.391 0 0.06 35 3050 2.225 0 0.09 1106
180 0.24 259 180 0.18 237
3102 2,152 180 0.08 672 3356 2,193 180 0.15 68
137 0.60 16061 0 0.05 259
3402 2,132 180 0.28 41 3558 2.441 180 0.11 147
180 0.08 421 180 0.05 347
3665 2.418 0 0.02 85 3833 2.196 180 0.11 461
180 0.25 406 124  0.60 1161
3858 2.189 0 0.05 231 393% 3.114 180 0.25 227
180 0.24 507 180  0.10 510
4002 2516 180 0.19 41 4095 2,120 0 0.01 323
180 0.05 83 180 0.21 944
4320 2,197 0 0.10 12 4547 2.614 0 0.01 53
180 0.28 251 180 0.18 250
4770  2.865 o 0.18 167 4923 2145 180 0.31 864
180 0.39 352 180 017 1932

of them are forced to very large eccentricity (e > 0.6) and
can become Earth crossers: these are 2368 Beltrovata and
3102 (1981 QA) (already classified in the “*‘Eros’’ class by
Milani et al., 1989}, 1468 Zomba, and 3833 1971 SC. Figure
15 shows the evolution of the eccentricity of 2368 Beltro-
vata, integrated in (Froeschlé and Scholl, 1987): indeed
the eccentricity grows up to cometary values, as pre-
dicted, [ stress, however, that some asteroids could avoid
such a catastrophic evolution, owing to close encounters.
An example is provided by Gonczi's numerical integration
of asteroid 3102, which is shown in Fig. 16, In this case, a

very close encounter with Mars (4.8 x 10~* AU) changes
abruptly the semimajor axis, putting the asteroid in a safer
region of the y, resonance; this stops the secular growth
of the eccentricity. As a matter of fact, since the model
does not include the inner planets, the results of Table 11
can only indicate whether the conditions for close encoun-
ters will be fulfilled. A final remark concerns 1468 Zomba.
According to my computations, {see Fig. 17, on the left),
this asteroid is very close to the separatrix, and its eccen-
tricity should increase up to 0.6 in 2 Myr, after having
spent most of the time near the saddle point. For evident
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FIG. 15. The evolution of the eccentricity of 2368 Belirovata as
found in Froeschlé and Scholl (1987).

recasons, this result is very sensitive to any possible error;
for example, by changing the frequency of 0.1 arsec/year
the phase space becomes that shown in the picture on the
right of Fig. 17, with the asteroid safe in the island of
libration around 180°. Therefore, much care should be
taken in integrating numerically the orbit of this asteroid.
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FIG. 16. Numerical integration of 3102 (1981 QA) by R. Gonczi.
(Top) The evolution of the semimajor axis. (Bottom) The evolution of
the eccentricity. A very close encounter with Mars puts the asteroid in
a safe region of the v, resonance where the critical argument circulates.
As a consequence the growth of the eccentricity stops.
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up to 0.6 in 2 Myr (see also Table LT). However, a small perturbation of the model, e.g., changing the g, frequency by 0.1 arsec/year, provides

a qualitatively different result shown on the right.
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5. CONCLUSIGNS

The resonant proper elements algorithm allows one to
compute the dynamic evolution of objects close to a secu-
lar resonance. The comparisons with the numerical inte-
grations show that the results are fairly accurate, enough
io achieve the goal of the algorithm, which is to identify
the dynamic nature of resonant objects, i.e., to distinguish
among librators and circulators, future planet crossers,
and regular bodies. The short CPU time necessary for its
execution makes the algorithm a useful tool for the analy-
sis of thousands of fictitious objects, in order to carry
out a systematic exploration of the dynamics of asteroid
fragments, to be applied in particular to the problem of
meteorite transport. This will be done in a forthcoming
paper. We also plan to study in a more detailed way all
the real asteroids (including the planet crossers) which
are inside the main secular resonances.
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