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2/3 resonance). We have also confirmed the importance
of these resonances through the numerical integration ofThe dynamical structure of the 2/3 resonance at small incli-

nation is explored using numerical integrations of test particles both fictitious and ‘‘real’’ objects.
to compute the evolution of proper elements with time. The Duncan et al. 1995 showed numerically that in the 2/3
basic features are related to the analytically computed geogra- resonance there are orbits that are stable1 for at least 4
phy of secular resonances. This paper focuses on the existence byr. While this result was largely expected, an unexpected
of slowly diffusing chaotic orbits, which escape from the 2/3 one was the discovery of several orbits that escape from
resonance after billions of years. The origin of short-period the 2/3 resonance and encounter Neptune only after a very
comets may be related to the existence of such orbits. We

long time (.1 byr; this phenomenon also exists for othernumerically determine the rate at which 2/3 resonant objects
regions of the Kuiper Belt). The existence of these orbitsare delivered to close encounters with Neptune. From this result
is very important in understanding the origin of short-we estimate the number of comet-sized objects that should
period (SP) comets. Indeed, since their dynamical lifetimepresently be in the 2/3 resonance to explain the influx rate of
is very short, the SP comets that we now observe mustobserved short period comets; the result of 108 to 109 seems to

imply that 2/3 resonant bodies should be collisionally have left the Kuiper Belt just a few million years ago, many
evolved.  1997 Academic Press billions of years after their formation. Therefore, if one

believes that the bodies in the Kuiper belt evolve only
under the laws of dynamics (and do not suffer collisional

1. INTRODUCTION ‘‘kicks,’’ an assumption increasingly under discussion),
then SP comets must come from orbits in the Kuiper belt

The 2/3 mean motion resonance exterior to Neptune is that become unstable after billions of years, like those
probably the most interesting region in the Kuiper Belt; discovered by Duncan et al. (1995).
about 40% of the discovered objects seem to be located What is the nature of these orbits? What is the structure
in the resonance. Although this number is exaggerated by of the 2/3 resonance as far as long-term chaotic diffusion
observational biases, many of which favor the discovery is concerned? In this paper we try to answer these two
of bodies in the 2/3 resonance, it is nevertheless certain fundamental questions.
that the resonance is heavily populated. In fact, it could be The only way to explore diffusive phenomena acting
the dominant Kuiper Belt source of Jupiter family comets. over billions of years is provided by numerical integrations;

The dynamics in the 2/3 resonance have been already however, diffusive phenomena are usually hidden by large
partially studied in a previous paper (Morbidelli et al. short-periodic oscillations, so that one must introduce
1995). Using perturbation techniques we have shown that some proper elements and compute their evolution with
the secular dynamics within the 2/3 resonance are charac- time. We explain our strategy in Section 2. In Section 3
terized mainly by the presence of the n18 and Kozai reso- we discuss our results and show which parts of the 2/3
nances. The first of these is characterized by the corotation resonance should be considered active sources of objects
of the node of the body with the node of Neptune, and is on a time scale of billions of years. In Section 4 we compare
responsible for large oscillations of the inclination; the the numerical results with the analytically computed loca-
second resonance concerns the libration of the argument tion of secular resonances. Secular resonances characterize
of perihelion, and forces coupled oscillations of eccentricity
and inclination. In Fig. 5 of Morbidelli et al. (1995) we
have shown the location of both resonances on the e–i 1 Duncan et al. (1995) define an object to be stable if it does approach

within a Hill sphere of Neptune.plane (for orbits with small amplitudes of libration in the
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the main features of the dynamics in the 2/3 resonance:
they generate strongly chaotic regions at large amplitudes
of libration and are responsible for large oscillations of
the inclination. Unfortunately analytical theories do not
help us to understand the slow diffusion regions, since slow
diffusion must be driven by very high order secular and
secondary resonances which are beyond the limits of ana-
lytical approaches. In Section 5 we discuss the rate at which
objects leave the 2/3 resonance and are delivered to Nep-
tune. From this we estimate the order of magnitude of the
number of comet-sized objects that should be presently
in the 2/3 resonance to explain the observed number of
SP comets.

FIG. 1. Sketch of the dynamics of a mean-motion resonance in the
averaged circular restricted three-body problem. The figure shows that,2. DESIGN OF THE NUMERICAL INVESTIGATION
if the initial conditions are chosen on the line a 5 ares , the initial value
of s is related to the libration amplitude.To achieve a global view of the dynamics in the 2/3

resonance, we integrate the evolution of 150 test particles
over 4 byr, with initial conditions chosen as follows: the
semimajor axis of all particles is set equal to the exact The goal of our numerical integration is to study possible
resonance value, i.e., ares 5 39.5 AU; the critical angle of diffusive phenomena and their relation to the existence of
the mean motion resonance, namely,2 long-term escape trajectories from the 2/3 resonance. In

this task we are confronted with two main problems: first,
s 5 22l4 1 3l 2 g̃, if we want to have good time resolution, the evolution of

150 particles over 4 byr would produce an unmanagably
has been chosen randomly from 1808 to 3308; the eccentric- large numerical output; second, the oscillation of osculating
ity and the inclination have been chosen randomly in the elements would cover possibly genuine diffusive phenom-
intervals [0, 0.3] and [0, 58] respectively3; the longitude ena, since the latter are of much smaller amplitude. To
of perihelion g̃ and the longitude of node V have been overcome these two difficulties we compute on-line, nu-
randomly chosen in the range from 08 to 3608. merically defined, proper elements for the test particles.

The choice of the range of values for s needs elaboration. Indeed, by definition, proper elements do not have oscilla-
Neglecting all short-periodic and secular oscillations, for tions and their changes are directly related to chaotic diffu-
a given value of the eccentricity, the resonant phase space sion; moreover, since such changes are effective only on
with respect to a and s is as shown in Fig. 1; for a 5 ares long time scales, it is enough to record one set of proper
the initial value of s determines the amplitude of libration elements only every million years, therefore significantly
in the resonance. In particular, s 5 1808 corresponds to reducing the size of the output file.
the center of the resonance, namely, to the orbit with zero Proper elements can be defined and computed in several
amplitude of libration; s 5 3608 corresponds to the border possible ways. The most accurate procedure is probably
of the resonance, i.e., the separatrix. Moreover, the picture the use of digital filters (Carpino et al. 1987); however,
is symmetric with respect to s 5 1808, so that it is sufficient here we use the simpler procedure of the so-called ‘‘sup-
to choose initial conditions with s $ 1808. Thus, our choice action method,’’ which seems to be accurate enough for
of initial conditions allows us to cover the 2/3 resonance4 our purposes. This method was first introduced by Laskar
(including coverage of the secular phases) up to e 5 0.3 (1995) to analyze the results of a 15-byr integration of the
and i 5 58. This includes the region where most 2/3 reso- planets, has been extensively studied by Froeschlé and
nant Kuiper belt objects are located (see the Minor Planet Lega (1996) on several model maps, and has been already
Center list) and is therefore the most interesting one. applied to the dynamics of small bodies in Morbidelli

(1996). Briefly, the method relies on the following princi-
ple. Analyze a time-dependent signal with a running win-2 Here, l and l4 denote the mean longitudes of the test particle and

of Neptune, respectively, and g̃ is the particle’s longitude of perihelion. dow; if the signal is quasi-periodic, the maxima (and the
3 The inclination is measured with respect to the invariable plane of minima) assumed by the signal over each window are ap-

the Solar System. proximately the same (the accuracy improving with the
4 In fact, short-periodic and secular oscillations force the libration cen-

amplitude of the analyzing window). Conversely, if theter to move away from a 5 ares , s 5 1808. This decreases the probability
signal is not quasi-periodic, then the maxima (and theof randomly choosing initial conditions corresponding to orbits with very

small amplitude of libration. minima) will change from window to window. Now, if the
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time-dependent signal is the evolution of the actions of
a Hamiltonian dynamical system, the maxima (and the
minima) computed on each window can be considered
proper elements. Indeed, if the actions change quasi-peri-
odically with time (i.e., the motion evolves on invariant
tori), then the proper elements will not change, within the
numerical accuracy of the method; conversely, if the system
is slowly chaotic, the proper elements will still be free
of the short-periodic oscillations but will change slowly,
following the chaotic diffusion of the actions.

In the present case, the length of the analyzing running
window was set equal to 10 myr, and proper elements were
computed every million years. Therefore, the maximum
and the minimum assumed by a, e, and i were computed
on the intervals [0, 10] myr, [1, 11] myr, [2, 12] myr, etc.

As a check on the accuracy of such numerically defined
proper elements, the same procedure was applied to com-
pute the proper elements of Neptune, which can be consid-
ered a very good example of quasi-periodic evolution [cha-
otic diffusion of the outer planets, if it exists, must be
smaller than the present limits of detectability; see Laskar
(1990)]. Neptune’s proper elements turn out to be very
stable over the 4-byr integration: their rms deviation with
respect to their average value was 8 3 1024 AU for a,
1.2 3 1024 for e, and 1.2 3 1023 deg for i. Therefore,
we can be confident that the proper elements of the test
particles are accurate enough to study the structure of the
2/3 resonance and to point out the possible existence of

FIG. 2. Evolution of a regular orbit in the proper elements planesboth regular and slow chaotic orbits.
(a, i) (top) and (a, e) (bottom). Since the proper elements of regular

The integrations were performed using the swift mvits orbits do not change significantly with time, the evolution over 4 byr
program by Levison and Duncan (1994), which is based results in a small spot (Class 1).
on the symplectic algorithm originally designed by Wisdom
and Holman (1991). The integration includes the planets
from Jupiter to Neptune. The stepsizes are 1y for Jupiter, 2/3 resonance. In practice, what we call here ‘‘regular or-

bits’’ are the orbits such that their chaotic diffusion, if it2y for Saturn, 4y for Uranus, and 8y for Neptune and the
test particles. exists, is below the limits of detectability imposed by the

finite accuracy of our proper elements method.
The second dynamical class is that of strongly chaotic3. THE DYNAMICAL STRUCTURE OF THE

orbits (Fig. 3). The proper elements change wildly with2/3 RESONANCE
time (the arrows points to the initial condition); both the
eccentricity and the inclination increase to large values.Analyzing each of the 150 test particles’ evolutions in

the proper element space, we can identify four general The orbit represented in Fig. 3 escapes the 2/3 resonance
and encounters Neptune after only 420 myr.classes of dynamical behavior. In Figs. 2 to 5 we show the

evolution of one representative of each class in the plane The third dynamical class is that of long-term escapers
(Fig. 4). These orbits are weakly chaotic and diffuse veryof proper a–i (top) and proper a–e (bottom). The proper

elements here are defined as the maxima of a, e, and i over slowly in the proper element space. More precisely, the
proper eccentricity and inclination are almost constant, andthe running window (see Section 2).

The first dynamical class is that of ‘‘regular orbits’’ (Fig. the proper semimajor axis changes very slowly, diffusing in
this case to a larger value. Such diffusion in semimajor axis2). As anticipated in the previous section, proper elements

are constant for regular orbits, the osculating elements of denotes that the amplitude of libration in the 2/3 resonance
is slowly increasing. Diffusing in the proper element space,which change quasi-periodically with time. Therefore, the

evolution over 4 byr in the proper element space is simply these orbits finally dive into the strongly chaotic region.
Then, as is the case in Fig. 3, the proper eccentricity anda dot. Real regular orbits evolve on what the mathemati-

cians call invariant tori, and will never escape from the inclination change rapidly over a large region (note that
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longer integration time. Namely, extending the integration
time span would allow several orbits to pass from class 4
to class 3.

We stress, moreover, that since we are dealing with a
chaotic phenomenon, the outcome of diffusion is not deter-
ministic. Therefore, integrating the same test particles with
a different computer or with a different code, we would
probably find several test particles originally identified in
class 3 behaving as for class 4 and vice versa. Conversely,
particles that belong to class 1 or class 2 in one numerical
integration should still belong to the same classes in all
other numerical experiments.

To obtain a global picture of the dynamical structure of
the 2/3 resonance, we simultaneously plot together the
evolutions of the 150 test particles. Figure 6 shows the
resulting picture for the proper a–e plane; the colors denote
the values of the proper inclination, to preserve the three-
dimensional view of the phase space. We saw in Section
2 that we can define proper semimajor axis and eccentricity
either as the maximum of a and e or as the minimum of

FIG. 3. Same as in Fig. 2, but for a strongly chaotic orbit. The proper
elements change rapidly and over a large range, so that the points are
very dispersed. This test particle encounters Neptune after 420 myr. The
arrows point to the initial condition (Class 2).

the dots are dispersed). The orbit in Fig. 4 escapes the
2/3 resonance and encounters Neptune after 3.6 byr of
integration (!!); more than 99% of this time is spent diffus-
ing slowly to larger semimajor axis. We conjecture that all
the long-term escapers found by Duncan et al. (1995) be-
have in this way. Note that this kind of behavior should
not be an artifact of the numerical integration: indeed the
code that we use is symplectic, so that it should not intro-
duce artificial diffusions; moreover, the fact that we find,
in the same integration, regular orbits that do not diffuse
makes us confident that what we are observing here is a
genuine dynamical phenomenon.

The fourth dynamical class is that of orbits that, although
chaotically diffusing in the proper element space, do not
escape the 2/3 resonance during the full integration time
span (Fig. 5). These orbits have essentially the same nature
as those in class 3, but, just by chance, do not escape: they

FIG. 4. Same as in Fig. 2, but for a slowly diffusing chaotic orbit.spend part of the time diffusing toward smaller semimajor
The arrows point to the initial condition. The proper semimajor axis

axis, namely, toward smaller amplitude of libration; there- changes very slowly, diffusing to larger values, and finally the test particle
fore, they do not find their way to the strongly chaotic enters the strongly chaotic region where proper elements change quickly,

as in Fig. 3. The particle encounters Neptune after 3.6 byr (Class 3).region. These orbits would probably escape the 2/3 on a



2/3 RESONANCE IN THE KUIPER BELT 5

dispersed are the regions where the diffusion speed is larger
and proper elements change quickly.

More precisely, Fig. 6 reveals that the 2/3 resonance
has a well-defined structure. In the central part of the
resonance (small libration amplitude) there are the regular
stable orbits, which appear as small spots. We can easily
recognize at least six such orbits, indicated by the arrows.
The fact that proper elements do not diffuse with time,
together with the fact that our choice of initial conditions
disfavors small amplitudes of libration (as discussed ear-
lier), makes the central part of Fig. 6 relatively empty
of points.

Moving to larger semimajor axis (larger amplitude of
libration), most of the traces of the evolution of the orbits
are increasingly stretched; this reveals that these orbits
are weakly chaotic and that the diffusion speed tends to
increase with increasing semimajor axis. All these orbits,
however, diffuse so slowly that they have no chance to
escape from the 2/3 resonance within the age of the Solar
System. At the end of the 4-byr integration time span, all
of them are still well inside the resonance. No comets
undergoing pure dynamical processes can come from
this region.

Moving to larger semimajor axis, chaotic diffusion be-
comes more and more important. The traces of the orbits
fuse together, densely filling a two-dimensional region. The
blue and green colors show that the inclination does not
increase to large values. All the orbits in this region have

FIG. 5. Same as in Fig. 4 for another slowly diffusing orbit. In this a chance to escape from the 2/3 resonance during the
case the particle does not encounter Neptune in 4 byr, since most of the

integration time, but only about 50% of them actually dotime is spent diffusing to smaller proper semimajor axis (Class 4).
in our experiment, with escape times ranging from 1.5 to
4 byr. As discussed in conjunction with Fig. 4, these are
the orbits that happen to diffuse monotonically to largera and e over the running window; in Fig. 6 we plot both
proper a; conversely, the orbits that spend a significantvalues.5 As will be better explained in section 4, the two
fraction of time diffusing toward smaller proper a do notsets of proper elements correspond to the two sides of the
manage to escape, as illustrated by Fig. 5. Because of itsresonance on the section s 5 1808. This is the reason why
dynamical properties, this region can be an active sourceFig. 6 shows a sort of symmetry with respect to a p
of comets at the present age of the Solar System.39.5 AU, which is approximately the center of the reso-

At still larger semimajor axis, close to the borders ofnance.6 Moreover, in Fig. 6 we have performed some trans-
the resonance, we find the strongly chaotic region whereformations to the two sets of proper elements to allow a
the dots are very dispersed since the proper elementsdirect comparison with the results of the analytic perturba-
change quickly. We have shown in Fig. 3 that the particlestion theory. Such transformations are explained in detail
in this region have large inclination changes. This is con-in Section 4.
firmed here by the evident variety of colors: the maximalFigure 6 can be considered a global chart of diffusion
inclination reached by these orbits is 208–258. We show inin the 2/3 resonance. Indeed, since proper elements are
Section 4 (Fig. 8) that the strong chaotic behavior in thiscomputed every million years, the regions where points
region is determined by the interaction between the n18accumulate correspond to the regions where the diffusion
and Kozai resonances. The particles in this region havespeed is smaller (the proper elements change slowly with
short dynamical lifetimes. All of them eventually encoun-time). Conversely, the regions where the points are more
ter Neptune and, in our experiment, the region is com-
pletely depleted in 1.5 byr. Therefore this region should

5 In both cases the color is associated with the proper inclination defined
not be an active source of comets at present.as the maximum of i over the running window.

A final feature of the 2/3 resonance can also be observed6 In the following we always refer for simplicity to the right part of
the figure. in Fig. 6. At small eccentricity, all inclinations are pumped
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FIG. 6. Evolution of the proper elements of all 150 test particles. The color denotes the proper inclination. See text for comments.
FIG. 7. Map of diffusion speed in the 2/3 resonance. The color denotes the diffusion speed of the proper semimajor axis (measured in AU/10

myr). See text for comments.
FIG. 8. Location of the main secular resonances in the 2/3 commensurability with Neptune. The scale is the same as in Fig. 6, so that the two

pictures can be directly compared (see Section 4.3 for discussion). The thick lines denote the borders of the resonance. Note that the resonance
width shrinks at large eccentricity.
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uniformly to about 158; we show in Section 4 (Fig. 8) that The planets are assumed to move on Keplerian orbits
which undergo the secular changes described by the mostthis behavior is due to the presence of the n18 resonance.

From Fig. 6 we now derive a quantitative map of diffu- recent theories of planetary motion (see, for instance, Nob-
ili et al. 1989). Therefore the Hamiltonian is time depen-sion speed. Divide the phase space into boxes and consider,

one by one, all the points falling in each box. Each point dent through the mean longitudes lj and the secular angles
of the planets (which are all assumed to be linear functionscorresponds to the proper elements that one test particle

has at a certain time. Measure the difference Da, De, Di of time). We extend the phase space introducing new ac-
tions Lj conjugate to lj .with the proper elements that the same test particle has

10 myr later. Do the same for all the points falling in the To study the 2/3 resonance with Neptune we introduce
the canonical variablesbox and compute the average of the resulting values Da,

De, Di; this gives the characteristic diffusion speed of the
part of the phase space covered by the box. At the center
of the resonance, where we have poor coverage in Fig. 6,
some boxes turn out to be empty of points. For these boxes
we estimate the diffusion speed by interpolating the values

s 5 22l5 1 3l 2 g̃, S 5 L 2 G,

sz 5 22l4 1 3l 2 V, Sz 5 G 2 H,

n 5 2(22l4 1 3l), N 5 SdL 2 H,

l4 , L94 5 L4 1 SdL,

lj , Lj ( j 5 1, 2, 3),

from the neighboring boxes.
Figure 7 shows the result concerning diffusion in semi-

major axis Da, the colors denoting the diffusion speed
(measured in AU/10 Myr). Figure 7 confirms the radial
structure of the dynamics in the 2/3 resonance. The regular where L 5 Ïa, G 5 LÏ1 2 e2, and H 5 G cos i are the

actions conjugate to the mean anomaly l, the argument oforbits with negligible diffusion speed are at the center, and
the diffusion speed increases as one moves outward to perihelion g, and the longitude of node V; the index ranges

from 1 to 4, denoting the planets from Jupiter to Neptune.the borders of the resonance. The diffusion speed is also
nonnegligible at small eccentricity (e , 0.05); note that Recall that the longitude of perihelion is g̃ 5 g 1 V, and

that the mean longitude is l 5 l 1 g̃.the corresponding region in Fig. 6 is filled with points
due to the slow diffusion of proper elements. We remark This choice of variables provides a well-defined separa-

tion between the fast and slow degrees of freedom. Indeed,moreover that the black regular region shrinks as the ec-
centricity increases to 0.25. in the 2/3 resonance, s, sz , and n are slow angles that do

not move in the Keplerian approximation, while the mean
longitudes of the planets l1 , . . ., l4 are fast angles.4. THE GEOGRAPHY OF SECULAR RESONANCES

As a first step, the Hamiltonian is averaged with respect
In this section we first explain a semianalytical perturba- to these fast angles. The averaging procedure would trans-

tion approach to compute the location of secular reso- form the Hamiltonian into an asymptotic series in powers
nances inside the 2/3 mean motion commensurability with of the planetary masses ej ; for our purposes we just con-
Neptune. Then we discuss how to establish a relation be- sider the terms linear in the masses. Technically, the aver-
tween the numerically computed proper elements and the age over l1 , l2 , and l3 is performed analytically, while the
reference orbits used in the perturbation theory. Finally average over l4 needs to be computed numerically. Note,
we return to Fig. 6 and discuss the relationship between however, that the term that corresponds to the perturba-
the main features of the dynamical structure of the 2/3 tion forced by the jth nonresonant planet ( j 5 1, 2, 3)
resonance and the geography of the secular resonances. depends, in the variables above, on both lj and l4

so that it must be doubly averaged, while the term
4.1. Perturbation Theory and Secular Frequencies corresponding to the perturbation forced by Neptune

depends on l4 only.To study the basic features of the secular dynamics in
We now split the averaged Hamiltonian into two parts:the 2/3 resonance we use the usual Hamiltonian formalism.

H 5 H0 1 H1 . In H0 we place all the terms that areThe starting Hamiltonian is that of a massless body per-
independent of sz , n, and the planetary secular angles; H1turbed by the four giant planets, i.e.,
contains all the terms that average to zero with respect to
the above angles. Using the D’Alembert characteristics, it
is easy to see that H1 is at least proportional to the planetaryH 5 2

1
2a

2 O
j51,4

ej S 1
ur 2 rju

2
r ? rj

r3
j
D ,

eccentricities e9 or inclinations i9 or to the square of the
inclination of the massless body. Therefore, since e9 and
i9 are small and we are interested in orbits near thewhere r is the position of the massless body and rj is the

position of the jth perturbing planet with mass ej ; the solar invariable plane (i small), H1 can be considered a pertur-
bation of H0 .mass and the gravitational constant are taken to be unity.
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that the system has three degrees of freedom) are associ-
ated with the motion of the angles sz and n. These are
computed averaging ṡz and ṅ over one period of the refer-
ence orbit, namely,

kṡzl 5
1
T
ET

0

­H0

­Sz
(s(t), S(t), Sz , N) dt,

kṅl 5
1
T
ET

0

­H0

­N
(s(t), S(t), Sz , N) dt.

Again, these frequencies are calculated with the aid of
the computer. In these expressions S(t) and s(t) are theFIG. 9. Sketch of the evolution of (a, e) in the 2/3 resonance in the

averaged circular problem. The two large dots denote the numerically numerically computed solutions of Eqs. (1), and the two
computed proper elements and, in this case, correspond to the two sec- integrals are computed using a procedure of numerical
tions of the reference orbit at s 5 1808. The future is computed on a quadrature. It is worth remarking that, since the average
plane Sz (5)constant and the dashed curves correspond to constant values

frequency of s is 0 (recall that s librates), the fundamentalof N.
frequencies kṡzl and 2kṅl are precisely the secular frequen-
cies of the argument of perihelion g and of the longitude
of perihelion g̃.

The location of secular resonances is then defined as theThe Hamiltonian H0 is integrable, since by construction
set of reference orbits with fundamental frequencies init depends only on one angle, i.e., s. It represents the
rational commensurability with the planetary fundamentalbest integrable approximation of the dynamics in the 2/3
frequencies. For example, the n8 resonance is the 1:1 com-resonance. Therefore, the orbits of H0 are hereafter called
mensurability between 2kṅl and the average frequencythe reference orbits. Their evolution is very simple: they
of Neptune’s perihelion g8 ; the n18 resonance is the 1:1consist of a coupled oscillation in a and e, as shown in Fig.
commensurability between 2kṅl 2 kṡzl and the average9, while N and Sz are constant. Such oscillation is associated
frequency of Neptune’s node s8 ; the Kozai resonancewith the libration of s around 1808: the larger the amplitude
corresponds to kṡzl 5 0; and so on. Since, as explainedof libration of s, the longer the trace of the reference orbit
above, each reference orbit is represented by two dots onon the a–e plane. The alternate extremes of the oscillation
the section s 5 1808, we can use that section to plot thein a and e are reached each time that s 5 1808. Therefore,
location of secular resonances as curves on the a–e plane.on the section at s 5 1808, each reference orbit is repre-
Figure 8 shows the result for Sz 5 0, namely, on the invari-sented by two large dots (Fig. 9), one on each side of the
able plane. Note the presence of three main secular reso-resonance. The two bold lines in Fig. 9 denote the limits
nances. The n8 resonance is present only at large eccentric-of the maximal oscillation, corresponding to the maximum
ity or large amplitude of libration. This is due to the factlibration amplitude, for all possible values of N. These
that at small eccentricity and small libration amplitude thelines can therefore be considered the borders of the
frequency of the longitude of perihelion is negative and2/3 resonance.
of large absolute value (see Morbidelli et al. 1995). For theSince H0 is integrable, we can compute its frequencies.
same reason, the secular resonances with the fundamentalThese are precisely the fundamental frequencies of the
frequencies of the perihelia of the other giant planets arereference orbits. The first one is that of the periodic motion
even at larger eccentricity, outside the region covered byof the conjugated angle-action variables s, S. To compute
Fig. 8. The Kozai resonance, conversely, cuts the centerthis frequency, we numerically integrate the equations of
of the 2/3 commensurability at e p 0.25, and is thereforemotion,
much more important for the motion of observed resonant
objects. Finally, observe that the n18 resonance is present
at small eccentricity for small amplitude of libration. Inṡ 5

­H0

­S
, Ṡ 5 2

­H0

­s
, (1)

the same region, several low-order secondary resonances
can also be found: Fig. 8 plots by dotted curves the location
of the resonances 2f/T 1 k(2kṅl 2 g8), 2f/T 1 k(2kṅl 2up to the time T when the conditions S(T) 5 S(0) and

s(T) 5 s(0) are both fulfilled. The time T is the period g7), and 2f/T 1 K(2kṅl 2 g5) for k 5 1, . . ., 5 [the ampli-
tudes of the g6 terms are of negligible width in Neptune’sof the reference orbit under study, so that 2f/T is the first

fundamental frequency. spectrum so that the resonances 2f/T 1
k(2kṅl 2 g6) have not been plotted].The second and third fundamental frequencies (recall
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spond to the two stars in Fig. 10, which are shifted with
respect to the large dots by a quantity (da, de), which
is precisely the half-width of short-periodic oscillations.
Therefore, to establish the relationship with the reference
orbit, we have to measure the half-width of short-periodic
oscillations and to add it to (subtract it from) the values
of proper elements. This calibration eliminates the effect
of short-periodic oscillations on the definition of proper
elements, as if we were dealing with the averaged
problem.

Consider now the full averaged problem H0 1 H1 . The
effect of H1 is to force secular long-periodic oscillations
of the actions N and Sz and, possibly, chaotic diffusion.FIG. 10. Sketch of the evolution of (a, e) in the 2/3 resonance in

the nonaveraged planar circular problem. The two stars denote the numer- Consider only long-periodic oscillations. In this case, the
ically computed proper elements, and the dots denote the two sections evolution on the a–e plane looks like Fig. 11: the reference
of the reference orbit at s 5 1808. The stars differ from the dots by orbit changes slowly, oscillating between two N levels. If
an amount equal to the width of the short periodic oscillations of the

the analyzing running window is longer than the periodosculating elements.
of secular oscillations, the numerically computed proper
elements give the values corresponding to the two squares
in Fig. 11. A simple, approximate relationship with the
dots representing the mean reference orbit is provided byThe effects of the perturbation H1 on H0 consist of secu-
what we call the ‘‘N algorithm,’’ which can be expressedlar changes in Sz , N, and of the amplitude of libration.
as follows. Denote by (a1 , e1) and (a2 , e2) the coordinates ofThese changes occur on a longer period than the motion
the two dots; compute the values Nmin and Nmax associatedalong a reference orbit, so that in practice the motion
respectively with the couples of proper elements (amin ,in the complete system H0 1 H1 passes slowly from one
emin) and (amax , emax) and define N 5 (Nmin 1 Nmax)/2.reference orbit to another. The effects of H1 are magnified
Then a1 and a2 are approximately equal to amin and amax ,in the presence of resonances. The n8 resonance forces
respectively, and e1 and e2 are such that their correspondinglarge changes of N, the Kozai resonance forces large
N levels are equal to N.changes of Sz , and the n18 resonance forces large coupled

Let us now return to our numerical integrations of ficti-changes of N and Sz (with N 2 Sz remaining almost con-
tious particles in the 2/3 resonance. Since we integratestant).
the full equations of motion, in the numerically computed
proper elements [am(t), em(t)] and [aM(t), eM(t)], we have

4.2. Relationship between Proper Elements and
the effects of both the short-periodic oscillations and the

Reference Orbits
secular oscillations forced by H1 . So, we have first per-

We now discuss the relationship between the numeri-
cally computed proper elements (defined in Section 2) and
the reference orbits, which are at the basis of the analytical
computation of the location of secular resonances. For this
purpose, we consider the following gradual complication
of the equations of motion and the corresponding mean-
ings of the proper elements.

Start with the simplest set of equations, namely, those
of the averaged planar circular restricted problem with
Hamiltonian H0 . In this case the relationship is straightfor-
ward: the numerically computed proper elements give ex-
actly the two large dots in Fig. 9, i.e., the sections of the
reference orbit with s 5 1808.

Consider now the nonaveraged equations of the planar
circular restricted problem. In this case, the osculating a

FIG. 11. Sketch of the evolution of (a, e) in the 2/3 resonance inand e have short-periodic oscillations around the corre-
the averaged elliptic problem. The two squares denote the numerically

sponding mean elements, which evolve along a reference computed proper elements. The relation with the dots, denoting the
orbit. The evolution on the a–e plane looks like that of sections of the reference orbit at s 5 1808, is given by the N algorithm

discussed in the text.Fig. 10. The numerically computed proper elements corre-
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formed an integration over a time span of 1 myr with
output every integration time step, and have used this
integration to measure, for each test particle, the amplitude
of the short-periodic oscillations (da, de). This amplitude
has been added to/subtracted from the full time series of
proper elements, producing for each particle a time series
of calibrated proper elements [amin(t), emin(t)] and [amax(t),
emax(t)], where amin(t) 5 am(t) 1 da, emin(t) 5 em(t) 1 de,
amax(t) 5 aM(t) 2 da, and emax(t) 5 eM(t) 2 de. Finally, we
have applied the N algorithm to such series of calibrated
proper elements, thus obtaining the time series of [a1(t),
e1(t)] and [a2(t), e2(t)]. Figure 6 is the outcome of all these
transformations, plotting [a1(t), e1(t)] and [a2(t), e2(t)] for
all the test particles and, therefore, can be directly com-
pared with Fig. 8.

4.3. Secular Resonances and Diffusion in the
2/3 Resonance

We finally come to the comparison of Figs. 6 and 8.
A first remarkable feature is that the large increase in

FIG. 12. Evolution of the number of surviving particles N as a func-inclination, which characterizes the red regions at the bot-
tion of time t. The dashed line shows a fit to the last portion of the plot,tom of Fig. 6, corresponds to the location of the n18 reso-
with slope 21/2.

nance, as plotted in Fig. 8; however, the secular resonance
alone does not explain why the proper elements diffuse
slowly on the a–e plane. This is probably due to the interac-

high-order resonances located in that region, since reso-tion with low-order secondary resonances, which, as shown
nances are dense, but the investigation of their effects goesin Fig. 8, are present in large number in that region.
beyond the limits of perturbation analysis.The effects of the Kozai resonance are not well visible.

This is due to the fact that the strength of the Kozai reso-
nance increases with the inclination, while all the test parti- 5. ORIGIN OF COMETS FROM THE
cles considered in this paper have a small initial i. There 2/3 RESONANCE
are no Pluto-like orbits in the present work.

The strong chaotic region at large amplitude of libration From our numerical experiment, we can try to derive a
delivery rate of 2/3 resonant bodies to Neptune. Figure 12in Fig. 6 seems to be due to the interaction between

the n18 and Kozai resonances, which in Fig. 8 appears shows the logarithm of the number of the surviving parti-
cles N as a function of logarithm of time. The derivativeto be very close for the corresponding part of the diagram.

In Fig. 6 no dots are visible in the large-amplitude libra- of this function is precisely the delivery rate. Recall that
a body is considered dead when it encounters Neptunetion region characterized by the location of the n8 reso-

nance. This indicates that the region is so violently unstable within 1 Hill sphere, so that the surviving bodies are those
that never encounter the planet.that the typical lifetime is smaller than the length of the

analyzing running window for the computation of proper It can be seen that the curve has at least two changes
of slope. The first one is at about 100 myr and probablyelements (10 myr). This is not surprising since the n8 reso-

nance acts on the eccentricity, and large changes in the corresponds to the time when the strongly chaotic region
starts to be an efficient source of Neptune crossers. Theeccentricity force the particles to be ejected from the 2/3

resonance (since the resonance shrinks at both larger and second change of slope is at about 1.5 byr: this is the time
when the strongly chaotic region is completely depletedsmaller e), thus losing the resonant protection mechanism

and encountering Neptune. and the slow chaotic region starts to be the dominant
source of Neptune-encountering bodies.Conversely, no low-order secular or secondary reso-

nance seems to explain the slow diffusion region, which The slope for t . 1.5 byr is approximately 0.5, which
suggests a relation for the number of surviving particles Nwould be the active source of comets at the present age

of the Solar System. Such slow diffusions should be due at time t of type N(t) 5 A 1 B/Ït. Nevertheless, since the
time interval is quite limited, functions like N(t) 5 A 2 Bto very weak chaos generated by secular or secondary

resonances of very high order. We could always find some log(t) (suggested by Holman and Wisdom 1993), and
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N(t) 5 A 1 B/log(t) [found by Simó et al. (1995) in a experiment. According to our numerical integration, the
slow diffusion region is the only active source of the 2/3similar numerical experiment; see also the conclusions in

Morbidelli et al. (1995)] also produce a satisfactory fit to resonance producing Neptune-encountering bodies at the
present epoch of the Solar System. More precisely, fromthe results; however, we know from the detailed analysis

of the dynamical behavior of the test particles that we have a population of 50 bodies initially in this region, we find
that 5 bodies are delivered to Neptune in the last billionin our experiment six particles on invariant tori, which

would never escape the 2/3 resonance. This fixes the limit years. Therefore there would have originally been 5 3 108

bodies in the slow chaotic region in the 2/3 resonance.t R 1y of the distribution N(t), namely, the parameter
A. Of the three tentative relations indicated above, only About 50% of these bodies would still be there (recall that

in the integration only 50% of the test particles in theN(t) 5 6 1 2390/Ït turns out to be an acceptable fit.
Therefore, consider slow chaotic region actually encounter Neptune in 4 byr).

Finally, we also have to take into account the population of
bodies that are in the inactive regions of the 2/3 resonance.dN

dt
5 2

N0

t3/2 , (2) From our data, we compute that the volume of the region
where bodies are either on invariant tori or on orbits with
diffusion speed too slow to escape from the 2/3 resonancewhere N0 is a constant related to the number of particles,

as the delivery rate of 2/3 resonant bodies to Neptune. over the age of the Solar System is about 40% of the volume
of the slow diffusion region. Therefore, the number ofWe have a theoretical interpretation of this relation.

Section 3 pointed out that chaotic diffusion is essentially bodies presently in the 2/3 resonance should be of order of
a one-dimensional process, since it acts mainly on the libra-
tion amplitude. Moreover, at the center of the resonance

Nnow 5 Nactive 1 Ninactive 5
5 3 108

2
1 0.4 ? 5 3 108 5 4.5 3 108.

there are invariant tori, and the diffusion speed increases
with the amplitude of libration up to the strongly chaotic
region. On the other hand, it is known from the general This number is consistent with the ones estimated for the
theory of Hamiltonian systems that the diffusion speed in inner Kuiper Belt by Cochran et al. (1995) (p108) and by
the vicinity of an invariant torus depends on the distance Duncan et al. (1995) (5 3 109). It has been already shown
d from the torus. More precisely, it is superexponentially (Davis and Farinella 1996) that these numbers imply that
slow (p1/exp[exp(1/d)]), up to some threshold distance, the Kuiper Belt bodies should be collisionally evolved.
then exponentially slow (p1/exp(1/d)) up to a further Therefore our original assumption must be wrong: bodies
threshold distance, then quadratically slow (pd 2) up to a can also be delivered to Neptune by being ejected directly
final threshold, which usually marks the transition to strong from the regular regions in the 2/3 resonance by collisions
chaos (Morbidelli and Giorgilli, 1994). A one-dimensional or by close encounters with bodies of size comparable to
random walk model, with step amplitude proportional to 1992 QB1 . The real dynamics in the 2/3 resonance with
d 2, gives exactly a delivery law of the form dN/dt p Neptune is driven by a combination of chaotic diffusion
21/t(3/2) (Morbidelli and Vergassola 1996). Therefore we and collisional kicks.
interpret the observed delivery rate from the 2/3 resonance
as the trace of a dynamical structure characterized, under 6. CONCLUSIONS
the influence of invariant tori, by a diffusion speed increas-
ing as the square of the libration amplitude. In this paper we have shown that the 2/3 resonance

with Neptune has a complex dynamical structure. The n18We now estimate how many comet-sized bodies must
presently be in the 2/3 resonance to supply the observed resonance pumps the inclination at small eccentricity. Reg-

ular orbits are present only at moderate eccentricity andflux of short-periodic comets in the inner Solar System.
Duncan et al. (1995) estimated that such flux implies that small amplitude of libration. At large amplitude of libra-

tion, the interaction between the n18 and Kozai resonances2 3 108 comet-sized bodies encounter Neptune per billion
years. Since we know that about 40% of the discovered generates a strongly chaotic region, which is quickly de-

pleted. The transition region at moderate amplitude ofbodies in the inner Kuiper belt are in the 2/3 resonance,
we can expect that, within a factor 3, 25% of this input libration is characterized by slow chaotic diffusion. This

region should be an active source of Neptune-encounteringcomes from the 2/3 resonance, namely, 5 3 107 bodies per
billion years. We now assume that the bodies evolve only bodies at the present age of the Solar System. From the

delivery rate that has been determined, we have computedunder the laws of dynamics, without suffering kicks due
to collisions and close encounters that could replace them the number of comet-sized objects that should presently

be in the 2/3 resonance to explain the observed flux ofin the phase space. In this case, all bodies escaping the
2/3 resonance and encountering Neptune do so solely un- short-period comets in the inner Solar System. This num-

ber turns out to be about 4.5 3 108, and seems to indicateder the effect of chaotic diffusion, as in our numerical
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that the 2/3 resonant bodies must still be under collisional DUNCAN, M. J., H. F. LEVISON, AND S. M. BUDD 1995. The dynamical
structure of the Kuiper Belt. Astron. J. 110, 3073–3081.evolution. Therefore, comets must be ejected from the

FROESCHLÉ, C., AND E. LEGA 1996. On the measure of the structure2/3 resonance by a combination of chaotic diffusion and
around the last KAM torus before and after its break-up. Celest. Mech.collisional ‘‘kicks.’’
Dynam. Astron., in press.

In this paper we discussed how to define and compute
HOLMAN M. J., AND J. WISDOM J. 1993. Stability of test particle orbits

suitably accurate proper elements, which are of fundamen- in the outer Solar System. Astron. J. 105, 1987–1999.
tal importance in exploring the phenomena of slow chaotic LASKAR J. 1990. The chaotic motion of the solar system: A numerical
diffusion and allow one to extract as much information as estimate of the size of the chaotic zones. Icarus, 88, 266–291.
possible from the numerical integrations. Moreover, we LASKAR, J. 1995. Large scale chaos and marginal stability in the Solar

System. XIth ICMP Colloquium, Paris.have shown how to relate the numerical results with the
analytical picture of the location of secular resonances. LEVISON, H. F., AND M. J. DUNCAN 1994. The long-term dynamical behav-

ior of short period comets. Icarus 108, 18–36.

MORBIDELLI, A. 1996. On the Kirkwood gap at the 2/1 commensurabilityACKNOWLEDGMENTS
with Jupiter: Numerical results. Astron. J. 111, 2453–2461.

MORBIDELLI, A., AND A. GIORGILLI 1994. Superexponential stability ofI thank M. Moons for all her suggestions and remarks and for her
KAM tori. J. Stat. Phys. 78, 1607–1617.help in the implementation of the perturbation approach leading to the

geography of secular resonances. I am in debt to B. Gladman for useful MORBIDELLI, A., AND M. VERGASSOLA 1996. Escape rates in Hamiltonian
discussions and a careful reading of my manuscript. I also thank J. M. systems. J. Stat. Phys., submitted.
Petit for his help with the color graphics software. MORBIDELLI, A., F. THOMAS, AND M. MOONS 1995. The resonant structure

of the Kuiper belt and the dynamics of the first five trans-neptunian
objects. Icarus 118, 322–340.REFERENCES

NOBILI, A., A. MILANI, AND M. CARPINO 1989. Fundamental frequencies
CARPINO, M., A. MILANI, AND A. NOBILI 1987. Long-term numerical and small divisors in the orbits of the outer planets. Astron. Astrophys.

integrations and synthetic theories for the motion of the outer planets. 210, 313–336.
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