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Abstract

We have investigated the final accretion stage of terrestrial planets from Mars-mass protoplanets that formed through oligarchic growth in a disk
comparable to the minimum mass solar nebula (MMSN), through N -body simulation including random torques exerted by disk turbulence due to
Magneto-Rotational Instability. For the torques, we used the semi-analytical formula developed by Laughlin et al. [Laughlin, G., Steinacker, A.,
Adams, F.C., 2004. Astrophys. J. 608, 489–496]. The damping of orbital eccentricities (in all runs) and type-I migration (in some runs) due to
the tidal interactions with disk gas is also included. Without any effect of disk gas, Earth-mass planets are formed in terrestrial planet regions
in a disk comparable to MMSN but with too large orbital eccentricities to be consistent with the present eccentricities of Earth and Venus in
our Solar System. With the eccentricity damping caused by the tidal interaction with a remnant gas disk, Earth-mass planets with eccentricities
consistent with those of Earth and Venus are formed in a limited range of disk gas surface density (∼10−4 times MMSN). However, in this case,
on average, too many (�6) planets remain in terrestrial planet regions, because the damping leads to isolation between the planets. We have carried
out a series of N -body simulations including the random torques with different disk surface density and strength of turbulence. We found that
the orbital eccentricities pumped up by the turbulent torques and associated random walks in semimajor axes tend to delay isolation of planets,
resulting in more coagulation of planets. The eccentricities are still damped after planets become isolated. As a result, the number of final planets
decreases with increase in strength of the turbulence, while Earth-mass planets with small eccentricities are still formed. In the case of relatively
strong turbulence, the number of final planets are 4–5 at 0.5–2 AU, which is more consistent with Solar System, for relatively wide range of disk
gas surface density (∼10−4–10−2 times MMSN).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The final stage of terrestrial planet accretion would be co-
agulation among protoplanets (e.g., Lissauer, 1987). The pro-
toplanets form through oligarchic growth (Kokubo and Ida,
1998, 2000), so that they are called ‘oligarchs.’ The protoplan-
ets have almost circular orbits initially and are isolated from
one another (Kokubo and Ida, 1998, 2000). Their mass is about
Mars mass (Kokubo and Ida, 1998) in the case of the minimum
mass solar nebula (MMSN) model (Hayashi, 1981). Long-term
distant perturbations, however, would pump up eccentricities
large enough for orbit crossing, on timescales that depend on
mass of protoplanets and their orbital separation (Chambers
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et al., 1996). Because of relatively strong eccentricity damp-
ing due to tidal interaction with a gas disk (Artymowicz, 1993;
Ward, 1993), the orbit crossing may not occur until disk gas sur-
face density Σg decreases below 10−3Σg,MMSN (Iwasaki et al.,
2002), where Σg,MMSN is the surface density of MMSN.

N -body simulations without any effect of disk gas (e.g.,
Chambers and Wetherill, 1998; Agnor and Canup, 1999) show
that Earth-mass terrestrial planets are formed at ∼1 AU in a disk
with a solid surface density ∼Σd,MMSN as a result of the orbit
crossing but with too large orbital eccentricities (∼0.1) to be
consistent with the present eccentricities of Earth and Venus in
our Solar System. Kominami and Ida (2002, 2004) performed
N -body simulations, taking into account the eccentricity damp-
ing caused by tidal interaction with a remnant gas disk and
found that final eccentricities can be small enough to be con-
sistent with those of Earth and Venus. The remnant disk with
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Σg = 10−4–10−3Σg,MMSN allows orbit crossing, but it is still
enough to damp eccentricities of Earth-mass planets to �0.01
within disk depletion timescale ∼106–107 years (Kominami
and Ida, 2002; Agnor and Ward, 2002).

However, Kominami and Ida (2002, 2004) found that gen-
erally �6 planets remain in terrestrial planet region in strong
damping cases. If the damping is weaker, number of planets de-
creases, while resultant eccentricities increase. Only in a limited
range of the parameters, it sometimes occurs that Earth-mass
planets with small enough eccentricities (Earth-like planets) are
formed and total number of formed planets is �4–5 in a disk
similar to MMSN.

Chambers (2001), O’Brien et al. (2006), and Raymond et al.
(2006) neglected the effects of a gas disk in their N -body simu-
lations, but included dynamical friction from remnant planetes-
imals. Although the effect of the dynamical friction is essen-
tially the same as the damping due to a gas disk, the number
of formed planets is fewer while they have relatively small ec-
centricities. More detailed calculations are needed to clarify the
role of dynamical friction from planetesimals.

Another possibility to reduce the number of formed plan-
ets while their eccentricities are kept small is a “shaking-up”
process to inhibit isolation of planets due to the damping. If gas
giants have already formed when the orbital crossing starts, ec-
centricity excitation by the secular perturbations from the gas
giants can provide the shakes (e.g., Levison and Agnor, 2003).
Kominami and Ida (2004) showed that perturbations from gas
giants in the current orbits do not provide enough shakes in the
presence of disk gas. However, O’Brien et al. (2006) reported
that the secular perturbations from Jupiter and Saturn produce
terrestrial planets more consistent with those in our Solar Sys-
tem in the case without the gas damping but with dynamical
friction from planetesimals.

Nagasawa et al. (2005) considered a passage of a secular
resonance during depletion of disk gas as a shaking-up mecha-
nism and carried out N -body simulations. ν5 resonance passes
through ∼1 AU when Σg ∼ 10−3–10−2Σg,MMSN. Hence, af-
ter the eccentricity excitation and coagulation of protoplanets
caused by the resonance passage, the disk gas is still able to
damp the eccentricities (Eq. (14)). The damping induces inward
orbital migration, so that bodies are captured by the resonances.
The merged terrestrial planets, however, have to be released
from the resonances at ∼1 AU.

Here, we consider another shaking-up mechanism, random
torques exerted by disk turbulence due to Magneto-Rotational
Instability (MRI) (e.g., Balbus and Hawley, 1991). Laughlin
et al. (2004) and Nelson and Papaloizou (2004) carried out fluid
dynamical simulations of MRI and pointed out that the random
torques may significantly influence orbital motions of planetes-
imals. Through analytical modeling, Johnson et al. (2006) also
predicted significant orbital changes due to the random torques.
Rice and Armitage (2003) studied accretion of a protoplanet
taking into account the effect of random walks in semimajor
axes induced by the random torques and found that the random
walks expand effective feeding zone of the protoplanet and it
may lead to rapid formation of a large core of a gas giant. How-
ever, since they did not integrate orbits directly, it is not clear
if their incorporation of random torques is relevant. Actually,
Nelson (2005) directly integrated orbits of protoplanets in a tur-
bulent disk and found excitation of orbital eccentricities as well
as random walks of semimajor axes. The eccentricity excitation
was neglected in Rice and Armitage (2003). Because Nelson’s
(2005) orbital integration was done simultaneously with fluid
dynamical simulation of MRI, the orbital integration was lim-
ited to 100–150 Keplerian times, which is too short to study
accretion process of the protoplanets on �106 Keplerian times.

In order to perform N -body simulations long enough to
calculate full stage of accretion of protoplanets, we adopt the
semi-analytical formula for the random torque developed by
Laughlin et al. (2004) based on their fluid dynamical simu-
lations. We directly incorporate the random torques as forces
acting on the protoplanets in the equations of motion. Hence,
eccentricity excitation, which was neglected in Rice and Ar-
mitage (2003), is automatically included, as well as a random
walk in semimajor axis. Because we do not perform fluid dy-
namical simulation, N -body simulations on timescales ∼107

years are able to be done. The analytical formula may only
roughly mimic the effects of MRI turbulence and the method by
Nelson (2005) is more correct. However, our purpose is rather
to explore the qualitative effects of the turbulence on orbital
evolution and accretion of planets on long timescales and the
dependence on the key parameters on the problem, so that a
great quantitative accuracy is not important in the present con-
tribution.

We also include the damping of eccentricities and inclina-
tions directly in orbital integrations as forces acting on the
protoplanets, essentially following Kominami and Ida (2002,
2004). However, we here adopt more exact forms of forces de-
rived by Tanaka and Ward (2004) [also see Kominami et al.
(2005) and Section 2.4]. Since in the turbulence, the effect of
type-I migration might be greatly diminished (Nelson, 2005),
we performed both simulations with type-I migration and those
without it. When type-I migration is included, we adopt the for-
mula for forces acting on the protoplanets derived by Tanaka
and Ward (2004).

In Section 2, we describe the disk model, the formula of
forces for the random torques, eccentricity damping and type-I
migration. In Section 3.1, we present the results of one planet
case in order to clearly see the effect of the random torques that
we use, on the orbital evolution. The results of N -body simula-
tions of accretion of protoplanets that start with 15 protoplanets
of 0.2M⊕ are shown in Section 3.2. We mainly consider the
stage in which disk gas surface density has declined signifi-
cantly so that the random torques are relatively weak. However,
the weak random torques in the stage play important roles to
produce terrestrial planets similar to those in our Solar System.
Section 4 is the conclusion section.

2. Model and calculation methods

2.1. Disk model

Here, we consider a host star with 1M�. Following Ida and
Lin (2004), we scale the gas surface density Σg of disks as



524 M. Ogihara et al. / Icarus 188 (2007) 522–534
(1)Σg = 2400fg

(
r

1 AU

)−3/2

g cm−2,

where fg is a scaling factor; fg = 1 corresponds to Σg =
1.4Σg,MMSN. Because current observations cannot strictly con-
strain the radial gradient of Σg, we here assume fg is constant
with r . Since we consider the stage where disk gas has been sig-
nificantly depleted (fg � 10−2), optical depth of the disk may
be low. For simplicity, we use the temperature distribution in
the limit of an optically thin disk (Hayashi, 1981),

(2)T = 2.8 × 102
(

r

1 AU

)−1/2

K.

Corresponding sound velocity is

(3)cs = 1.0 × 105
(

r

1 AU

)−1/4

cm s−1.

2.2. Random torques due to MRI turbulence

Turbulence due to Magneto-Rotational Instability (Balbus
and Hawley, 1991) is one of candidates to account for the obser-
vationally inferred disk viscosity, based on Hα line observation
due to disk accretion onto stars (e.g., Hartmann et al., 1998).
Gammie (1996) and Sano et al. (2000) pointed out the existence
of “dead zone” around 1 AU where the degree of ionization
is so small that MRI turbulence is suppressed. However, it is
not clear that the dead zone exists in the last stage of terres-
trial planet formation we are considering. If large fraction of
dust grains have been transferred into planetesimals in the stage,
ionization degree could be high enough that the dead zone dis-
appears (Sano et al., 2000), although secondary dust production
due to disruptive collisions between planetesimals may also be
efficient in this stage (e.g., Inaba et al., 2003). On the other
hand, Inutsuka and Sano (2005) proposed self-sustained ioniza-
tion to suggest that dead zone vanishes, irrespective of degree
of dust depletion. We here assume that disks are MRI-turbulent
at ∼1 AU.

Laughlin et al. (2004) modeled the density fluctuations due
to the MRI turbulence, based on their fluid dynamical simula-
tion. Here we briefly summarize their results with slight modi-
fications. The specific force due to density fluctuations exerted
on a planet is given by

(4)F tub = −Γ ∇Φ,

where

(5)Γ = 64Σgr
2

π2M�
,

(6)Φ = γ r2Ω2
50∑
i=1

Λc,m,

(7)Λc,m = ξe−(r−rc)
2/σ 2

cos(mθ − φc − Ωc t̃ ) sin

(
π

t̃

�t

)
.

In the above, m is the wavenumber, the dimensionless vari-
able ξ has a Gaussian distribution with unit width, r and θ

represent the location of the planet in cylindrical coordinates,
Ω = √
GM�/r3 is Keplerian angular velocity at r , rc and φc

specify the center of the density fluctuation, and Ωc is Ω at rc.
γ is the non-dimensional parameter to indicate the strength of
the turbulence that we introduced instead of Laughlin et al.’s
(2004) dimensional parameter A (A = γ r5/2Ω2). The pattern
speed Ωc in the time-dependent factor allows the mode cen-
ter to travel along with the Keplerian flow. With m specified,
the mode extends for a distance 2πrc/m along the azimuthal
direction. The radial extent is then specified by choosing σ =
πrc/4m so that the mode shapes have roughly a 4:1 aspect ratio.
The total fluctuation is expressed by superposition of 50 modes

at any given time. In Eq. (6), i in
∑50

i=1 expresses individ-
ual modes. Each mode comes in and out of existence with the
time dependence specified above. An individual mode begins
at time t0 and fades away when �t > t̃ ≡ t − t0. The dura-
tion of the mode �t is taken to be the sound crossing time of
the mode along the angular direction, i.e., �t = 2πrc/mcs. Af-
ter the mode has gone, a new mode is generated. For the new
mode, rc is chosen randomly in the calculation area and φ is
random in 0 � φ < 2π . The azimuthal wavenumber m is cho-
sen to be distributed according to a log random distribution for
wavenumbers in the range 2 � m � 64.

We modify their formula in two points. The first one is in-
troduction of the non-dimensional parameter γ for strength of
turbulence. While Laughlin et al.’s (2004) simulation range was
1.5–3.5 AU, our simulations are done around 1 AU. Hence,
it may be more useful to use the non-dimensional parameter
than Laughlin et al.’s (2004) dimensional parameter A (A =
γ r5/2Ω2). Since Laughlin et al. (2004) used 3.4 AU and 1 year
as units of length and time and the middle radius of their simu-
lation was 2.5 AU, the values of A in their paper correspond to
�1.2γ (r/1 AU)−1/2. Three-dimensional fluid dynamical sim-
ulations by Laughlin et al. (2004) suggest γ ∼ 10−3–10−2, but
the values of γ may include large uncertainty, so that we ex-
plore wide range of γ (also see discussion in Section 3.1). The
second point is the range of wavenumber m. Although 2 � m �
64 in the original formula given in Laughlin et al. (2004), inclu-
sion of m = 1 modes could be more consistent with global fluid
dynamical simulation (G. Laughlin, private communication;
also see discussion in Section 3.1). On the other hand, modes
with large m do not contribute to orbital changes, because of
their short distances (∼σ = πrc/4m) for effective forces and
rapid time variations with timescale 2πrc/mcs. Hence, in order
to save calculation time, we cut off high m modes with m � 6,
that is, Λc,m is set to be zero when m � 6, in the summation
of 50 modes in Eq. (6). The torque exerted on the planet with
mass M is

(8)τtub = r × 1

r

∂Φ

∂θ
× Γ × M

(9)= −γΓ Mr2Ω2
50∑
i=1

mΛs,m,

where

(10)Λs,m = ξe−(r−rc)
2/σ 2

sin(mθ − φc − Ωc t̃ ) sin

(
π

t̃

�t

)
.
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(a)

(b)

Fig. 1. An example of the random torques that we adopted. The (scaled) total
torque

∑50
1 mΛs,m is plotted (see Eq. (9)), as a function of time t : (a) the

case of 2 � m � 64 and (b) the case with the modes of m � 6 omitted (see
Section 2.4).

Fig. 1a shows the scaled random torques,
∑50

i=1 mΛs,m, with
2 � m � 64. In Fig. 1b, m � 6 modes are cutted off. Low fre-
quency patterns, which contribute to orbital evolution, are sim-
ilar between these results. Actually, we found through orbital
calculations like in Fig. 2 that m � 5 are enough to reproduce
orbital evolution with fully counting all m modes. If m = 1
mode is included, the amplitude of the random torques does not
change, but low frequency patterns change. We will present the
results of N -body simulations with 2 � m � 5 in Section 3.2,
but we also carried out calculations with 1 � m � 5 and will
discuss the effects of m = 1 modes.

2.3. Secular torques due to disk–planet interactions

As shown below, the random torques given by Eq. (9) in-
duce random walks of semimajor axes of planets and pump
up their orbital eccentricities. Tidal interactions with a lami-
nar disk monotonically decreases the semimajor axes and damp
the eccentricities (and the inclinations). The secular inward mi-
gration is known as “type-I migration” (e.g., Ward, 1986, 1997;
Tanaka and Ward, 2002). Since mean flow in turbulent disks co-
incides with flow in laminar disks, interactions with the mean
flow may induce the secular orbital migration and eccentricity
Fig. 2. Orbital evolution of a planet of 0.2M⊕ suffering random torques due to
turbulent fluctuations with fg = 10−2 and γ = 10−1. Type-I migration is not
included. (a) Evolution of semimajor axis a and (b) that of orbital eccentricity e.

damping even in turbulent disks. In turbulent disks, however,
Nelson (2005) reported that type-I migration might be greatly
diminished while the eccentricity damping still works. Non-
linear effects associated with the random fluctuations (e.g., the
temporary activation of corotation torques or temporary disrup-
tion of the pressure buffer) could be responsible for the slowing
down. Alternatively, relatively high eccentricities excited by the
random torques, which is �h/r ∼ 0.05 obtained by Nelson
(2005), where h is disk scale height, could affect the type-I mi-
gration (e.g., Papaloizou and Larwood, 2000). In our N -body
simulations, eccentricities are also pumped up to �0.05 by per-
turbations among protoplanets except for the last phases well
after orbital crossing. Hence, we performed two series of simu-
lations: one is without type-I migration and the other is with it.

We summarize the secular changes in laminar disks below.
Both torques from inner and outer disks damp orbital eccentric-
ities and inclinations, since the gravitational interactions with
disk gas causes similar effect of dynamical friction. The damp-
ing timescales are (Tanaka and Ward, 2004)

(11)tdamp,e = −e

ė
= tdamp

0.78
,

(12)tdamp,i = − i

i̇
= tdamp

0.54
,



526 M. Ogihara et al. / Icarus 188 (2007) 522–534
(13)tdamp =
(

M

M�

)−1(Σga
2

M�

)−1(
cs

vK

)4

Ω−1

(14)= 240f −1
g

(
M

M⊕

)−1(
a

1 AU

)2

years,

where a is the semimajor axis of the planet and vK is the Kep-
lerian velocity at a.

On the other hand, the torque from an inner disk increases
semimajor axis, while that from an outer disk decreases it. Since
the outer torque is generally greater than the inner one (Ward,
1986; Tanaka and Ward, 2002), the torque imbalance induces
inward migration (type-I migration). For the radial gradient of
Σg ∝ a−1.5, the torque imbalance, which is negative definite, is
given by (Tanaka and Ward, 2002)

(15)τmig = −2.17

(
M

M�

)2(
vK

cs

)2

Σga
4Ω2.

Migration timescale due to this torque is

(16)tmig = −a

ȧ
= (1/2)MΩa2

τmig

(17)= 0.23

(
M

M�

)−1(Σga
2

M�

)−1(
cs

vK

)2

Ω−1

(18)= 5.0 × 104
(

M

M⊕

)−1(
a

1 AU

)3/2

f −1
g years.

2.4. Orbital integration

We integrate orbits of 15 protoplanets with 0.2M⊕ that ini-
tially have orbits of small e and i (∼0.01) with separation 6rH,
following initial conditions in Kominami and Ida (2002), where
Hill radius rH is defined by

(19)rH =
(

M

3M�

)1/3

a � 0.007

(
M

0.2M⊕

)1/3

a.

Initial angular distributions are set to be random. Calculation
starts from the phase when the orbital crossing starts. The re-
sult of Kokubo and Ida (2000) shows that the eccentricities
of protoplanets produced through oligarchic growth are about
∼10−3, so that the protoplanets are well isolated. However, the
protoplanets will eventually start orbital crossing by long-term
mutual distant perturbations on a timescale depending on their
orbital separation, mass (Chambers et al., 1996), initial eccen-
tricities (Yoshinaga et al., 1999), and how much gas is around
the protoplanets (Iwasaki et al., 2002). Since we are concerned
with orbital crossing stage, we start the calculation with rela-
tively high eccentricities e = 10−2, supposing the eccentricities
have already increased and orbital crossing is ready to start. The
initial inclinations are also set to be i = 10−2.

The basic equations of motion of particle k at rk in heliocen-
tric coordinates are

d2rk

dt2
= −GM�

rk

|rk|3 −
∑
j 
=k

GMj

rk − rj

|rk − rj |3

(20)−
∑

GMj

rj

|rj |3 + F damp + F tub + F mig,
j

where k, j = 1,2, . . . ,15, the first term is gravitational force of
the central star, the second term is mutual gravity between the
bodies, and the third term is the indirect term. F damp and F mig

are specific forces for the damping of eccentricities and inclina-
tions and type-I migration, and F tub is specific force due to the
turbulence (Eq. (4)). Their detailed expressions are described
below. Note that in our simulations, mass of bodies is larger
than 0.2M⊕, so that aerodynamical drag forces are neglected
compared with F damp and F mig (e.g., Ward, 1993).

We integrate orbits with the fourth-order Hermite scheme.
When protoplanets collide, perfect accretion is assumed. Af-
ter the collision, a new body is created, conserving total mass
and momentum of the two colliding protoplanets. The physical
radius of a protoplanet is determined by its mass and internal
density as

(21)rP =
(

3

4π

M

ρP

)1/3

.

The internal density ρP is set to be 3 g cm−3.
Tanaka and Ward (2004) derived, through three-dimensional

linear analysis,

Fdamp,r =
(

M

M�

)(
vK

cs

)4(Σgr
2

M�

)

(22)× Ω
(
2Ac

r [vθ − rΩ] + As
rvr

)
,

Fdamp,θ =
(

M

M�

)(
vK

cs

)4(Σgr
2

M�

)

(23)× Ω
(
2Ac

θ [vθ − rΩ] + As
θ vr

)
,

(24)Fdamp,z =
(

M

M�

)(
vK

cs

)4(Σgr
2

M�

)
Ω

(
Ac

zvz + As
zzΩ

)
,

(25)Fmig,r = 0,

(26)Fmig,θ = −2.17

(
M

M�

)(
vK

cs

)2(Σgr
2

M�

)
ΩvK,

(27)Fmig,z = 0,

where

Ac
r = 0.057, As

r = 0.176,

Ac
θ = −0.868, As

θ = 0.325,

Ac
z = −1.088, As

z = −0.871.

Note that there is a typos in Fdamp,z in Tanaka and Ward (2004).
The factor (2Ac

zvz + As
zzΩ) should be (Ac

zvz + As
zzΩ) as in

Eq. (24). Note also that the other factors in the expressions in
Kominami et al. (2005) have minor typos; the above expres-
sions are correct ones. Eccentricities are damped by Fdamp,r and
Fdamp,θ , while inclinations are damped by Fdamp,z. Semima-
jor axes are decreased by Fmig,θ (= τmig/Mr), where a and r

are identified because of small e and i. The evolution of e, i,
and a by orbital integration of one body with the above forces
completely agrees with the analytically derived evolution with
Eqs. (14) and (18).
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The force due to turbulence, F tub = −Γ ∇Φ (Eq. (4)), is
given by

(28)Ftub,r = γΓ rΩ2
50∑
i=1

(
1 + 2r(r − rc)

σ 2

)
Λc,m,

(29)Ftub,θ = γΓ rΩ2
50∑
i=1

mΛs,m,

(30)Ftub,z = 0,

where Λc,m and Λs,m are defined by Eqs. (7) and (10).
As seen above, F damp and F mig are parameterized by the

disk surface scaling factor fg for given M and r of planets,
and F tub by fg and γ (Γ ∝ fg). Therefore, fg and γ are pa-
rameters for our calculations. As discussed in Section 1, we
will consider the stages in which disk gas has been signifi-
cantly depleted, so that the cases of fg = 10−4 and 10−2 are
mainly studied. Although the most likely value of γ might be
∼10−3–10−2, it would include large uncertainty (also see dis-
cussion in Section 3.1), so that the cases of γ = 10−3, 10−1,
and 1 are studied. For comparison, non-turbulent (γ = 0) cases
are also calculated.

3. Results

3.1. One planet case

To see the effects of the turbulent forces given by Eqs. (28)
and (29) on orbital changes and how they depend on fg and γ ,
we first carry out simulations with one planet embedded in a
turbulent disk. Fig. 2 shows evolution of semimajor axis a and
orbital eccentricity e of a planet of 0.2M⊕ obtained by orbital
integration with F tub in the case of γ = 10−1 and fg = 10−2.
The initial conditions are a = 1 AU and e = 0. F damp and F mig
are not included. As expected, a random walk of a and excita-
tion of e are observed.

In order to quantify the random walks, we performed 100
similar runs with different random numbers for the random
torques, but still using γ = 10−1 and fg = 10−2. At each time,
the distributions of deviation in semimajor axis �a from the ini-
tial position (1 AU) and orbital eccentricity e for the 100 runs
are fitted as Gaussian distributions to obtain the standard devi-
ations as functions of time. Hereafter, the standard deviations
are also denoted by �a and e. Fig. 3 shows the evolution of
�a and e obtained by the numerical calculations. The evolu-
tion curves are fitted as

(31)�a ∼ 1.8 × 10−6
(

t

1 year

)1/2

AU,

(32)e ∼ 2.7 × 10−5
(

t

1 year

)1/2

near 1 AU. The dependence of t1/2 would reflect diffusion char-
acteristics. (If F damp is included, e approaches an equilibrium
value.) We have carried out the same procedures for γ = 10−2,
10−1, and fg = 10−2, 10−1 to derive the dependence of γ
Fig. 3. Time evolution of dispersion of �a and e. Crosses are the standard
deviations of Gaussian distributions derived from 100 numerical integrations
with different random numbers for random torques but with fg = 10−2 and

γ = 10−1. The solid curves are fitted functions given by Eqs. (31) and (32).

and fg as

(33)�a ∼ 2 × 10−3fgγ

(
t

1 year

)1/2

AU,

(34)e ∼ 3 × 10−2fgγ

(
t

1 year

)1/2

.

Note that the random walks are independent of planet mass M .
In the above calculations, we used m = 2–5 modes. With m =
2–64, we obtained very similar results.

Equations (33) and (34) give �a and e that are 10–100 times
smaller than those obtained by Laughlin et al. (2004) and
Nelson (2005). We found that the analytically modeled ran-
dom torques almost cancel out in time and the net change is
only ∼0.001 of total change for m = 2–5. Since both Laughlin
et al. (2004) and Nelson (2005) used global fluid codes to fol-
low orbits of protoplanets, m = 1 modes might be included.
Since m = 1 modes have the longest duration and distance for
effective force, it would induce asymmetry between positive
and negative torques to produce larger �a and e. We have car-
ried out similar calculations, including m = 1 modes and found
that �a and e are 10 times larger than Eqs. (33) and (34). The
inclusion of m = 1 modes may mostly resolve the difference
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Fig. 4. Orbital evolution with both effects of type-I migration and turbulent
fluctuations with fg = 10−2 and γ = 10−1.

from the results by Laughlin et al. (2004) and Nelson (2005),
but the approximated semi-analytical torque formula could be
still too symmetric, compared with the global fluid dynami-
cal simulations. Hence, the results of γ = 10−1 and 1 (with
m = 2–5 modes), which are larger than the numerically inferred
value γ ∼ 10−3–10−2, are also pertinent for the evolution of
planets in realistic turbulent disks. In the N -body simulations
shown in Section 3.2, perturbations from other protoplanets
also induce some asymmetry and �a and e may be much larger
than Eqs. (33) and (34) during the period in which protoplanets
undergo relatively close encounters.

If type-I migration works on the timescale given by Eq. (18),
the migration length near 1 AU is

(35)�a ∼ 2 × 10−5fg

(
M

M⊕

)(
t

1 year

)
AU.

From Eqs. (33) and (35), it is expected that if

(36)t � 3 × 105γ 2
(

M

0.2M⊕

)−2

years,

type-I migration will dominate over the random walk. Fig. 4
shows the evolution of the semimajor axis with both effects
of type-I migration and turbulent fluctuations of γ = 0.1. The
planet starts secular inward migration after t ∼ 3 × 103 years,
consistent with the above estimate. Note, however, that in the
turbulent disks, it is not clear that type-I migration speed is still
the same as that predicted by the linear calculation (Nelson,
2005).

3.2. Accretion of protoplanets in a turbulent disk

Because we will compare the results with Kominami and Ida
(2002) and because type-I migration might be greatly dimin-
ished in turbulent disks, in many runs we calculate accretion
and the orbital evolution of protoplanets in a turbulent disk
without the effect of type-I migration. We carry out simula-
tions with various fg and γ . We denote a run with fg = 10−α ,
γ = 10−β as RUNαβk , where k (k = a, b, c) represent different
initial angular distribution of the protoplanets. In some runs,
the effect of type-I migration is included, which we denote as
RUNαβaI. Table 1 shows simulation parameters for individual
runs with γ � 1 and m = 2–5 (28 runs). Two runs were carried
out with γ = 10 (m = 2–5). We also carried out 18 runs with
inclusion of m = 1 modes and found that slightly smaller γ

produce similar results to the cases without m = 1 modes. To
avoid confusion, we will only present the detailed results with
m = 2–5.

3.2.1. Case with fg = 10−2

First we show the results with fg = 10−2. The orbital evo-
lution of RUN2∞a , RUN23a , RUN21a , and RUN20a is shown
in Figs. 5a, 5b, 5c, and 5d, respectively. The thick solid lines
represent semimajor axes a. The thin dashed lines represent
pericenters a(1−e) and apocenters a(1+e). Thicker solid lines
represent more massive planets. With fg = 10−2, the damping
timescale τdamp � 1.2 × 105 years for M = 0.2M⊕.

Since RUN2∞a does not include the random torques (γ =
0), the evolution in Fig. 5a is very similar to that shown by
Kominami and Ida (2002). In this case, a planet of 0.6M⊕ with
small eccentricity (∼0.0001) is formed. However, global or-
bital crossing lasts for only ∼5 × 105 years because of the
rather strong eccentricity damping. Consequently, the number
of surviving planets is 8, which is much greater than that in the
present Solar System. The runs with very weak turbulence of
γ = 10−3 in Fig. 5b show a similar result to the non-turbulent
case. For γ = 0 and 10−3, the number of surviving planets is
always 8 or 9 (Table 1).

The effects of turbulence are pronounced in the cases of
γ = 10−1 (Fig. 5c) and γ = 1 (Fig. 5d). The random walk and
eccentricity excitation induced by the turbulence tend to inhibit
isolation of the planets. In Fig. 5c (RUN21a), the duration of
orbit crossing is elongated, while 8 planets still survive. (The
same number of planets survive also in RUN21b and RUN21c.)
According to the eccentricity excitation effect, the eccentricities
of final planets are slightly larger than in the previous two cases,
however, they are still smaller than the present free eccentric-
ities of Earth and Venus, because the damping that increases
with planet mass eventually overwhelms the turbulent excita-
tion that is independent of the planet mass. In Fig. 5d (RUN20a

with γ = 1), the large random walk enhances the number of
collision events (10 events), so that the number of surviving
planets drastically decreases to 4. In RUN20b and RUN20c, the
number of surviving planets is also 4 or 5.

In Fig. 5d (γ = 1), secular inward migration is found, al-
though type-I migration is not included. This migration is in-
duced by the damping of eccentricities that are continuously
excited by the random torques, since orbital angular momen-
tum,

√
GM�a(1 − e2), is almost conserved during the eccen-

tricities damping. In the run with extremely large γ (=10),
the turbulent excitation is so strong that all the planets are
removed from terrestrial planet region by the inward migra-
tion.

3.2.2. Case with fg = 10−4

The evolution in severely depleted disks with fg = 10−4,
RUN4∞a , RUN43a , RUN41a , and RUN40a is shown in Figs. 6a,
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Table 1
Initial parameters and final results for each run

RUN fg γ Type-I M1(M⊕) e1 Collision events Number of final planets

RUN2∞a 10−2 0 No 0.6 0.0001 7 8
RUN2∞b 10−2 0 No 0.8 0.0004 7 8
RUN2∞c 10−2 0 No 0.8 0.0001 6 9
RUN23a 10−2 10−3 No 0.6 0.002 7 8
RUN23b 10−2 10−3 No 0.8 0.003 6 9
RUN23c 10−2 10−3 No 0.8 0.0002 6 9
RUN21a 10−2 10−1 No 0.8 0.003 7 8
RUN21b 10−2 10−1 No 0.8 0.003 7 8
RUN21c 10−2 10−1 No 0.8 0.003 7 8
RUN20a 10−2 1 No 1.2 0.02 10 5
RUN20b 10−2 1 No 1.0 0.02 11 4
RUN20c 10−2 1 No 1.0 0.02 10 5
RUN4∞a 10−4 0 No 1.4 0.01 9 6
RUN4∞b 10−4 0 No 1.2 0.001 7 8
RUN4∞c 10−4 0 No 1.2 0.003 10 5
RUN43a 10−4 10−3 No 1.6 0.01 10 5
RUN43b 10−4 10−3 No 1.2 0.01 11 4
RUN43c 10−4 10−3 No 1.2 0.02 8 7
RUN43d 10−4 10−3 No 1.0 0.02 8 7
RUN41a 10−4 10−1 No 1.2 0.008 9 6
RUN41b 10−4 10−1 No 1.8 0.004 10 5
RUN41c 10−4 10−1 No 1.0 0.02 9 6
RUN40a 10−4 1 No 1.6 0.01 11 4
RUN40b 10−4 1 No 1.6 0.008 10 5
RUN40c 10−4 1 No 1.2 0.01 10 5
RUN2∞aI 10−2 0 Yes 0.4 0.005 7 3 (t = 107 years)
RUN23aI 10−2 10−3 Yes 0.2 0.0001 9 1 (t = 107 years)
RUN21aI 10−2 10−1 Yes 0.4 0.01 6 5 (t = 107 years)
RUN20aI 10−2 1 Yes 0.2 0.02 10 1 (t = 107 years)

Note. M1 is the mass of the largest planet in final state. e1 is the time averaged eccentricity of the largest planet, taken after its isolation takes place.
6b, 6c, and 6d, respectively. fg = 10−4 corresponds to τdamp �
1.2 × 107 years for M = 0.2M⊕. RUN4∞a shows the result
without the effect of turbulence. The weak damping due to the
small surface density of a gas disk elongates the period during
which the eccentricities are high enough to allow orbital cross-
ing (∼1 × 107 years). As a result, a larger planet (M = 1.4M⊕)
than in RUN2∞a is formed. Since e is damped down to ∼0.01,
this planet is very similar to Earth. However, the number of sur-
viving planets is 6 (Fig. 6a), which is larger than that in the
present Solar System, as is the case shown by Kominami and
Ida (2002). The mean number of surviving planets of RUN4∞a ,
RUN4∞b , and RUN4∞c is 6.3.

In the turbulence cases, the mean number of surviving plan-
ets is 5.8 (γ = 10−3), 5.7 (γ = 10−1), and 4.7 (γ = 1). As the
turbulence becomes stronger, the number of final planets de-
creases. In RUN41a with γ = 10−1, global orbital crossing lasts
on more than 107 years (Fig. 6c), while RUN43a does not show
such clear elongation of orbital crossing (Fig. 6b). The turbulent
excitation for eccentricities is still weaker than the tidal damp-
ing for Earth-mass planets as long as γ � 1, so that their final
eccentricities are still �0.01. (In the run with extremely large
γ (=10), we found that the eccentricities are not sufficiently
damped.) In general, probability for final planets to be similar
to present terrestrial planets in our Solar System is larger for
fg = 10−4 than for fg = 10−2.
The accretion timescales in weak turbulence cases are a few
times 106 years after orbit crossing starts. Those in strong
turbulence cases are ∼107 years. Iwasaki et al. (2002) and
Kominami and Ida (2002) suggested that orbit crossing does
not start until fg decays down to ∼10−3. If the effect of tur-
bulence is taken into account, orbit crossing may start at the
stage of larger fg. If the condition of fg � 10−3 is applied
and exponential decay from initial fg ∼ 1 with decay timescale
τdep is assumed, the orbit crossing starts at ∼7τdep ∼ 107–108

years. Thus, the total accretion timescales in the present model
are not in contradiction to the Earth formation age inferred
from Hf–W chronology ∼4 × 107 years (Yin et al., 2002;
Yin and Ozima, 2003; Kleine et al., 2002, 2004).

If disk depletion is only due to viscous diffusion, it may
be possible that such small-mass remnant disks remain for
107–108 years. However, if disk dispersal due to stellar EUV
is efficient, it would be difficult to preserve such small-mass
remnant disks. Spitzer survey found that 25% of B–A members
and 10% of F–K members in Pleiades cluster show IR excess
(Nadya et al., 2006). The excess might imply the existence of
small-mass remnant gas disks, but it might also be due to sec-
ondary dust generation in gas free environments. Observation
of gas components for clusters at 107–108 years is needed to
examine the role of the tidal damping due to remnant disks on
final orbital configuration of terrestrial planets.
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Fig. 5. The results of N -body simulations with fg = 10−2. (a) γ = 0 [RUN2∞a ], (b) γ = 10−3 [RUN23a ], (c) γ = 10−1 [RUN21a ], and (d) γ = 1 [RUN20a ].
The thick solid lines represent semimajor axes a. The thin dashed lines represent pericenters a(1 − e) and apocenters a(1 + e). Thicker solid lines represent more
massive planets.
3.2.3. Eccentricities and feeding zones
Once orbit crossing starts, the velocity dispersion is pumped

up to surface escape velocity vesc of planets by close encoun-
ters. Corresponding eccentricity is given by

(37)e ∼ vesc

vK
= 0.34

(
ρP

3 g cm−3

)1/6(
M

M⊕

)1/3(
a

1 AU

)1/2

.

Fig. 7 shows eccentricity evolution of all bodies in RUN2∞a

(non-turbulent case) and RUN20a (strongly turbulent case with
γ = 1). During orbit crossing (t � 1 × 106 years), the mean ec-
centricities are almost same in the two cases. Since eccentricity
excitation due to random torques evaluated by Eq. (34) is sig-
nificantly smaller than Eq. (37), the eccentricities during orbit
crossing are mostly determined by mutual planetary perturba-
tions.

In RUN2∞a , global orbit crossing ceases at t � 1 × 106

years and then the eccentricities are secularly decreased by the
damping due to F damp. However, in RUN20a , close encoun-
ters still occasionally occur at t � 1 × 106 years, so that the
eccentricity damping is slower. Even with relatively strong tur-
bulence of γ = 1 of this run, the tidal damping of eccentricities
overcomes the turbulent excitation for Earth-mass planets. (But,
this is not the case for γ = 10.)
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Fig. 6. The results of N -body simulations with fg = 10−4. (a) γ = 0 [RUN4∞a ], (b) γ = 10−3 [RUN43a ], (c) γ = 10−1 [RUN41a ], and (d) γ = 1 [RUN40a ].
The meaning of lines is the same as in Fig. 5.
For γ = 1 and fg = 10−2, diffusion length due to random
torques is evaluated by Eq. (33) as �a ∼ 10−2(t/106 year)1/2

AU, which is much smaller than orbital separation among the
protoplanets. However, as suggested before, planetary perturba-
tions may inhibit cancellation of the torques and induce much
larger �a (and e). Furthermore, even if the turbulence itself
does not directly expand the feeding zones of the planets, scat-
tering by close encounters among protoplanets that are induced
by the random torques allows the feeding zones to effectively
expand. In the N -body simulations, the two effects are indistin-
guishable.
3.2.4. Effects of type-I migration
Here, the results with type-I migration (calculations with

F mig) are shown, although it is not clear that type-I migra-
tion actually operates in turbulent disks (Nelson, 2005). In
RUN2∞aI, fg = 10−2 and the turbulence is not included (γ =
0). More systematic investigations in the non-turbulence cases
were done by McNeil et al. (2005) and Daisaka et al. (2006). Al-
though McNeil et al. (2005) and Daisaka et al. (2006) included
the effects of small planetesimals as well, RUN2∞aI shows sim-
ilar properties to their calculations (Fig. 8a): planets in inner
regions tend to fall onto the host stars while those in outer re-
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(a)

(b)

Fig. 7. The eccentricity evolution of all bodies: (a) γ = 0 [RUN2∞a ] and
(b) γ = 1 [RUN20a ].

gions could survive. Since collision events are limited by the
loss of inner planets, the mass of the largest surviving planets is
0.4M⊕. (Inclusion of protoplanets in more outer region might
increase the mass of final planets.)

Figs. 8b and 8c show RUN21aI of γ = 10−1 and RUN20aI

of γ = 1. Even with relatively strong turbulence, the ten-
dency to migrate inward does not change, compared with the
non-turbulent case in Fig. 8a. Equation (36) shows that type-I
migration is dominant over the random walk after t ∼ 3 ×
105γ 2(M/0.2M⊕)−2 years, so that the random walk cannot
halt the inward migration on timescales ∼106 years. The in-
ward migration is rather accelerated by the damping of eccen-
tricities that are continuously excited by the random torques
(Section 3.2.1).

For larger fg, since the random torques are stronger, the
accelerated migration is more pronounced. Thus, our results
suggest that random migration superposed to type-I migration
would not be able to solve the problem that planets tend to
be lost from the terrestrial planet region. The problem can be
solved only if the turbulent fluctuations somehow inhibit the
underlying type-I migration, as found by Nelson (2005), or if
planets at ∼1 AU are formed by surviving protoplanets origi-
nally at >1 AU.
4. Conclusions

We have investigated the final accretion stage of terres-
trial planets from Mars-mass protoplanets in turbulent disks,
through N -body simulation. Gravitational interactions with gas
disks exert the following three effects on the protoplanet or-
bits:

(1) damping of eccentricities e and inclinations i,
(2) type-I migration (secular decrease of semimajor axis a),
(3) random-walks of a and stochastic excitation of e.

The effect (3) has not been included in N -body simulations of
planet accretion in the previous works. We adopt the same sim-
ulation setting of Kominami and Ida (2002) that included only
the effect (1): initially 15 protoplanets of 0.2M⊕ are set with
orbital separations of several Hill radii in terrestrial planet re-
gions, corresponding to MMSN. In our N -body simulations,
the effects (1) and (3) were included. The effect (2) was ex-
amined in Section 3.2.4. We incorporated random torques ex-
erted by disk turbulence due to MRI as forces directly acting
on protoplanets in the equations of motion for orbital integra-
tion. We adopted the semi-analytical formula for the random
torques developed by Laughlin et al. (2004) with slight mod-
ifications. Compared with the results of Kominami and Ida
(2002), we investigated the effects of disk turbulence on planet
accretion.

The past N -body simulations neglecting the gas disk showed
that the coagulation between protoplanets result in planets of
about Earth-mass but with the eccentricities higher than the
present terrestrial planets in our Solar System. If the effect (1)
is included, when Σg ∼ 10−4–10−3Σg,MMSN, the damping al-
lows initiation of orbit crossing to form an Earth-mass planet(s),
while it damps the eccentricities sufficiently after planets are
isolated. However, �6 planets tend to remain, because of iso-
lation due to the damping (Kominami and Ida, 2002). [Note
that in the case of damping by dynamical friction from rem-
nant planetesimals the number of planets is reduced (O’Brien
et al., 2006).] We found that the newly incorporated effect (3)
tends to inhibit isolation of planets, resulting in more coagu-
lations of planets, while the eccentricity damping is still ef-
fective. As a result, 4–5 planets with small eccentricities are
formed in relatively wide parameter range: gas surface den-
sity Σg ∼ 10−4–10−2Σg,MMSN, and MRI turbulence strength
γ ∼ 10−1–1 (slightly smaller γ if m = 1 modes of density fluc-
tuation are included).

Laughlin et al.’s (2004) prescription for the random torques
that we adopted has highly symmetric properties and the ex-
erted torques almost completely cancel out in time averaging.
As a result, the diffusion length and eccentricity excitation ob-
tained by one planet calculations are generally too small to play
a direct role in expanding feeding zones of protoplanets in late
phase in which disk gas is significantly depleted (Eqs. (33) and
(34)). However, planetary perturbations may break the symme-
try. Furthermore, in more realistic turbulence, the torques may
include m = 1 modes and be less symmetric. These effects in-
hibit the torque cancellation to induce much larger �a and e.
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Fig. 8. The results of N -body simulations with fg = 10−2, including type-I migration. (a) γ = 0 [RUN2∞aI], (b) γ = 10−1 [RUN21aI], and (c) γ = 1 [RUN20aI].
The meaning of lines, see caption of Fig. 5.
Furthermore, even if the enhanced effects are still too small to
directly expand the feeding zones, such small effects can be
enough to break the isolation of the protoplanets, thus allowing
them to have distant encounters with each other. The encounters
in turn induce larger random oscillations of the semimajor axes,
effectively enhancing the feeding zone of each planet. We also
found through calculations with all the effects (1), (2), and (3)
that the random walks do not decelerate (rather accelerate) the
type-I migration, although it is not clear that type-I migration
actually operates in turbulent disks.

Although the prescription for the random torques would in-
clude large uncertainty, we have demonstrated that the random
torques tend to decrease number of final planets while they
keep formation of Earth-mass planets with small eccentricities,
which is more consistent with the present Solar System. Since
the random torques are independent of mass of bodies, small
planetesimals also suffer the random torques. N -body simula-
tions starting from smaller planetesimals in turbulent disks will
be presented in a separate paper.
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