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The Population of Near-Earth Asteroids in Coorbital Motion with the Earth
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We obtain the size and orbital distributions of near-Earth aster-
oids (NEAs) that are expected to be in the 1 : 1 mean motion reso-
nance with the Earth in a steady state scenario. We predict that the
number of such objects with absolute magnitudes H < 18 and H < 22
is 0.65 ± 0.12 and 16.3 ± 3.0, respectively. We also map the distribu-
tion in the sky of these Earth coorbital NEAs and conclude that these
objects are not easily observed as they are distributed over a large
sky area and spend most of their time away from opposition where
most of them are too faint to be detected. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

order of the Solar System’s age (Levison et al. 1997). In this
A well known example of coorbital motion in the Solar System
is the so-called Trojan asteroids (around 103 objects identified
up to now) which move in the vicinity of the lagrangian points
located along Jupiter’s orbit, i.e., either L4 or L5. These objects
are in the 1 : 1 mean motion resonance1 with Jupiter as the dif-
ference in mean longitudes librates (in this case around ±60◦)
which protects them against collisions with the planet.

The jovian Trojan asteroids are probably primordial as most
of them are in orbits which have been stable for a time on the
1 An object can be in the 1 : 1 mean motion resonance with a given planet only
if |a − a1| < (µ/3)1/3a1, where µ is the planet-Sun mass ratio, and a and a1

are respectively the object’s and planet’s orbital semimajor axes. In addition, if
the orbital eccentricity is reasonably small as in the case of the Trojan asteroids,
i.e., if e ∼< (µ/3)1/3, then the object has an orbit very similar to that of the
planet. This fact motivated the use of the term coorbital, actually first used in the
context of the 1 : 1 mean motion resonance between the saturnian satellites Janus
and Epimetheus. On the other hand, if the orbital eccentricity is significant, i.e.,
e � (µ/3)1/3, then the object has an orbit very different from that of the planet.
Nevertheless, in what follows, we use the term coorbital to refer to objects in the
1 : 1 mean motion resonance with a given planet, irrespective of the magnitude
of their orbital eccentricity.

1

scenario, these bodies are residues from the time of Jupiter’s
formation that were left in coorbital motion with this planet.
Surprisingly, no objects in coorbital motion with Saturn, Uranus,
or Neptune have been found to date. This could be partly due
to the difficulty in observing such distant objects and partly
due to the effect of long-term n-body perturbations (Nesvorny
et al. 2002, Morais 2001) and/or primordial mechanisms (Gomes
1998).

There are currently two confirmed objects in the 1 : 1 mean
motion resonance with Mars: (5261) Eureka and 1998 VF31.
Additionally, a member of the population of near-Earth asteroids
(NEAs), (3753) Cruithne (previously known as 1986 TO), was
recently shown to be in the 1 : 1 mean motion resonance with the
Earth (Wiegert and Innanen 1998). The orbit of this object is very
eccentric (e = 0.515, while in the case of the Earth (µ/3)1/3 =
0.01); such a high value of the orbital eccentricity implies that
the motion of Cruithne is very different from that of the Trojan
asteroids (in particular, its orbit is not at all similar to that of the
Earth). The peculiar motion of Cruithne motivated new studies
on the dynamics of the 1 : 1 mean motion resonance by Namouni
(1999).

Other examples of captures in the 1 : 1 mean motion reso-
nance with either the Earth or Venus have been found in numer-
ical integrations of NEAs. Christou (2000) showed that (10563)
Izhdubar (previously known as 1993 WD), (3362) Khufu, and
1994 TF2 could become Earth coorbitals, while 1989 VA could
become a Venus coorbital. On the other hand, Michel (1997)
followed a clone of (4660) Nereus that is captured in the 1 : 1
mean motion resonance with Venus.

The violent nature of the currently believed scenario for the
formation of the terrestrial planets (Chambers and Wetherill
1998) is not favorable to the existence of a significant pri-
mordial population of Trojans asteroids associated with them.
While recent numerical integrations up to 100 Myr of mar-
tian Trojans showed that both (5261) Eureka and 1998 VF31
0019-1035/02 $35.00
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lie in regions that are apparently stable (Evans and Tabachnik
2000a), this integration time is a mere 2% of the Solar System’s
age. On the other hand, although numerical integrations up to
50 Myr of fictitious Earth Trojans end with some surviving
objects (Evans and Tabachnik 2000a), none of these has been
identified to date.

Only recently has a major consensus been reached regarding
the origin of NEAs (see review in Morbidelli et al. 2002a). It
is now believed that these objects are being constantly injected
into certain regions in the main asteroid belt where the orbital ec-
centricities can grow up to Earth crossing (or at least near-Earth
crossing) values. Simulations show that NEAs have lifetimes
on the order of 10 Myr and that they have very chaotic orbits
with Lyapunov times of a few hundred years (Tancredi 1998).
Typical removal mechanisms are collision with the Sun, a close
approach to Jupiter followed by ejection onto an hyperbolic or-
bit, or (less frequent) collision with a terrestrial planet. Evidence
from the crater record on the Earth–Moon system suggests that
the population of NEAs has been in a steady state for the last
3 Gyr (Grieve and Shoemaker 1994).

The identification of NEAs is of utmost practical importance
as some of these objects could be on a route of collision with
the Earth. The need to optimize observational searches for these
objects led to the recent development of a model for the orbital
and size distribution of NEAs (Bottke et al. 2000, Bottke et al.
2002). This model is based on two assumptions: (1) the absolute
magnitude (H ) distribution obeys a single parameter (source-
independent) law valid for 13 < H < 22; (2) the NEA popula-
tion is being supplied in a steady state by main belt sources. The
orbital evolution of thousands of test bodies initially located at
the various main belt sources is then followed as they become
NEAs. This procedure allows the definition of the residence time
probability distributions of NEAs coming from each main belt
source as a function of semimajor axis (a), eccentricity (e), and
inclination (I ). A model of the distribution of NEAs is then
constructed by taking a linear combination of the orbital distri-
butions from each source together with the one-parameter law
for the absolute magnitude distribution. Subsequent comparison
with the available data, while taking into account the observa-
tional biases, allows the determination of the best fit parameters
of this model (i.e., the parameter of the size distribution and the
fluxes from each main belt source which are necessary to keep
the NEA population in a steady state).

In this paper we test the hypothesis of the existence of a pop-
ulation of Earth coorbital NEAs, which are constantly being
supplied by main belt sources. Using as a starting point the pre-

2
dictions of the NEA model of Bottke et al. (2002), we estimate
the steady state number (according to size) of Earth coorbital

2 This is, in fact, a model for the size and orbital distributions of near-Earth
objects (NEOs) that include not only the NEAs but also the near-ecliptic comets
(NECs). However, as according to this model, near a = 1 AU the number of
NECs is negligible compared to the number of NEAs, in this paper we just refer
to the NEAs.
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NEAs, we obtain their orbital elements’ distribution, and finally
we investigate their observability.

2. METHODOLOGY

The existent NEA model cannot currently provide us with
estimates for the steady state number (according to size) of Earth
coorbital NEAs nor for their typical orbital parameters. This is
due to the fact that this model was constructed on the basis of
numerical integrations whose output was sampled at 10,000-year
intervals, which is much larger than a typical synodic period3

and in fact on the order of the duration of a coorbital episode for
Earth coorbital NEAs (Christou 2000). In addition, capture of a
NEA in the 1 : 1 mean motion resonance with the Earth should
be a rare event and therefore the existent NEA model would, in
any case, provide us with low number (and therefore unreliable)
statistics.

In order to achieve our goal of estimating the population of
Earth coorbital NEAs, we followed the evolution of test bodies
with e and I chosen according to the existent NEA model for
1.1 AU < a < 1.2 AU (our intermediate source region) as they
became coorbital with the Earth (our target region) and until they
collide with the Sun or a terrestrial planet or achieve a > 10 AU
(at which point it is very unlikely that they will return to the inner
Solar System). The orbital elements of these test bodies (as well
as those of the planets) were outputted every 100 years as a com-
promise between being able to accurately identify coorbital mo-
tion with the Earth and generating manageable amounts of data.

In order to decide if a test body is captured in the 1 : 1 mean
motion resonance with the Earth, we checked for oscillation
of its semimajor axis around 1 AU. Oscillations with period-
icity greater than 10,000 years (thus much larger than a typi-
cal synodic period; see above) or that happened for less than
10 consecutive output times were rejected.

We stress that the setting of the intermediate source (IS) as
the NEA region with 1.1 AU < a < 1.2 AU is correct, as any test
bodies coming from the main belt will enter this region before
becoming Earth coorbitals and are also likely to remain in this
region for a time longer than 10,000 years (the interval at which
the output of the numerical integrations is sampled in the NEA
model) with the exception of those rare cases in which they jump
over the IS region due to a deep planetary close encounter. The
advantage of this choice of IS region is that, in this way, we
increase the likelihood of a test body being captured as an Earth
coorbital (because we start with a large population in a region
already quite close to the target region) and can therefore obtain
more accurate statistics than if we followed the test bodies all
the way from the main belt sources. Obviously, we could not
follow this methodology if we did not yet have a prediction

of the NEAs’ orbital and size distributions in the region with
1.1 AU < a < 1.2 AU.

3 We can use, for instance, the synodic period of a tadpole orbit which is equal
to [(27/4)µ]−1/2 orbital periods (Message 1966): for an Earth–Sun mass ratio
µ = 3 × 10−6, the synodic period is then ∼200 years.
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Now, if we assume a steady state scenario, we can estimate
the population in the target (TR) region, which is

NTR = F × LTR, (1)

once we know F (the flux of entrance in the TR region) and LTR

(the mean lifetime in the TR region).
The quantity LTR can be obtained directly from the simu-

lations. In order to compute F , we make use of the fact that
our simulated situation corresponds to a steady state scenario in
which we suddenly stop feeding the IS region. Therefore, the
subpopulation of the IS region that feeds the TR region starts
decaying into the TR region, at a rate

dN s

dt
= −rIS(t)Ns (2)

where rIS(t) is the fractional decay rate into the TR region.
Now, if t is sufficiently small, the fractional decay rate can

be approximated by a constant value, rIS. Hence, the number of
bodies in the IS region that still have not entered the TR region
at time t is

N (t) = Ns(t) + NIS − f NIS, (3)

where

Ns(t) = f NIS exp[−rISt] (4)

is the number of bodies that belong to the subpopulation of the
IS region that feeds the TR region and that are still in the IS
region at time t , NIS is the initial population in the IS region,
and f is the fraction of test bodies that enter the TR region at
some stage (hence f NIS is the total number of bodies that belong
to the subpopulation of the IS region that feeds the TR region).

Moreover, if the chosen initial conditions are representative
of the steady state orbital distribution in the IS region, then the
flux of entrance in the TR region is given by

F = rIS f NIS; (5)

hence we can obtain F once we know f and rIS. As these are
two independent variables in Eq. (4) it is better to use Eq. (3). In
fact, by expanding the exponential in Eq. (4) in a Taylor series
around t = 0, we can show that Eq. (3) can be rewritten as

N (t) = NIS exp[−rIS f t] (6)

and therefore we can obtain the quantity rIS f by fitting a straight
line to ln[N (t)].

3. RESULTS AND DISCUSSION

3.1. The Numerical Integration Scheme
All our numerical integrations were made using the “swift-
rmvs3” integrator (Levison and Duncan (1994)), a modification
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of the symplectic algorithm proposed by Wisdom and Holman
(1991) which is able to deal with planetary close encounters.
In order to test its accuracy when applied to our problem, we
conducted two sets of tests. First, we checked for the conser-
vation (over a 1-Myr timescale) of the Jacobi integral and of
the Kozai integral of the secular motion (Namouni 1999) when
using a time step of 4 days to follow the orbits of coorbital
objects with high e and I , in the framework of the circular re-
stricted three-body problem with an Earth–Sun mass ratio. Sub-
sequently, we followed 25 clones of asteroid Cruithne (generated
as in Christou (2000), by varying the initial conditions within
the observational uncertainties) for 0.1 Myr with time steps of
0.25, 1, and 4 days, while including the gravitational effects of
the eight planets Mercury to Neptune. In Fig. 1 we show the cu-
mulative probability distribution for the time, from the present
date, spent by Cruithne as an Earth coorbital. We can see that
this does not appear to change significantly with the choice of
time step; hence we decided to use “swift-rmvs3” with a time
step of 4 days (a value slightly more conservative than the time
steps of 15 and 7.5 days used in previous NEA studies (e.g.,
Migliorini et al. 1997, Gladman et al. 1997)).

3.2. Statistics from the Numerical Integrations

We followed a set of 1900 test bodies initially in the IS region
as their orbits evolve subject to gravitational perturbations from
the seven planets Venus to Neptune. This set was followed first
for 5 Myr, in order to estimate the flux of entrance in the TR
region.

FIG. 1. The cumulative probability distribution for the time (from the
present date) spent by Cruithne as an Earth coorbital. Different symbols re-

fer to numerical integrations using various time steps: 0.25 day (crosses); 1 day
(triangles); 4 days (circles).



From the results of the previous section we know that the
steady state number of Earth coorbital NEAs with H < 18.30
4 MORAIS AND

a

b

FIG. 2. The decay rate from the IS region into the TR region: (a) logarithm
of the population left in the IS region as a function of time; (b) fractional decay
rate into the TR region obtained by fitting a straight line to the graphic (a) in the
interval [0, T ].

Now, according to Eq. (5), the flux of entrance in the TR
region depends on f (the fraction of test bodies in the IS region
that feed the TR region), rIS (the constant fractional decay rate
into the TR region), and NIS (the steady state number of NEAs
in the IS region).

The quantity rIS f is, according to Eq. (6), the absolute value
of the slope of ln[N (t)]. In Fig. 2a we show the plot of ln[N (t)],
and in Fig. 2b we show the plot of rIS f , obtained by fitting a
straight line by the method of linear regression to ln[N (t)] in
the interval [0, T ], with T varying from 0.2 to 5 Myr at 0.1-Myr
steps. Now, the computation of the fractional decay rate for too
small T is unreliable due to the small number of data points
available. On the other hand, for T too large we are attempting
to fit a straight line to a part of ln[N (t)] where the number
of test bodies left in the subpopulation of the IS region that
feeds the TR region is too small and consequently the decay rate

deviates from an exponential law. By inspection of Fig. 2b we
decided to compute an average fractional decay rate by including
MORBIDELLI

only the values between T = 0.4 and T = 1.3 Myr, which gives
rIS f = −0.0633 ± 0.0013 Myr−1.

Finally, from the NEA model (Bottke et al. 2000, Bottke
et al. 2002) we can obtain the steady state number of NEAs
with H < H0 in the IS region. In particular, NIS = 31 ± 6 for
H0 = 18 and this value scales approximately as 100.35(H0−18) for
18 < H0 < 22. We can then apply Eq. (5) to obtain the flux of
entrance in the TR region: this is F = 1.96 ± 0.38 test bodies
Myr−1 for H < 18.

Now, according to Eq. (1), in order to obtain the steady state
number of Earth coorbital NEAs we need to compute LTR (the
mean lifetime in the target region). In order to obtain this quan-
tity, we followed up to 100 Myr the set of test bodies that after
5 Myr had at some stage been coorbital with the Earth (438 out
of 1900). This integration timespan proved to be long enough
for our purposes, as at the end of it, not only were there very few
surviving test bodies but new captures in the 1 : 1 mean motion
resonance were very unlikely (indeed, at the end of the 100-Myr
timespan the cumulative time spent in the TR region had almost
reached a plateau). We obtained a mean lifetime in the 1 : 1 mean
motion resonance with the Earth, LTR = 0.33 Myr. Applying
Eq. (1) we can then predict the steady state number of Earth coor-
bital NEAs: this is NTR = 0.65 ± 0.12 and NTR = 16.3 ± 3.0 for
H < 18 and H < 22, respectively.

An interesting by-product of our simulations was the real-
ization that typically a test body experiences several captures/
escapes in/from the 1 : 1 mean motion resonance: the average
duration of a coorbital episode was 25,000 years (while none
lasted longer than 1 Myr) and consecutive coorbital episodes
were spaced on average by 2 Myr. This had not been realized
before, probably because the few existent numerical integrations
of objects in the 1 : 1 mean motion resonance with the Earth
had been extended at most up to 200,000 years (e.g., Christou
2000).

3.3. Comparison with the Current Observations

The only NEA which is currently known to be in the 1 : 1 mean
motion with the Earth, (3753) Cruithne, has absolute magnitude4

H = 15.10. In addition, according to Christou (2000), three
other NEAs can become Earth coorbitals in the timespan of
0.2 Myr centered at the present time; these are (10563) Izhdubar,
(3362) Khufu, and 1994 TF2, with H = 16.90, H = 18.30, and
H = 19.30, respectively.

The numerical integrations of Christou (2000) show that 100%
of the clones of Cruithne, and about 50% of those of Izhdubar
and Khufu, were at some stage in the 1 : 1 mean motion reso-
nance with the Earth during the timespan �t = 0.2 Myr. Thus
we conclude that, on average, two of the three NEAs which have
H � 18 should become Earth coorbitals within this timespan.
4 Absolute magnitudes, H , of near-Earth asteroids are available at http://earn.
dlr.de/nea.
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is NTR < (0.65 ± 0.12) × 100.35×0.3 = 0.83 ± 0.15. As this is of
course a mean value, ideally we would like to compare it with the
number of NEAs which are in the 1 : 1 mean motion resonance
with the Earth over a large enough timespan. Therefore, we chose
to compare our results to those from the numerical integrations
for �t = 0.2 Myr performed by Christou (2000).

The number of NEAs that will become Earth coorbitals within
a given timespan, �t , will depend on the time, �t1:1, that they are
likely to spend in the 1 : 1 mean motion resonance with our planet
within this timespan. Now, as the average time interval between
consecutive coorbital episodes is 2 Myr, there is on average
one coorbital episode per coorbital clone in the timespan �t =
0.2 Myr. Therefore, we can then set �t1:1 = 25,000 years (which
is the average duration of a coorbital episode in our simulations),
and the number of NEAs with H < 18.3 that should become
Earth coorbitals within �t is then (0.83 ± 0.15) × �t/�t1:1 =
6.6 ± 1.2. Now, if we assume that Christou (2000) identified all
the known NEAs with H � 18 that will become Earth coorbitals
during �t = 0.2 Myr, we conclude that, at the time of his search,
the observations of objects with H < 18.3 near a = 1 AU had
completeness between 26 and 37% which is consistent with the
predictions of the NEA model of Bottke et al. (2002).

3.4. Types of Coorbital Modes

The binned eccentricity and inclination distributions, obtained
while the test bodies were in the 1 : 1 mean motion resonance
with the Earth, are shown in Figs. 3a and 3b, respectively. We
see that the typical eccentricities are quite high, that most ob-
jects have orbits which are Venus crossing (e ≥ 0.28), and that
many have orbits which are Mars crossing (e ≥ 0.52). In fact,
the evolution of these orbits seems to be mostly caused by close
encounters with the terrestrial planets (Christou 2000) which is
typical of NEAs. On the other hand, the role played by secular
resonances inside the coorbital region (Morais 2001) could also
be important in the case of long-lived coorbital episodes as seen
by Michel (1997) in the case of Venus. In Fig. 3b we see that the
typical inclinations can also be quite high and that most objects
have orbits with 10◦ < I < 45◦.

The dynamics in the 1 : 1 mean motion resonance at high val-
ues of the eccentricities and inclinations has been studied in the
context of the three-body problem by Namouni (1999), Namouni
et al. (2000), Namouni and Murray (2000), and Nesvorny et al.
(2002). In brief, in the low-eccentricity regime, objects in the
1 : 1 mean motion resonance with a given planet which share
the same orbital plane with it (planar problem) can be in either
tadpole modes (the critical angle librates around either 60 or
−60◦) or horseshoe modes (the critical angle librates around
180◦ and the libration encloses ±60◦). In the high-eccentricity
regime, there are also retrograde satellite modes (the critical
angle librates around 0◦) and libration in the tadpole and horse-
shoe modes does not necessarily enclose ±60◦ but rather points
which are displaced towards 180◦ by an amount proportional to

the eccentricity. In the three-dimensional problem there are also
stable compound modes (for instance, combinations of tadpole
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FIG. 3. The binned eccentricity (a) and inclination (b) distributions for the
Earth coorbitals from our simulations.

or horseshoe modes with retrograde satellite modes) and transi-
tions between different coorbital modes are possible on a secular
timescale.

3.5. The Distribution of Earth Coorbitals in the Sky

In order to obtain the distribution in the sky of Earth coorbitals,
we first computed the time spent by these in each 5 × 5◦ cell in
ecliptic longitude and latitude coordinates and then normalized
this by the total time spent in the 1 : 1 mean motion resonance.
This residence-time probability distribution of Earth coorbital
NEAs is depicted in Fig. 4a in geocentric ecliptic coordinates.
The observability of a given object depends on its apparent
visible magnitude which, according to Bowell et al. (1989), is
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FIG. 4. Representation in geocentric ecliptic coordinates of several characteristics of the distribution of Earth coorbitals. The color in each 5 × 5◦ cell indicates

for these objects: (a) the probability of finding one of them; (b) the average extinction; (c) the average longitudinal rate of motion, and (d) the average latitudinal
rate of motion (both rates measured in′′ h−1). The opposition has geocentric eclip ◦
given by

V = H − 2.5 log[(1 − G)�1(α) + G�2(α)] + 5 log[r × �]

(7)

where H is the absolute magnitude, α is the phase angle, G
is termed the slope parameter and is related to the asteroid’s
albedo, and r and � are respectively the distances to the Sun
and Earth; �1(α) and �2(α) are defined in Eq. (A5) of Bowell
et al. (1989).

The extinction,5 V − H , provides a measure of the difference

in brightness with respect to an intrinsic value, H , the latter being
a function of the size and albedo of the object being observed.

5 Here, the term extinction refers to the difference in brightness, V − H , which
is a function of the position of the asteroid with respect to the Sun and the Earth.
It does not include the effect of the atmospheric extinction which is a function
of the zenithal angle of the object being observed; see below.
tic latitude and longitude 0 .

This quantity, V − H , varies according to the object’s albedo
(due to the dependence on G) and to its distance and relative
position with respect to the Earth and Sun (due to the dependence
on r , �, and α). In Fig. 4b we show a representation of the aver-
age extinction for the Earth coorbitals from our simulation com-
puted using a slope parameter G = 0.21. This value was obtained
by taking the weighted mean value between S-type and C-type
asteroids, which according to E. F. Tedesco (personal commu-
nication, 2001) have respectively G = 0.23 and G = 0.12, while
assuming that NEAs with H smaller than a given value are a mix-
ture of 80% S types and 20% C types (Morbidelli et al. 2002b).
The extinction depicted in Fig. 4b was obtained by computing
the average of the individual extinctions for each output step
spent by a coorbital test body within each 5 × 5◦ cell in ecliptic
longitude and latitude coordinates.
In Fig. 4a we see that the higher concentration of Earth coor-
bital NEAs occurs for geocentric ecliptic longitudes in the
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vicinity of the Sun. Unfortunately, this region of the sky is in-
accessible from the Earth. In fact, typically observations are
possible only when the Sun is at least 18◦ below the horizon and
when the air mass is less than 2 (when the air mass exceeds this
value, the atmospheric extinction is often too great), i.e., when
the object is at least 30◦ above the horizon. This implies that
usually objects can only be observed when they have an ecliptic
longitude that differs from that of the Sun by an amount that
must be at least 48◦ in absolute value.

Taking this effect into account and by inspecting Fig. 4a, it
seems reasonable at first glance to propose that observational
searches be made at ecliptic latitudes between 0 and ±10◦ and
ecliptic longitudes relative to opposition between 120 and 130◦

(or −120 and −130◦). As each of these two regions is composed
of 8 cells of 5 × 5◦, in which the probability density is around
0.0024, then the probability of finding in each one of them an
object with H < H0 is 0.0192 NTR, where NTR is the number of
NEAs with H < H0. This gives probabilities of 1.2 ± 0.2% and
31 ± 6% for H0 = 18 and H0 = 22, respectively.

Now, by comparing Figs. 4a and 4b, we see that in the re-
gion that we proposed be searched, the average extinction is
around 3. Therefore, in order to detect NEAs with H < 22 we
would need a telescope with limiting magnitude 25. Search-
ing a 20 × 10◦ sky area at such a limiting magnitude is cer-
tainly not feasible in practice. If we assume that we could con-
duct such a wide-field survey at limiting magnitude 24 (as in
the ambitious Large Synoptic Survey Telescope (LSST) project
(http://dmtelescope.org/index.htm)), then due to the extinction
effect we would be limited to search for objects with H < 21
which have a probability of merely 14 ± 2.5% of being found
in each of these two regions, and therefore even this would be
quite an inefficient survey.

In Fig. 4c we show the average rate of geocentric ecliptic
longitude motion as a function of geocentric ecliptic coordinates.
We see that this takes values between 100′′ h−1 (at opposition)
and 300′′ h−1 (at 180◦ from opposition). In Fig. 4d we show the
average absolute value of the rate of geocentric ecliptic latitude
motion, again as a function of geocentric ecliptic coordinates.

In the region with ecliptic latitudes between 0 and ±10◦ and
ecliptic longitudes relative to opposition between ±120 and
±130◦, we see that the rate of geocentric ecliptic longitude mo-
tion ranges from about 150 to 160′′ h−1, i.e., it is not so different
from the Earth’s mean motion (148′′ h−1) as we would expect
in the case of small eccentricity orbits in the vicinity of L4 or
L5. On the other hand, the absolute value of the rate of ecliptic
latitude motion is around 40 or 45′′ h−1 which is consistent with
the existence of inclined orbits at this location.

Such fast rates of motion make detection of faint objects dif-
ficult, as during the exposure times required to collect a signal
the objects can cross the seeing disk of the image. This problem
can in principle be avoided by tracking the telescope at the ob-
ject’s expected rate of motion, as done by Whiteley and Tholen
(1998) who tried to find Earth Trojan asteroids by covering a

0.35-square-degree sky area around the L4 and L5 points of the
Earth–Sun system while tracking the telescope at 150′′ h−1 along
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FIG. 5. A contour plot representation in heliocentric ecliptic coordinates
of the residence-time probability distribution of Earth coorbitals: the contours
taken at 90, 85, 80, 75, 50, and 25% are represented by lines of increasing
thickness. The Earth has heliocentric ecliptic latitude and longitude 0◦.

the ecliptic. This technique is useful if the latitudinal motion is
nearly zero (which is a reasonable assumption when searching
for a primordial population of Trojans in the vicinity of L4 or
L5). However, in our case the latitudinal motion can be quite fast
and this effect can pose additional difficulties for the detection
of faint Earth coorbital NEAs by reducing the effective limiting
magnitude of the survey.

In Fig. 5 we show a contour plot in heliocentric ecliptic co-
ordinates of the residence-time probability distribution of Earth
coorbital NEAs. We see that the distribution of ecliptic latitudes
is broad and in particular the 25% contour is in between eclip-
tic latitudes ±30 and ±40◦ which is explained by the existence
of a significant number of orbits with inclinations up to 40◦, in
agreement with Fig. 3b.

It is instructive to compare the residence-time probability dis-
tribution depicted in Fig. 5 with what we would expect from a
hypothetical primordial population of Earth Trojan asteroids, a
subject which was investigated by Wiegert et al. (2000) and by
Evans and Tabachnik (2000b). In the latter cases the highest con-
centration should occur at zero heliocentric ecliptic latitude and
a heliocentric ecliptic longitude relative to the Earth of ±60◦,
as we would expect from a population with low-eccentricity or-
bits and semimajor axes uniformly distributed inside the Earth’s
coorbital region, and from the fact that in the low-eccentricity
regime all librations in the 1 : 1 mean motion resonance en-
close the stationary points L4 and L5. In our case, owing to
the high values of the eccentricities, not only are there no L4

nor L5 stationary solutions, but the libration centers for tad-
pole orbits are displaced towards 180◦ by an amount which in-

creases with the orbital eccentricity, as shown by Namouni and
Murray (2000). On the other hand, as discussed above, at high
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eccentricity there are, in addition to tadpole and horseshoe
modes, retrograde satellite and compound modes. Finally, our
coorbital objects are NEAs which were temporarily captured;
hence we do not expect to find a population with orbital semi
major axes uniformly distributed inside the coorbital region.
The combination of all these effects generates the complexity
that can be seen in Fig. 5.

4. CONCLUSION

In this paper we obtained the number (according to size) and
the orbital distribution of NEAs that are expected to be in the
1 : 1 mean motion resonance with the Earth in a steady state
scenario. This work is based on the NEA model developed by
Bottke et al. (2000, 2002). In short, we numerically integrated
the evolution of NEAs initially located in a region close to the
terrestrial coorbital region (whose size and orbital distribution
we know a priori, from the NEA model) and monitored those that
are trapped in the 1 : 1 mean motion resonance with the Earth.

We saw that NEAs which become coorbital with the Earth
typically experience multiple coorbital episodes, each lasting
on average 25,000 years and none lasting longer than 1 Myr.
These multiple coorbital captures were not seen in the numer-
ical integrations of just a few Earth coorbitals performed by
Christou (2000) probably because these were extended only up
to 200,000 years. We also saw that the distributions of eccentric-
ities and inclinations of the NEAs while they are in the 1 : 1 mean
motion resonance with the Earth have maxima at e = 0.4 and
I = 30◦, respectively, which corresponds to the coorbital regime
studied by Namouni (1999), Namouni et al. (2000), Namouni
and Murray (2000), and Nesvorny et al. (2002).

Finally, we obtained the sky distribution of Earth coorbital
NEAs and saw that these objects are spread over a large sky area
which poses difficulties for observational searches. In addition,
we saw that these objects are undetectable most of the time,
either because they are too low over the horizon (or even below
it) or because they are too faint, with an extinction which can
be as high as V − H = 3. Current programs for detecting NEAs
go down at most to limiting magnitude 21.5 (as in the case
of Spacewatch; J. Larsen, personal communication, 2001) and
therefore are only likely to detect Earth coorbital NEAs with
H < 18. In any case, the existence of (3753) Cruithne implies
that the survey for Earth coorbitals with H < 18 is, at the current

time, probably already complete. On the other hand, we believe
that smaller Earth coorbital NEAs will continue to be found,6

6 Since the first submission of this paper we did a search of the Asteroid
Orbital Element Database (ftp://ftp.lowell.edu/pub/elgb/astorb.html) and found
two more objects that have some chance of being captured in the 1 : 1 mean
motion resonance with the Earth in less than 100,000 years from the present
time: these are 1998 UP1 and 2000 WN10 with H = 20.39 and H = 19.77,
respectively. On the other hand, a recent Minor Planet Electronic Circular
(http://cfa-www.harvard.edu/iau/mpec/K02/K02A92.html) reported on an ob-
ject, 2002 AA29, which has H = 23.9 and according to our integrations, seems
to be in a temporary horseshoe orbit with the Earth.
MORBIDELLI

although completing the survey for these objects will probably
not be an easy task. Previous dedicated searches for hypothetical
primordial Earth Trojan asteroids made by Whiteley and Tholen
(1998) were able to go to limiting magnitude 22.8 but only
covered tiny sky areas and therefore would not be efficient in
discovering Earth coorbital NEAs.
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Migliorini, F., A. Morbidelli, V. Zappalá, B. Gladman, M. Bailey, and A. Cellino
1997. Vesta fragments from ν6 and 3 : 1 resonances: Implications for V-type
NEAs and HED meteorites. Meteorit. Planet. Sci. 32, 906–913.

Morais, M. H. M. 2001. Hamiltonian formulation of the secular theory for
Trojan-type motion. Astron. Astrophys. 369, 677–689.

Morbidelli, A., W. Bottke, P. Michel, and Ch. Froeschlé 2002a. Origin and
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