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ABSTRACT

Context. The strength and direction of migration of embedded low mass planets depends on the disc’s thermodynamic state. It has
been shown that, in discs where the viscous heating is balanced by radiative transport, the migration can be directed outwards, a
process which extends the lifetime of growing planetary embryos.
Aims. We investigate the influence of opacity and stellar irradiation on the disc thermodynamics. We focus on equilibrium discs,
which have no net mass flux. Utilizing the resulting disc structure, we determine the regions of outward migration in the disc.
Methods. We performed two-dimensional numerical simulations of equilibrium discs with viscous heating, radiative cooling, and
stellar irradiation. We used the explicit/implicit hydrodynamical code NIRVANA that includes a full tensor viscosity and stellar irradi-
ation, as well as a two temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration
of embedded planets was studied by using torque formulae.
Results. In the constant opacity case, our code reproduces the analytical results corresponding to a black-body disc: the stellar ir-
radiation dominates in the outer regions – leading to flaring (H/r ∝ r2/7) – while the viscous heating dominates close to the star. In
particular, we find that the inner edge of the disc should not be significantly puffed-up by the stellar irradiation. If the opacity depends
on the local density and temperature, the structure of the disc is different, and several bumps in the aspect ratio H/r appear, due to
transitions between different opacity regimes. The bumps in the disc structure are very important, as they can shield the outer disc
from stellar irradiation.
Conclusions. Stellar irradiation is an important factor for determining the disc structure and has dramatic consequences for the mi-
gration of embedded planets. Compared to discs with only viscous heating and radiative cooling, a stellar irradiated disc features a
much smaller region of outward migration for a range of planetary masses. This suggests that the region where the formation of giant
planet cores takes place is smaller, which in turn might lead to a shorter growth phase.

Key words. accretion, accretion disks – planets and satellites: formation – hydrodynamics – radio continuum: galaxies –
radiative transfer – planet-disk interactions

1. Introduction

In accretion discs around young stars planetary embryos are born
and grow through collisions to form bigger and bigger objects.
The largest protoplanets constitute the cores of giant planets.
Embedded planets interact with the gas in the disc and can move
through the disc. This process depends on the disc’s physical
properties (Ward 1997), in particular the local density and tem-
perature and the gradients thereof.

In a real disc, not only viscous heating and radiative cool-
ing determine the disc’s thermal structure, but also stellar irra-
diation. In the outer parts of the disc the heating from the star
can keep the disc flared (Chiang & Goldreich 1997), in contrast
to the disc profile without stellar irradiation. The effect of stel-
lar irradiation on the disc structure has largely been investigated
utilizing a 1D + 1D numerical approach (e.g. Bell et al. 1997;
Dullemond et al. 2001) with the goal of fitting the spectral en-
ergy distributions (SEDs) of observed discs

The migration of a low-mass planet embedded in a fully ra-
diative gaseous disc can be significantly different from migration

in an isothermal or purely adiabatic disc (Paardekooper &
Mellema 2006, 2008; Paardekooper & Papaloizou 2008; Kley
& Crida 2008; Kley et al. 2009; Ayliffe & Bate 2010). While all
authors agree that radiation transport can slow the rate of inward
migration, there is still a lack of consensus whether the direc-
tion of migration can be outward and, if so, in which part of the
disc (Bitsch & Kley 2011). Part of this confusion may be due
to the sensitivity of the direction and magnitude of migration on
local disc parameters (Paardekooper et al. 2010, 2011; Masset &
Casoli 2010), including, for example, the radial disc temperature
gradient (Ayliffe & Bate 2011).

In all previous works on planetary migration, the disc struc-
ture is determined by viscous heating and cooling. The equilib-
rium disc structure is thus determined by the disc mass and the
magnitude of viscosity (Bitsch & Kley 2011). Including stellar
irradiation can lead to a flared disc profile in the outer parts of
the disc (Dullemond & Dominik 2004). The resulting change
in the disc structure in the outer parts can have a huge effect
on the migration of embedded planets. As the aspect ratio of
the disc H/r changes, so does the temperature profile, which
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in turn determines the strength of the entropy gradient. The en-
tropy gradient determines the magnitude of the corotation torque
(Baruteau & Masset 2008), which constitutes a significant frac-
tion of the total torque, and hence determines the strength and
direction of migration.

In this paper we investigate the structure of the disc due to
changes in opacity and the effects of stellar irradiation using a
2D (r− z) disc model. In Sect. 2 we describe the energy equation
including stellar heating and the opacities used. We then com-
pare test studies with analytical calculations of the disc structure
in the case of constant opacity in Sect. 3, followed by studies
with non constant opacity in Sect. 4. The differences between
discs including stellar heating and those with only viscous heat-
ing are described in Sect. 4.3. We then apply torque formulae
to estimate the torque acting on embedded planets for these disc
structures in Sect. 5. In Sect. 6 the summary and conclusions are
presented.

2. Methods

The protoplanetary disc is treated in this study as a two-
dimensional (2D) non-self-gravitating gas whose motion is de-
scribed by the Navier-Stokes equations. In this paper we focus
on the axisymmetric structure of the disc and compute a verti-
cal slice (in the r − z plane) utilizing 2D spherical coordinates
(r − θ). Turbulence in discs is thought to be driven by magneto-
hydrodynamical instabilities (Balbus & Hawley 1998) but here
we treat viscosity utilizing either a constant kinematic viscos-
ity or an α-viscosity (Shakura & Sunyaev 1973). The dissipa-
tive effects can then be described via the standard viscous stress-
tensor approach (e.g. Mihalas & Weibel Mihalas 1984). We also
include the irradiation from the central star, which will be de-
scribed in detail in Sect. 2.1. For that purpose we modified and
substantially extended an existing multi-dimensional hydrody-
namical code Nirvana (Ziegler & Yorke 1997; Kley et al. 2001).

The radiative energy associated with viscous heating and
stellar irradiation is then diffused through the disc and emitted
from its surfaces. To describe this process we utilize the flux-
limited diffusion approximation (FLD, Levermore & Pomraning
1981), an approximation that allows us to transition from the op-
tically thick mid-plane to the thin regions near the disc’s surface.

The hydrodynamical equations solved in the code have al-
ready been described in detail (Kley et al. 2009), so we focus
here on our newly implemented two-temperature approach in
Sect. 2.1 and how to solve the coupled equations in Appendix B.

2.1. Energy equation

In the two-temperature approach (featuring the radiative energy
density ER and the thermal energy density ε) the evolution equa-
tions for the thermal and radiation energy read (Kley 1989;
Dobbs-Dixon et al. 2010; Commercon et al. 2011):

∂ ER

∂t
+ ∇ · F = ρκP(T, P)[B(T )− cER] (1)

∂ ε

∂t
+ (u · ∇)ε = −P∇ · u − ρκP(T, P)[B(T )− cER] + Q+ + S .

Here, ER is independently evolved from the thermal compo-
nent with B(T ) = 4σT 4 (σ being the StefanBoltzmann con-
stant and T the temperature of the gas). F denotes the radiative
flux. From Eq. (1), one can calculate the coupling time-scale
τcoup = 1/(ρκc) with the density ρ, the opacity κ, and c the
speed of light. The coupling time-scale defines the coupling

between B(T )/c and ER. If ρκ is high, the coupling time is
small, indicating that ER relaxes quickly towards B(T )/c, mean-
ing ER ≈ 4σT 4/c (optically thick limit). If ρκ is low, the cou-
pling time is large, and ER and B(T )/c can decouple (optically
thin limit). B(T ) − cER represents the exchange of energy be-
tween the thermal and radiative components through emission
and absorption of low energy photons. κP is the Planck opacity
(see Sect. 2.3). The thermal energy ε is given by ε = ρcvT (cv be-
ing the specific heat at constant volume which we hold fixed and
uniform), and u = (ur, uθ, uϕ) the gas velocity. P is the gas pres-
sure, Q+ the viscous dissipation function and S the contribution
from the stellar heating.

The radiative flux, using FLD, can be written as

F = − λc
ρκR
∇ER, (2)

where κR is the Rosseland mean opacity and λ the flux lim-
iter. Please note that κP and κR are different opacities. More de-
tails concerning the opacities used here are given in Sect. 2.3.
Using FLD allows us to solve for stable accretion disc models
that cover several vertical pressure scale heights. We use here
the FLD approach described in Levermore & Pomraning (1981)
with the flux-limiter of Kley (1989) given by

λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2

3 +
√

9 + 10R2
for R ≤ 2.0

10

10R + 9 +
√

81 + 180R
for R > 2.0

, (3)

where

R =
1
ρκR

|∇ER|
ER
. (4)

These are the same specifications as in Kley et al. (2009), who
used a one-temperature approach with Er = arT 4, where ar =
4σ/c is the radiation constant.

For our purposes the physical extent of the star is small
with respect to the disc extension so we approximate it as a
point source. In spherical coordinates, the stellar radiation is thus
propagated along the radial direction only. With this method, the
code simultaneously treats the stellar heating component via ray-
tracing and subsequent re-radiation via FLD. The stellar heating
density S (i.e. the energy deposited per unit time and volume),
received by a grid cell i of width Δr is given by:

S = F�e−τi
1 − e−ρκ�Δr

Δr
with F� =

R2
�σT 4

�

r2
, (5)

where R� is the stellar radius and T� the stellar surface tem-
perature. The factor e−τi expresses how much stellar irradiation
has been absorbed in the grid before it hits the radial grid cell i,
with τi being the optical depth integrated radially towards grid
cell i. The factor 1 − e−ρκ�Δr describes how much stellar irradi-
ation is absorbed in the actual grid cell, with κ� being the opti-
cal opacity, calculated using the stellar spectrum (Dobbs-Dixon
et al. 2010). For more information regarding the opacities, please
see Sect. 2.3. In the optically thin limit (ρκ�Δr < 1.0), we make
the following approximation:

S = F�e−τiρκ�. (6)

More details concerning the stellar heating function are given in
Appendix A.
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The coupled energy equations (Eq. (1)) have to be solved
simultaneously and we follow here the approach outlined in
Commercon et al. (2011). The advection (u · ∇)ε and the com-
pressional heating (−P∇·u) terms are solved in separate routines.
Appendix B describes our approach to simultaneously solving
the coupled energy equations (Eq. (1)).

2.2. Physical setup

2.2.1. Computational parameters

For computational reasons, the inner disc (0.0416 AU < r <
1.04 AU) and outer disc (1.04 AU < r < 50.96 AU) are treated
in two different sets of simulations. Both sets of simulations are
2D discs in the r-θ direction (radial and vertical) with 384 × 32
(inner disc) or 384×64 (outer disc) active grid cells. The opening
angle used by the grid, i.e. the range of θ, differs for the inner and
outer disc simulations. In the inner disc 83◦ < θ < 90◦, while in
the outer disc 70◦ < θ < 90◦, where θ is the colatitude measured
from the z-axis and θ = 90◦ is the mid-plane.

The reason for introducing two sets of simulations for the in-
ner and outer disc is numerical. The time step for the inner disc,
due to the small inner radius, is very small, significantly increas-
ing the computation time. It is therefore not feasible to simulate
the whole disc in one simulation. Additionally, the opening an-
gle of the numerical disc needs to increase to larger values at
larger radial distances as the initial disc structure is flared (H/r
increasing with r). Setting an opening angle too large (e.g. 20◦)
for the inner disc results in a collapse of the time step due to very
low densities in the upper regions of the disc. Test runs using
a density floor showed the same behaviour. Therefore, the two
sets of simulations utilize different opening angles. The simula-
tions then can be attached to each other at the respective bound-
aries of the numerical grids, resulting in a continuous profile.
The transfer of the stellar heating is described more precisely in
Sect. 2.2.2.

We assume the upper and lower parts of the disc are iden-
tical and therefore apply symmetric boundary conditions at the
disc’s mid-plane, i.e. at θmax = 90◦. At the top of the disc (at
θmin) we set the radiation energy to ER = aRT 4 with T = 3.0 K
(the temperature of the interstellar medium). In this way the disc
will always be cooled by the upper boundary and all the heating
created in the disc (viscous and stellar) can be transported out-
wards, as the boundary radiation energy is always lower than in
mid-plane. This type of cooling at the top of the disc has been
used in Kley et al. (2009), and is also adopted in SPH simula-
tions of fully radiative discs (Ayliffe & Bate 2011). In the radial
direction we use reflecting boundary conditions for all disc pa-
rameters as described in Kley et al. (2009).

We start the simulations with an initial surface density pro-
file of Σ = Σ0(r/1 AU)−1/2, where Σ0 = 1000 g/cm2 or
Σ0 = 3000 g/cm2, which is approximately the value used in
Weidenschilling (1977) at 1 AU. The initial aspect ratio H/r ∝
r2/7 indicates a flared disc, following the “flaring disc principle”
(Dullemond 2002): if the disc can flare, it will. Self-shadowed
discs are discs that cannot be made to flare, which may occur for
discs that are initialized with constant H/r.

We use either a constant kinematic viscosity of ν =
1015 cm2 s−1 or an α prescription with different values for α, fol-
lowing Shakura & Sunyaev (1973) with ν = αc2

s/ΩK, where cs
is the mid-plane sound speed and ΩK the Keplerian orbital fre-
quency. In case of α-viscosity we adopt a vertically constant vis-
cosity utilizing the mid-plane values. MHD simulations indicate
that the turbulent stresses do not strongly change with height

(Flaig et al. 2012). For discs with constant viscosity, the initial
surface density profile is the equilibrium profile, which cancels
viscous transport. For α-discs the profile will evolve until a new
equilibrium profile is achieved under the influence of reflecting
boundary conditions. In this way, the mass inside the disc is con-
served. This case is what we call equilibrium disc.

2.2.2. Stellar heating

The star at the centre of our grid has M� = M	, T� = 5656 K
and R� = 3.0 R	, corresponding to a typical protostar. In our
simulations the inner discs starts at r = 0.0416 AU, close to the
corotation radius of the star.

Let us first assume that the inner edge of the disc is sharply
cut off and it cools through that edge as a blackbody. If all of the
stellar irradiation is absorbed at this edge, the received energy
per time is

S̃ = 2πrmin2HF� = 4πrminH
σT 4
�R2
�

r2
min

= 4πσT 4
�R2
�

H
rmin
, (7)

where 2πrmin2H is the surface of the inner face of the disc. rmin
denotes the radius of the inner edge of the disc. The blackbody
cooling of the surface of the inner edge is given by

Q− = −4πrminHσT 4
D, (8)

with TD being the disc’s temperature. In equilibrium (heating is
equal to cooling) we get

S̃ + Q− = 0 ⇒ 4πσT 4
�R2
�

H
rmin
− 4πrminHσT 4

D = 0

⇒ T 4
�R2
� = T 4

Dr2
min. (9)

Using vertical hydrostatic equilibrium,

TD =

(
H

rmin

)2 GM�
rmin

μ

R , (10)

with μ being the mean molecular weight and R the gas constant,
we obtain

T 4
�R2
� =

(
H

rmin

)8 G4M4
�

r4
min

μ4

R4
r2

min

(
H

rmin

)8

=
T 4
�R2
�R4

G4 M4
�μ

4
r2

min = C�r2
min

⇒ H
rmin
= C1/8

� r1/4
min (11)

= 0.0516

(
M�
M	

)−1/4 (
R�

3 R	

)1/4 ( T�
5600 K

)1/2 ( rmin

1 AU

)1/4
·

Equation (11) indicates that the aspect ratio of the inner rim
scales with the grid truncation radius (rmin) as r0.25

min ; decreas-
ing rmin results in a decreased H/r. Therefore, regardless of our
choice of rmin, provided that the chosen value of rmin is smaller
than the radius of the innermost bump in H/r due to opacity
transitions (see Sect. 4), we are guaranteed that the disc interior
to this point will not have a larger aspect ratio than that at the
chosen truncation radius. This has important consequences for
the irradiation received by this first cell, as it guarantees this first
cell will not be in the shadow of a higher H/r region interior to
it. Though the simulation naturally captures self-shadowing in
the simulated regions of the disc, Eq. (11) shows this is not rel-
evant for the region interior to rmin. Therefore, if rmin is larger
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than the physical truncation radius of the disc, we can mimic the
absorption of stellar irradiation due to the inner disc by simply
reducing the stellar irradiation by a factor of e−τinner before it hits
the first active grid cell. In our case τinner corresponds to the op-
tical depth of the inner two ghost cells of the numerical grid,
that are located inside of rmin. These ghost cells have the same
properties (e.g. ρ, κ, Δr) as the first active cell. By choosing the
values of the ghost cells for e−τinner , we follow the radial profile of
the disc, making τinner consistent with the rest of the simulation.

As some of the stellar irradiation is absorbed by the inner
disc, the outer disc will not receive stellar irradiation in the op-
tically thick mid-plane region. From the simulations of the inner
disc, we can measure to what angle from mid-plane in the disc
the stellar irradiation is absorbed, ϑabs, by looking at the distri-
bution of stellar heating in the inner disc. This angle ϑabs varies
with the disc mass and viscosity. In the outer disc simulation,
the disc will only receive stellar heating for an opening angle ϑo
larger than ϑabs (keep in mind that ϑ = θ − 90◦ = 0 represent the
mid-plane of the disc):

F� =

{
F� for ϑo ≥ ϑabs
0.0 for ϑo < ϑabs

· (12)

For the simulations of the outer disc, we reduce the stellar irra-
diation on the top layers by e−τinner as we did for the simulations
of the inner disc. This has the effect that the transition from zero
stellar irradiation to stellar irradiation is smoothed out a little
bit. This, of course, implies that the simulations of the inner disc
have to be done before the simulations of the outer disc to obtain
the correct ϑabs.

In principle one could radially integrate the stellar flux from
the inner boundary of the inner simulation to the outer boundary
to see what remains. This would then act as the starting stellar
heating of the simulations of the outer grid. However, as the sim-
ulations of inner and outer disc have different opening angles,
this could only be done up to the opening angle of the inner disc.
Also, as the inner parts are (radially) optically thick, most of the
stellar irradiation is absorbed in the first cells, resulting in a zero
stellar irradiation at the outer boundary of the inner disc simu-
lations. Only the very top layers of the inner disc simulations
still receive stellar irradiation at their outer boundary, which can
be mimicked by the introduction of ϑabs. In Appendix A.3 we
present test simulations showing that the inner and outer disc
simulations match perfectly with our simple prescription of ϑabs.

2.3. Opacities

In the previous sections we have introduced three different opac-
ities, the Planck mean opacity κP, the optical opacity κ� and the
Rosseland mean opacity κR. In principle the opacities can be
calculated as in Dobbs-Dixon et al. (2010). The Rosseland and
Planck mean opacities are defined in the usual manner, so the
local Planck mean opacity for the low-energy photon group is
given by

κP(T, ρ) =

∫
κν,ns(T, ρ)Bν(T )dν∫

Bν(T )dν
, (13)

while the optical opacity is given by the high-energy photon
group

κ�(T, ρ) =

∫
κν,ns(T, ρ)Jν(T�)dν∫

Jν(T�)dν
· (14)
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Fig. 1. Opacity from Bell & Lin (1994) on a logarithmic scale. Different
colours indicate different densities. The bumps in the profile originate
from transitions in the opacity regime. This plot features κR and κP as
we assume in this paper that κR = κP.

The frequency dependent opacity is given by κν and the subscript
ns indicates scattering processes, which are neglected when cal-
culating wavelength dependent opacities. In principle, the spec-
trum of impinging radiation can differ from a blackbody, but for
our purposes we set Jν(T�) = Bν(T�). Finally, the Rosseland
mean for the low-energy group is given by

κR(T, ρ)−1 =

∫
κ−1
ν,s(T, ρ)

∂Bν(T )
dT dν∫

∂Bν(T )
dT dν

· (15)

The wavelength-dependent opacities include the effect of scat-
tering (subscript s). Dobbs-Dixon et al. (2010) state that the ra-
tio between κ� and κP is about a factor of 10. They calculated
the opacities directly from wavelength-dependent opacities us-
ing gaseous, solar-composition opacities. The net result of their
work is that the photospheres for the stellar irradiation and the
cooling are physically disconnected. The upper layers of the disc
(where stellar irradiation plays the largest role) is largely de-
pleted of dust, particularly at a later stage of evolution, when
planets are forming. Thus the opacity due to grains is reduced
(as is done in Ayliffe & Bate 2009). In our first set of simula-
tions, we leave the Rosseland and Planck opacities constant at
1.0 cm2/g, but the optical opacity is reduced relative to the other
used opacities by a factor of 10, so that κ� = 0.1 cm2/g.

For simulations with varying opacities, we follow the opac-
ity law of Bell & Lin (1994). The opacity depends primarily on
temperature, but also slightly on density, as can be seen in Fig. 1.
The plot shows the Rosseland mean and Planck mean opacity. If
divided by a factor of 10, the opacities in Fig. 1 reflect the opti-
cal opacity. The opacity profile shows several bumps, which are
caused by transitions in the opacity regime. For example, the de-
crease in opacity around 100 K is associated with the melting
of ice grains, that dominate the opacity at cooler temperatures.
This opacity law is applied for κP and κR, although we point out
here the Rosseland mean opacity and the Planck opacity are not
the same in reality. However, for the first approximations they
are quite similar. Again, the optical opacity κ� is 0.1 of the other
opacities.

A change in the opacity, will ultimately lead to a change
in the discs hydrodynamical structure. Higher values of the
Rosseland mean opacity lead to a hotter and vertically more ex-
tended disc structure. Semenov et al. (2003) also provided opac-
ity tables for the Rosseland mean opacity and the Planck mean
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Fig. 2. Aspect ratio H/r of the stellar irradiated inner disc calculated
using the mid-plane values of cs for discs with constant opacity, κ =
1 cm2/g and constant kinematic viscosity. Starting from a flared disc
profile the discs are evolved until they reach thermal equilibrium.

opacity, however the differences between the two do not seem to
be very significant, so we use here the same value for κP and κR.
The influence of different opacity laws on the disc structure will
be investigated in more detail in a future paper, where we will
also include a more realistic prescription for the optical opacity.

3. Constant opacity discs

In this section we focus on the structure of discs with a constant
opacity, κP = κR = 1.0 cm2/g and κ� = 0.1 cm2/g. We split the
simulations into an inner disc and an outer disc so we do not
have the same time step limitation due to the inner edge of the
computational grid. We present in this section viscous simula-
tions with both constant viscosity of ν = 1015 cm2 s−1 and with
α viscosity with α = 0.001, 0.004, 0.008, where ν = αc2

s /Ω, as
well as simulations of non-viscous discs. All simulations include
stellar heating and the discs all feature Σ0 = 1000 g/cm2. Σ(r) is
constant for the simulations with constant viscosity, while Σ(r)
changes shape in the discs with α viscosity until an equilibrium
is reached.

3.1. Inner disc

3.1.1. Constant-viscosity discs

We expect the structure of the inner disc to be dominated by
viscosity. The viscous heating is stronger in the inner parts of
the disc compared to the stellar heating because Q+ ∝ r−3 and
S ∝ r−2 (see Eq. (16)). In Fig. 2 we present the aspect ratio H/r
of discs with constant viscosity. H is defined as H = cs/ΩK,
where cs is the isothermal sound speed cs =

√
P/ρ computed in

the mid-plane of the disc. The discs are evolved from the initially
flared structure until they reach thermal equilibrium.

The non-viscous disc (blue line in Fig. 2) features a puffed-
up inner rim due to stellar irradiation, while the disc behind is
shadowed by the rim leading to a vertical contraction and a drop
of H/r in the outer parts of the simulations. In theory, if the
puffed up inner rim is high enough, the whole outer disc can be
shielded from stellar irradiation (Dullemond 2002; Dullemond
& Dominik 2004). However, we find that beyond 0.15 AU the
discs aspect ratio increases with r, even if the disc remains in
the shadow of the inner rim. This is because the heat propagates

outwards from the inner rim. Therefore the temperature drops
with distance as T = T0r−β. As the disc is in hydrostatic equilib-
rium, the aspect ratio increases if β < 1.0.

For the viscous disc (red line in Fig. 2) only a very small
puffed up inner rim is visible, with a marginally increased H/r
near the inner edge of the disc. The otherwise constant aspect
ratio is typical of a viscously passive disc, which we show below
analytically.

For a purely passive disc (without stellar irradiation), con-
sider the viscous heating Q+ and the radiative cooling Q− (black-
body cooling) for an annulus with size A = 2πrδr

Q− = 4πrδrσT 4/τeff and Q+ =
9
8
ΣνΩ2

K2πrδr. (16)

Please be aware that the disc can cool from both sides, hence the
factor 4 in the cooling term. The effective optical depth is given
by τeff = 0.5 κΣ. By using the H/r profile for discs in hydrostatic
equilibrium

TD =

(H
r

)2 GM�
r
μ

R
and with τeff = 0.5 Σκ we can equate heating and cooling to find
the aspect ratio

H
r
=

(
9

32
Σ2

0κν
R4

μ4

1

G3M3
�σ

)1/8

r(1−2 s)/8, (17)

H
r
= 0.051

(
Σ0

1000 g/cm2

)1/4 ( r
1 AU

)(1−2 s)/8
,

where Σ = Σ0(r/1 AU)−s. Here we have assumed both con-
stant opacity (κ = 1 cm2/g) and constant kinematic viscosity.
Therefore, for discs with Σ = Σ0(r/1 AU)−0.5 the result is a disc
with a constant aspect ratio, which matches quite well with our
numerical simulations.

In total the aspect ratio of the viscous disc is higher com-
pared to the non-viscous disc. This implies that the innermost
bump of the disc in the non-viscous disc (which is due to stellar
irradiation) does not influence the structure of the viscous disc,
as the viscous heating dominates.

3.1.2. α-viscosity discs

For α-viscosity discs we also expect the viscosity to dominate
over stellar irradiation in the inner disc. The corresponding H/r
profiles are shown in Fig. 3. The black (dotted) lines in the plot
show the analytical expectation that neglects stellar irradiation.
In fact the aspect ratio of the different α discs vary with the value
of viscosity. As the viscosity changes with r, the gradient of the
surface density changes as well, influencing the aspect ratio.

For a purely passive disc with α-viscosity, the aspect ratio
can be computed in the same way as for a constant viscosity
disc. We equate viscous heating Q+ and blackbody cooling Q−:

Q− = 4πrδrσT 4/τeff and Q+ =
9
8
ΣνΩ2

K2πrδr, (18)

where ν = αcsH = αc2
s/ΩK = αH2γΩK. With the relation of the

hydrostatic equilibrium, the heating of the disc is given by

Q+ =
9
8
ΣαRγ
μ

TΩK2πrδr. (19)
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Fig. 3. Aspect ratio H/r of the stellar irradiated inner disc calculated us-
ing the mid-plane values for discs with α-viscosity and constant opac-
ities. The black lines indicate the analytical expectations for the aspect
ratio (see text).

By equating heating and cooling, the aspect ratio of the disc can
be determined:

H
r
=

(
9

32
Σ2

0γ
R4

μ4

κ

σ

1
(GM�)2.5

α

)1/6

r1/4−s/3, (20)

H
r
= 0.0572

(
α

0.001

)1/6
(

Σ0

1000 g/cm2

)1/3 ( r
1 AU

)1/4−s/3
,

which clearly indicates that for a large enough gradient of the
surface density s, the aspect ratio can decrease with r. This is
exactly what happens for our α = 0.008 simulation for which we
measure s = 0.85. As the inner disc is dominated by viscosity,
this calculation gives an estimate for the aspect ratio of the discs
that is in good agreement with our simulation (black lines in
Fig. 3).

3.2. Outer disc

Theoretical calculations of Chiang & Goldreich (1997) have
shown that the outer disc is flared with H/r ∝ r2/7. This can
easily be shown by equating the stellar heating with the cool-
ing at the top of the disc. In our simulations for constant opacity
we find exactly this behaviour, as can be seen in Fig. 4 where
we display the aspect ratio of discs with viscosity and without.
For the simulations with viscous heating an absorbing angle of
ϑabs = 6.5◦ has been used, while for the non-viscous simula-
tions ϑabs = 5.0◦ has been used, both taken from the results of
the inner disc simulations. The aspect ratio of the outer viscous
disc matches perfectly with the inner disc (Fig. 2), while there
is some small difference for the non-viscous disc. In the non-
viscous case the shadowed region behind the innermost rim (in
the inner disc simulation) seems not to be captured perfectly by
the continuing outer disc simulation. The non-viscous disc sim-
ulations show a slight mismatch in the H/r profile between the
inner disc and the outer disc. This mismatch cannot be seen in
the viscous disc simulations, where H/r matches very well. In
reality, accretion discs are viscous, so we are confident that our
code reproduces the transition between inner and outer disc very
well in that case, which we will focus on in Sect. 4.

It can be seen clearly that both discs show a flared profile in
the outer regions of the disc, which follows the predicted r2/7

profile. In the outer regions, both disc profiles are nearly the
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Fig. 4. Aspect ratio H/r of the stellar irradiated outer disc calculated
using mid-plane values for discs with constant opacity κ = 1 cm2/g
and constant viscosity. Starting from a flared disc profile the discs are
evolved until they reach thermal equilibrium. These simulations differ
from the ones presented in Fig. 2 only by the opening angle and radial
extent of the disc.

same as stellar heating dominates over viscous heating. In the
inner regions of the simulation, small differences between the
viscous and non-viscous discs arise, which are due to the impor-
tance of viscous heating.

In most 2D simulations of locally isothermal discs (in r −
φ plane), a constant H/r profile is assumed, which corresponds
to a constant opacity disc without stellar irradiation. However, in
radiative discs with temperature dependent opacities the aspect
ratio will depend on radius. This is discussed below.

4. Disc structure with temperature dependent
opacity

In realistic accretion discs, the opacity is not constant. The opac-
ity depends on the temperature and density (Fig. 1). As the tem-
perature inside an accretion disc drops from a few 1000 K in
the inner parts to a few 10 K in the outer parts, we expect the
opacity to vary by orders of magnitude as it was already stated
in Semenov et al. (2003) and as can also be seen in Fig. 1. As the
inner parts of the disc are dominated by viscous heating and as
accretion discs are viscously driven, we focus here only on sim-
ulations including viscous heating, featuring both constant vis-
cosity and α viscosity. All simulations shown here also include
stellar irradiation.

4.1. Inner disc structure

4.1.1. Constant viscosity

In this subsection, all simulated discs have a constant viscosity of
ν = 1015 cm2 s−1. In Fig. 5 the aspect ratio and the corresponding
opacity κR of the inner disc with Σ0 = 1000 g/cm2 is displayed.
Compared to the initial profile the aspect ratio increases, due to
viscous heating. This effect is also be seen for a constant opacity
(Fig. 2). The drop behind the puffed up inner edge was not visi-
ble in the simulations with constant opacity (red line in Fig. 2).
As can be seen in Fig. 1, the large features in the opacity profile
at high temperature are important for the inner disc.

At the inner edge of the grid (r = 0.0416 AU) the tempera-
ture drops from ≈10 000 K to about 3000 K in a few grid cells,
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Fig. 5. Aspect ratio H/r of the stellar irradiated inner disc (bottom) cal-
culated using the mid-plane values for Σ0 = 1000 g/cm2 discs with non
constant opacity as in Fig. 1 and the corresponding opacity values for
κR (top). Starting from a flared disc profile the discs are evolved until
they reach thermal equilibrium.

which is associated with a large drop in opacity (top in Fig. 5).
As the opacity drops, the cooling rate increases, as it is ∝1/κR.
An increased cooling also means that the temperature drops even
further. As the temperature is linked to H/r, a drop in tempera-
ture translates into a drop in aspect ratio. The drop of H/r behind
the puffed up inner edge is directly related to a drop in opacity,
as we show in Appendix A.2.

If the inner edge were be shifted towards smaller radii, the
height of the puffed up inner region would not increase indef-
initely, as the opacity does not continue to increase, but rather
levels off at high temperatures (see Fig. 1).

As soon as the temperature drops to lower values, the opacity
increases again (Fig. 1 and top of Fig. 5), which in turn increases
H/r. At around r = 0.83 AU we observe another bump in the
H/r profile. Here the temperature crosses the ≈1000 K bump in
the opacity profile, which leads to a decrease of H/r for r >
0.83 AU.

We can clearly relate the transition regions of the opacity to
transition regions of the H/r profile of the disc. These changes
in the disc’s profile are of crucial importance for irradiated discs.
The bump at r = 0.83 AU is higher than the bump at the in-
ner edge, indicating that stellar irradiation will be absorbed at a
larger height from mid-plane, which means in turn that the disc
will only be heated above a larger angle ϑabs. As the inner region
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Fig. 6. Aspect ratio H/r of the inner disc (with viscous and stellar irra-
diation) calculated using the mid-plane values for discs with α-viscosity
and non constant opacity as in Fig. 1. Starting from a flared disc profile
the discs are evolved until they reach thermal equilibrium.

of the disc is dominated by viscous heating, the height and lo-
cation of the bumps in the disc will change with disc mass and
the amount of viscous heating. In contrast, stellar irradiation is
relatively unimportant in the inner disc and does not change sig-
nificantly with disc mass.

4.1.2. α-viscosity

The amount of viscous heating has a crucial influence on the disc
structure in the interior of the disc. We now focus on discs with
different α viscosities, with ν = αc2

s/ΩK, where we use cs in the
mid-plane of the disc. The results of simulations of the inner disc
with different α and Σ0 values are shown in Fig. 6.

As expected the aspect ratio of the disc increases with in-
creasing α parameter due to the increased viscous heating. Also,
the aspect ratio increases as we increase Σ0, as more mass inside
the disc results in a larger heating of the disc. This has the effect
that the peaks in the H/r profile are shifted towards larger radii,
as the temperature increases and therefore the transitions in the
opacity are reached at larger distances from the star.

The simulation of constant viscosity (with Σ0 = 1000 g/cm2

in Fig. 5) most closely resembles the α = 0.004 simulation.
However, the value that matches best might be around α ≈
0.0055.

With increasing disc mass and viscosity an increase of the
height of the peaks in the discs is visible. These bumps in the
H/r profile are not directly related to the absorption angle ϑabs
of the disc, but it is safe to say that a higher bump in the disc
results in a larger absorption angle with important effects on the
structure of the outer disc, as discussed below.

4.2. Outer disc

4.2.1. Constant viscosity

We have shown in Sect. 3 that for discs with constant opacity
the discs are flared with H/r ∝ r2/7 in agreement with Chiang &
Goldreich (1997). However, for non constant opacities we expect
another feature in the disc’s structure as the temperature crosses
100 K (Fig. 1). The aspect ratio of the outer disc structure and
the corresponding opacity κR for two different surface density
values are presented in Fig. 7.
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Fig. 7. Aspect ratio H/r of the stellar irradiated outer disc (bottom) cal-
culated using the mid-plane values for discs with constant viscosity and
non constant opacity as in Fig. 1 and the corresponding opacity values
for κR (top). Starting from a flared disc profile the discs are evolved until
they reach thermal equilibrium. The different colours indicate different
Σ0-values. The red line represents the outer disc simulation correspond-
ing to the inner disc simulation shown in Fig. 5.

At r = 1.04 AU the aspect ratio of the Σ0 = 1000 g/cm2 outer
disc does not exactly match the aspect ratio computed for the
inner disc (red line in Fig. 5). In this region the disc is shadowed
from direct stellar irradiation and any radial transfer of energy
relies on the re-radiated radiative flux. The outer simulation does
not include a source of the re-radiated flux at the inner boundary,
leading to the small difference in the inner disc.

The disc with Σ0 = 1000 g/cm2 features another bump in the
H/r profile at r ≈ 7.3 AU. At this point in the disc the tempera-
ture crosses T ≈ 100 K, which is the transition region for melted
ice grains to solid ice grains. The increase of H/r for r < 7.3 AU
is related to the increase of opacity for 200 K > T > 100 K,
which can clearly be seen in the top of Fig. 7. The minima and
maxima of opacity and H/r are not exactly at the same location,
but are slightly shifted. However, a clear trend is still visible.
Interestingly, for r > 7.3 AU the H/r profile monotonically de-
creases and the profile follows that of an non-irradiated disc due
to the self-shadowing of the disc.

The fact that the disc is not flared in the outer parts of the
disc is a combination of the value of the surface density and
of the opacity. In the constant opacity scenario, the outer parts
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Fig. 8. Aspect ratio H/r of the outer disc (with α-viscosity and stellar ir-
radiation) calculated using the mid-plane values for discs with non con-
stant opacity as in Fig. 1. Starting from a flared disc profile the discs are
evolved until they reach thermal equilibrium. These simulations differ
from the ones presented in Fig. 6 only by the opening angle and radial
extent of the disc.

of the disc were flared (Fig. 4) for the Σ0 = 1000 g/cm2 disc.
However, in reality for lower temperatures (T < 100 K), the
opacity drops to very small values (see top in Fig. 7). Please
keep in mind that κ� = 0.1κR. As the opacity drops, so does the
optical depth τ = ρκ�Δr of each grid cell, which means that less
and less stellar irradiation is absorbed in the outer regions of the
disc, as the absorption is proportional to τ (Eq. (6)).

To keep the disc flared, the upper layers in the outer parts of
the disc have to absorb stellar irradiation. As the opacity drops in
this region of the disc, an increase in density would keep the disc
flared, as τ = κ�ρΔr. Indeed, this can be seen in Fig. 7, where
the blue line indicates a disc with Σ0 = 3000 g/cm2. The outer
parts are flared and follow the 2/7th profile. Also interesting to
note is that the bumps in the inner region of the disc in the H/r
profile are shifted to larger distances from the star compared to
the lower mass disc (red in Fig. 7). This is due to the fact that the
higher mass disc produces more viscous heating and is therefore
warmer. We compare the disc with Σ0 = 3000 g/cm2 in great de-
tail with a disc that is only heated through viscosity in Sect. 4.3.

4.2.2. α-viscosity

The bumps of the inner disc can shield the outer disc from stellar
irradiation implying the outer disc structure is influenced by the
inner disc structure, which, in turn, is determined by viscosity
and disc mass. In Fig. 8 the aspect ratio for discs with different
α-viscosity and disc mass are displayed.

The Σ0 = 1000 g/cm2 discs are not flared for any viscosity.
The outer disc is just too thin to absorb stellar irradiation effec-
tively and viscosity is negligible there, as was seen the constant
viscosity disc (Fig. 7). However, we do see the innermost bump
in the disc rise as the viscosity increases.

For the Σ0 = 3000 g/cm2 disc with α = 0.001 the equilibrium
disc structure features a flared disc profile, which is quite similar
to that of a disc with constant opacity (Fig. 7). However, for
α > 0.004, the discs are not flared any more. As the viscosity
increases the inner bumps of the disc structure and block stellar
irradiation from going through to the outer parts of the disc. This
effect increases with increasing viscosity.
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Fig. 9. Aspect ratio H/r of the outer disc calculated using the mid-plane
values for discs with constant viscosity and non constant opacity as in
Fig. 1. Starting from a flared disc profile the discs are evolved until
they reach thermal equilibrium. The plot features one disc with and one
without stellar heating; both discs have a constant viscosity.

To have a disc flared in the outer regions, the disc must not
only have the right amount of mass, but also the viscosity of the
disc should not be too large, as the viscously dominated inner
disc can block stellar irradiation from the outer disc. Therefore,
simulations of the inner disc are always needed to determine the
structure of the outer disc correctly. Whether a disc is shadowed
or not, is determined through viscosity and disc mass.

4.3. Passive disc

We now focus on the difference between stellar irradiated discs
and discs without stellar irradiation. For this purpose we refer to
the case of constant viscosity ν and Σ0 = 3000 g/cm2, as it was
already shown in Fig. 7.

In Fig. 9 the two aspect ratios of the disc with Σ0 =
3000 g/cm2 are displayed. In the inner parts, the aspect ratios
for both discs are nearly identical, as this region is dominated by
viscous heating and not by stellar irradiation. Beyond ≈ 20 AU
the stellar irradiated disc is flared, while the disc without stellar
irradiation collapses to small H/r at large radii. The 100 K bump
at r ≈ 9 AU is more prominent in the stellar irradiated disc and
also shifted a little bit towards larger distances compared to the
non-stellar irradiated disc, as the disc receives more heat which
shifts the bump.

The 2D density map of the discs is shown in Fig. 10. The
density profile of the disc without stellar heating does not extend
to the same height, because we only use 83◦ ≤ θ ≤ 90◦ for
this disc. We reduced the vertical extent of the grid in this case
because of the smaller disc thickness. In the disc with stellar
irradiation, on the other hand, the opening angle of the grid is
larger, as we need the disc to absorb the stellar irradiation in the
top layers.

In Fig. 10 the H(r) line is indicated in black. In both cases
the H(r) line rises, however, only for the stellar irradiated disc
does H/r increase (Fig. 9). On the other hand, the bumps, which
are clearly visible in the H/r profiles are not visible in the H(r)
profile, because the increase of H(r) is too strong to notice the
small bumps.

Of interest is also the red line in Fig. 10, which refers to the
τl = 1.0 line integrated from the top (infinity) of the disc. We
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Fig. 10. Density map (in log-scale) of discs with stellar heating (top) and
without stellar heating (bottom). Both discs undergo viscous heating
and have Σ0 = 3000 g/cm2. The black dotted line indicates H(r) and the
red solid line represents the τl = 1.0 line integrated from the top of the
disc.

define in this case

τl(z) =
∫ z

∞
ρκRdz′, (21)

where z is the vertical thickness of the disc and the integration
is performed on lines of constant radius r. This line is roughly
connected to the flux F (Eq. (2)) of the disc and therefore gives a
rough estimate of the location of the photosphere where the disc
is cooling. One can clearly see the bumps in the τl = 1.0 line for
the stellar irradiated disc. These bumps are at the same location
as the ones in the H/r profile, which are not visible in this figure.
As τ depends on κR and ρ, it is no surprise to see a drop of density
just above the τl = 1.0 line around r ≈ 15.6 AU. The bumps of
the τl line can not be seen in the non-irradiated disc. This line
just levels off for large distances to the star, where the disc must
contract from its initial state to maintain its energy loss to the
upper and lower layers.

One of the most important indicators of the disc structure is
the temperature of the disc, as the temperature is related to the
entropy. Due to the stellar irradiation we expect the upper layers
of the disc to be heated from the star, while the mid-plane re-
gions far away from the star are heated vertically from the upper
layers. The temperature in mid-plane might therefore be slightly
smaller compared to the top layers. The temperature is displayed
in Fig. 11. Again we over plot the line for τl = 1.0 (red), H(r)
(black) and additionally in blue the τ� = 1.0 line, which we de-
fine as

τ�(r) =
∫ r

0
ρκ�dr′, (22)

where the integration is performed along lines of constant θ.
The τ� line represents where in the disc the stellar heating is
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Fig. 11. Temperature map (log-scale) of a disc with stellar and viscous
heating. Indicated in red is the τl = 1.0 line, blue the τ� = 1.0 line and
in black the H(r) line. The disc has Σ0 = 3000 g/cm2.

absorbed effectively. This line does not match the τl line at
10 AU< r< 25 AU, where τ� > τl. This means the stellar heat-
ing of the disc is effective higher above the mid-plane compared
to the cooling, which results in a higher temperature at the upper
layers of the disc, as can be seen clearly in Fig. 11.

The upper layers of the disc are heated by stellar irradia-
tion, while the disc’s interior is also heated through viscosity.
However, the heating effect of viscosity is diminished in the up-
per layers of the disc, as the density is much lower compared to
the mid-plane of the disc (see Fig. 10). In the region of the bump
in optical depth (10.4 AU < r < 23.4 AU), the effect of stellar
heating is reduced as the opacity is reduced, which leads to less
absorption of stellar irradiation. In this region the upper layers of
the disc are much hotter compared the regions of the disc right
below. This temperature inversion in vertical direction of the disc
could have interesting implications to planets on inclined orbits
in this part of the disc, as the migration speed is dependent on
the gradient of temperature.

In the outer regions of the disc, viscosity is negligible and
the disc is heated solely by stellar irradiation. The heat is then
transferred from the upper regions to mid-plane, which causes
the temperature to show only little vertical dependence.

Observations indicate that protoplanetary discs have an out-
wards flared profile, which is consistent with our stellar irradi-
ated model. The differences in the disc structure between the two
models are dramatic, and we therefore recommend using stellar
irradiated disc models for the outer parts of the disc. However,
as we have seen in Fig. 7 and Fig. 8, stellar irradiated discs can
be self shadowed if the disc mass is small or the viscosity large.
In both cases the inner bumps of the discs are so large that they
block stellar irradiation from propagating to the outer parts of the
disc. For low disc mass models, passive discs follow the same
H/r profile as stellar irradiated discs, because the discs are opti-
cally thin and can not maintain the flared disc profile.

5. Implications to planet migration

To estimate what is the difference between the torque acting on
planets in discs with and without stellar irradiation, we apply
the torque formula of Paardekooper et al. (2011) to the discs de-
scribed in Sect. 4.3. These discs feature Σ0 = 3000 g/cm2, a con-
stant viscosity ν and the opacity law in Fig. 1. The formula cap-
tures the behaviour of the torque caused by Lindblad resonances
and horseshoe drag on low-mass planets embedded in gaseous
discs in the presence of viscous and thermal diffusion. This for-
mula gives the best match to the full 3D radiative simulations of

Bitsch & Kley (2011). We do not simulate planets embedded in
stellar irradiated discs in this work, as it is beyond the scope of
the paper at this point.

The formula of Paardekooper et al. (2011) is very complex
and features many details, so that we do not cite every step of the
formula at this point. The formula is also additionally displayed
in the Appendix of Bitsch & Kley (2011). However, we want to
point out a few key items of the formula. The total torque acting
on an embedded planet is a composition of its Lindblad torque
and its corotation torque:

Γtot = ΓL + ΓC . (23)

The Lindblad torque depends on the gradients of temperature
T ∝ r−β and surface density Σ ∝ r−s. It is given in Paardekooper
et al. (2011) by

γΓL/Γ0 = −2.5 − 1.7β + 0.1s and Γ0 =

(q
h

)2
ΣPr4

pΩ
2
P, (24)

where q is the mass ratio between planet and star, h = H/r, ΣP
the surface density of the disc at the planets location and rP the
distance of the planet to the host star. One can clearly see that a
change in the gradient of temperature influences the Lindblad
torque. The same applies to the corotation torque, which is
strongly dependent on the gradient of entropy, S ∝ r−ξ, with
ξ = β − (γ − 1.0)s. The largest contribution of the corotation
torque arises from the entropy related horseshoe drag, which is
given by

γΓhs,ent/Γ0 = 7.9
ξ

γ
· (25)

The aspect ratio H/r of the disc with and without stellar irra-
diation changes from flared to non flared in the outer parts of
the disc. This change is related to a change in temperature and
the local temperature gradient. In Fig. 11 the outer parts of the
disc seem to have a very small radial temperature gradient that
reduces the effect on the entropy related horseshoe drag. In the
disc without stellar irradiation, on the other hand, planets can
migrate outwards to quite large distances, depending on the disc
mass (Bitsch & Kley 2011). We therefore expect that the zero-
torque radius for planets will be at a smaller distance to the star
for stellar irradiated discs compared to discs with only viscous
heating, as the temperature gradient is larger in the latter case.

In Fig. 12 the torque acting on planets with different masses
in a stellar irradiated disc and a non stellar irradiated disc is dis-
played. The black lines encircle the regions of outward migra-
tion. If a planet is inside the black circles it will migrate out-
wards, but it migrates inwards for the rest of the positions in
the diagram. At the left side of the black circles, a planet would
face an unstable torque equilibrium, as the planets would migrate
away from the line in both directions, while at the right side of
the circles the planet are in a stable equilibrium as they migrate
towards the line from both directions.

We only focus here on planets with a few earth masses, as
larger planets open gaps in discs and migrate inwards in type-II-
migration (Lin & Papaloizou 1986a,b; Crida et al. 2006; Crida &
Morbidelli 2007). We only display the torque up to rP = 18.2 AU
as the torque acting on planets in the stellar irradiated disc is neg-
ative for larger distances to the star. On the other hand, the torque
is still positive at that point in the disc with only viscous heat-
ing. In fact the torque is still positive up to r ≈ 47 AU. One can
also clearly distinguish two different regions of positive torque,
indicating areas of outward migration. Finally, the region of out-
ward migration starts at a larger distance to the star for the stellar
irradiated disc.
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Fig. 12. Torque acting on planets with different masses using the for-
mula of Paardekooper et al. (2011). The top plot features a disc with
stellar irradiation and viscous heating (constant ν) and the bottom plot a
disc with just viscous heating. The colour coding of the torque has been
cut off at Γtot = −0.00015, so that everything that is black in the figure
features a large negative torque. The black lines encircle the regions of
outward migration.

For both disc types the inner region (1.56 < r < 4.7 AU) of
positive torque is nearly identical, due to the fact that the disc
structure is similar in the inner parts of the disc, as the disc
there is dominated by viscous heating and not stellar irradia-
tion. However, as soon as the planetary mass increases above
40MEarth the region of outward migration becomes smaller with
increasing planetary mass, and the planets migrate inward for all
distances for MP > 60MEarth.

Planets can migrate outwards as long as the libration time-
scale is comparable to the cooling time-scale (Baruteau &
Masset 2008). For large distances to the central star (Bitsch &
Kley 2011) the density is lower in the disc, leading to a shorter
cooling time-scale that prevents outward migration.

As the planetary masses increase (MP > 35MEarth) they can
start to open up partial gaps inside the disc. The positive coro-
tation torque originates from a region very close to the planet
(Kley & Crida 2008; Kley et al. 2009), which is then depleted as
the gap starts to form, thus preventing outward migration.

The regions of outward migration in the disc relate to the
H/r-profile. As can be seen in Fig. 9, whenever H/r decreases
in the disc, the planet migrates outwards. When H/r increases
the planet migrates inwards. This means, whenever we have a
change in the H/r profile, we change the direction of migration.
As the bumps and dips in the H/r profile are influenced by the
opacity transitions, the opacity determines the migration. As the
transitions of opacity are shifted away from the star with higher
viscosity and larger surface density, so is the zero-torque radii in
the disc.

To clarify the statement above, keep in mind that the
torque depends on the surface density, temperature and entropy

gradient, Γ = f (s, β, ξ).

H
r
∝ r−b ⇔

(H
r

)2

∝ r−2b ⇔
(H

r

)2 GM�
r
μ

R
∝ r−2b−1

⇔ T (r) ∝ r−1−2b = r−β, (26)

which indicates if the disc shows a drop off in H/r, the temper-
ature gradient increases, which therefore increases the entropy
gradient as ξ = β − (γ − 1.0)s. Therefore the contribution of the
entropy related corotation torque is stronger if H/r decreases. In
the flaring part of the disc, where H/r ∝ r2/7, the entropy gra-
dient is smaller as b = −2/7, which leads to β = 3/7, which
reduces the entropy gradient ξ, resulting in a negative torque.

On the other hand, it seems that for planet masses with MP <
7MEarth the torque is always negative and that planets migrate
inwards at all radii. The reduction of the positive torque for low
mass planets is due to the fact that the horseshoe region narrows,
thus the horseshoe drag becoming less pronounced, resulting in
a smaller net-torque acting on the planet.

For these small planetary masses the inward migration speed
is about the same for the passive and stellar irradiated disc. It
also seems that the minimum mass a planet needs to sustain out-
ward migration is increased in the case of a stellar irradiated
disc, compared to the non stellar irradiated case. The reason
for this is a slight change in the entropy gradient of the disc,
which is steeper in the non stellar irradiated disc. However, we
believe that even smaller mass planets can migrate outwards as
the torque formula shows several issues that should be kept in
mind:

– The formula by Paardekooper et al. (2011) is dependent on
the smoothing of the planetary potential, which influences
the torque. A change in the smoothing changes the torque
acting on the planet (see Appendix in Bitsch & Kley 2011).
For Fig. 12 we used a smoothing of 0.4.

– The formula shows some differences to full 3D simulations
(Bitsch & Kley 2011), as it was derived from 2D simulations.

– 3D radiation-hydrodynamical simulations have shown that
small mass planets with 5MEarth can still migrate outwards
(Kley et al. 2009).

To verify these assumptions, high resolution 3D simulations with
embedded small mass planets must be done, as the minimal mass
for outward migration has not been investigated with enough de-
tail. We will address this issue in a further paper.

However, the torque formula gives an estimate of the
strength of migration in the disc. The difference in the range of
outward migration for the two disc types does not change the
implication of the existence of the zero-torque radius. At zero-
torque distance, planetary embryos and protoplanets can gather
and collide and then form larger objects. This is of crucial im-
portance for the growth of massive planets, where a core of a few
earth masses needs time to accrete gas to form a gas giant planet
(Pollack et al. 1996).

6. Summary

We have investigated the influence of opacity and stellar irradia-
tion on the structure of protoplanetary accretion discs. Utilizing
our calculated disc structures we have estimated the torque on
embedded planets in discs with and without stellar irradiation
by using the theoretical torque formula from Paardekooper et al.
(2011).
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Before investigating the influence of opacity on the disc
structure, we compared non-viscous and viscous discs in the in-
ner and outer regions of the disc for a constant opacity. In the
non-viscous disc, a puffed-up inner rim shields the first part of
the disc from stellar irradiation, while the outer part of the disc
is flared with H/r ∝ r2/7, as was shown in theoretical calcu-
lations by Chiang & Goldreich (1997). In the viscous case, in
the inner part of the disc, viscous heating dominates over stellar
irradiation. By equating viscous heating with radiative cooling,
we have shown that the aspect ratio H/r is constant until stellar
heating dominates. This was confirmed by our simulations.

We follow the opacity law of Bell & Lin (1994) for our non
constant opacity discs. As the opacity changes due to transi-
tions in the opacity law, so does the disc structure. We have seen
that the bumps and dips in the opacity law reflect the bums and
dips in the discs structure for stellar irradiated and non irradiated
discs. If the disc is more massive, the disc produces more viscous
heating, which results in a higher temperature at larger distances.
But as the temperature determines the opacity, the bumps in the
disc are moved outwards with increasing temperature.

The outer parts of the disc (r > 7.8 AU) can be flared if the
disc mass is high enough. The effect of the disc mass was not
visible in the constant opacity simulations, as a constant opacity
leads to a larger optical depth in the upper, less dense regions of
the disc. The optical depth is crucial in determining how much
stellar irradiation is absorbed. If the disc is optically thin, the
stellar irradiation just passes through the disc without any heat-
ing effects. Therefore the disc absorbs less heat and can not sus-
tain the flared profile. A minimum mass inside the disc is needed
to keep the discs flared.

For increasing viscosity, the aspect ratios of the discs in-
crease. This also means that the bumps due to the opacity in the
disc become higher. A higher bump in the disc leads to more ab-
sorbed stellar irradiation in the region of the bump. If the bump
is high enough, it prevents stellar irradiation from reaching the
outer disc, resulting in a non-flared disc. Very high viscosity
therefore leads to self-shadowed discs (Fig. 8).

In the inner parts of the disc, where viscous heating domi-
nates, the disc structures for discs with and without stellar irra-
diation are similar. In the outer regions, the stellar irradiated disc
can be flared, which is not the case for the non-stellar irradiated
disc. In the outer parts of the stellar irradiated disc, where the
viscous heating is negligible, the disc shows a small dependence
in T (z), as the heat is transported from the upper layers towards
mid-plane.

To estimate the torque acting on planets in discs with stellar
irradiation, we apply the torque formula by Paardekooper et al.
(2011), where we expect the different disc structure in the outer
parts to result in different migration scenarios. The discs fea-
ture two regions of outward migration. One in the inner part
of the disc (1.56 < r < 4.7 AU) that is nearly identical for
the discs with and without stellar irradiation, as viscous heat-
ing dominates in that region of the disc. The second region of
outward migration is completely different for the two discs. It
is much smaller for the case of stellar irradiation, as the very
outer parts of the disc have nearly a constant temperature, which
favours inward migration. In the case of only viscous heating,
outward migration continues to much larger distances from the
star (r ≈ 47 AU).

However, important here is that the disc features regions of
outward migration for different planetary masses. At the corners
of these regions (zero-torque radius), planetary embryos can ac-
cumulate and grow until the cores are large enough to accrete
gas and form gas giant planets. We note that the results from

this torque formula are only an estimate and real 3D simulations
with embedded planets need to be done, especially for low mass
planets, as they all would migrate towards the star according to
the torque formula.

As the differences between stellar irradiated discs and pas-
sive discs are dramatic in the outer regions of the disc, we rec-
ommend using stellar irradiated disc models for high mass discs.
Low mass discs are self-shadowed, so that the structure is well
captured by passive disc models as well.
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Appendix A: Stellar heating

A.1. Calculation of stellar heating in the code

To compute the amount of stellar heating that is deposited in a
grid cell, we compute the difference between what arrives and
what leaves a grid cell:

F�e−τi − F�e−τi+1 = F�e−τi

(
1 − e−τi+1

e−τi

)
(A.1)

= F�e−τi
(
1 − e−(τi+1−τi)

)
= F�e−τi

(
1 − e−ρiκiΔr

)
, (A.2)

where i + 1 marks the i + 1th grid cell. The total flux emitted by
the star is given by L� = 4πR2

�σT 4
�. The stellar flux per surface

area on a sphere with radius r is thus

F�(r) =
L�

4πr2
= σT 4

�

(R�
r

)2

· (A.3)

With the front area of a grid cell given by

A = r2Δϕ(cos θ1 − cos θ2) (A.4)

we can compute the flux received by a single grid cell

F� · A = R2
�σT 4

�Δϕ(cos θ1 − cos θ2) = FS�, (A.5)

which then leads to the stellar heating s of a grid cell

s = FS�e−τi
(
1 − e−ρiκiΔr

)
(A.6)

= R2
�σT 4

�Δϕ(cos θ1 − cos θ2)e−τi
(
1 − e−ρiκiΔr

)
. (A.7)

As the energy equation (Eq. (1)) is written for energy densi-
ties, we have to divide s by the volume of the grid cell V =
r2ΔrΔϕ(cos θ1 − cos θ2) to get the same units and ultimately to
get S = s/V as it is used in the code:

S = F�e−τi
1 − e−ρκ�Δr

Δr
· (A.8)

This result yields a dependence on resolution. However, this
is only important for the optically thick regions (ρκ�Δr > 1);
for optically thin regions we make the approximation (1 −
e−ρκ�Δr)/(Δr) = ρκ�. In the inner, optically thick regions of the
disc the resolution influences the repartition of the stellar heat-
ing, but it does not influence the global net heating. Resolution
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Fig. A.1. Inner bump of the disc featuring different rmin for the same
disc configuration as in Fig. 5. The top panel shows κ, while H/r is
shown in the bottom panel.

studies indicate that the height of the puffed up inner edge varies
by ≈3% when lowering the resolution by 33%. As the disc is
radially optically thick, the stellar flux is absorbed in the first
cells; beyond that the simulations match perfectly for all tested
resolutions.

A.2. Innermost bumps and relation to opacity

The innermost bump shown in Fig. 5 and Fig. 6 can be mis-
taken as a puffed up inner rim caused by stellar irradiation, which
would be in contradiction to what is stated in Eq. (11). However,
the temperature in that region is a few 1000 K. At that tempera-
ture the opacity profile shows a kink (see Fig. 1), indicating that
the disc structure will change. In Fig. 5 the change of H/r can be
related to a change in opacity. As the opacity drops for slightly
larger distances than rmin, so too does H/r. As the opacity deter-
mines the disc structure, we show in Fig. A.1 simulations of the
inner disc with different rmin for the same disc configuration as
in Fig. 5.

For distances larger than 0.0416 AU, the opacity drops (top
in Fig. A.1) and therefore H/r drops as well (bottom in Fig. A.1).
For distances closer to the star, the opacity drops (as already
indicated by Fig. 1, because of the higher temperature) and H/r
decreases again. This clearly shows that the innermost bump is
related to a transition in opacity, as the aspect ration of the disc
drops for smaller and larger distances from 0.0416 AU.
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Fig. A.2. Matching of the inner disc simulations with the outer disc sim-
ulations for an α = 0.008 disc with Σ0 = 3000 g/cm2.

As the opacity for even larger temperatures decreases con-
tinuously (due to the assumed power-law in the opacity for these
temperatures) our simulations cover the innermost rim, indicat-
ing that no additional rim is inside.

A.3. Matching of inner and outer disc

The models of the inner and outer disc can be attached to each
other. To do so, the regions of the simulations have to overlap.
In Fig. A.2 we present the overlapping region of the α = 0.008
simulation with Σ0 = 3000 g/cm2, which are actually the simu-
lations presented in Fig. 6 and Fig. 8.

Clearly H/r of the simulations of inner and outer disc match
very well. We are therefore confident that the approximation of
θabs, as presented in Eq. (12), for the stellar heating is sufficient.
If the matching was done in a region of the disc that is dominated
by stellar irradiation, the matching might fall into a shadowed re-
gion of the disc that would then not be captured by the outer disc
leading to a mismatch of the two simulations. However, if, as in
our simulations the matching occurs in a viscously dominated
region of the disc, the outer discs inner edge will adapt to the
outer edge of the inner edge due to the viscous heating.

Appendix B: Energy equation

For simplicity the derivation of solving the energy equation
(Eq. (1)) is shown in Cartesian coordinates in the implemented
3D algorithm, although we used 2D simulations in the r-θ plane
in this work. The radiation energy equation is then given by

En+1
R − En

R

Δt

=
1
Δx

⎛⎜⎜⎜⎜⎜⎝D̄x
i+1, j,k

En+1
R,i+1, j,k − En+1

R,i, j,k

Δx
− D̄x

i, j,k

En+1
R,i, j,k − En+1

R,i−1, j,k

Δx

⎞⎟⎟⎟⎟⎟⎠
+

1
Δy

⎛⎜⎜⎜⎜⎜⎝D̄yi, j+1,k

En+1
R,i, j+1,k − En+1

R,i, j,k

Δy
− D̄yi, j,k

En+1
R,i, j,k − En+1

R,i, j−1,k

Δy

⎞⎟⎟⎟⎟⎟⎠
+

1
Δz

⎛⎜⎜⎜⎜⎜⎝D̄z
i, j,k+1

En+1
R,i, j,k+1 − En+1

R,i, j,k

Δz
− D̄z

i, j,k

En+1
R,i, j,k − En+1

R,i, j,k−1

Δz

⎞⎟⎟⎟⎟⎟⎠
+ ρκP

[
4σ(T n+1)4 − cEn+1

R

]
, (B.1)
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where the upper indices (n and n + 1) indicate the time step and

D̄x
i, j,k =

1
2

(
Di, j,k + Di−1, j,k

)
,

D̄yi, j,k =
1
2

(
Di, j,k + Di, j−1,k

)
,

D̄z
i, j,k =

1
2

(
Di, j,k + Di, j,k−1

)
,

are the averaged diffusion coefficients, which are given by

Di, j,k =
λc

ρi, j,kκR,i, j,k
· (B.2)

The term (T n+1)4 is non linear and makes the scheme difficult to
invert, yet it is much easier to solve a linear system implicitly.
Assuming that the changes in temperature are small in each time
step (Commercon et al. 2011), we can write

(T n+1)4 = 4(T n)3T n+1 − 3(T n)4. (B.3)

Now, we need to have T n+1 as a function of T n, En
R and En+1

R to
solve Eq. (B.1). We use now the energy density equation, where
we omit advection and compressional heating,

∂ ε

∂t
= −ρκP(T, P)[B(T )− cER] + Q+ + S . (B.4)

With ε = ρcvT we get

T n+1 − T n

Δt
= − κP

cV

(
4σ

(
T n+1

)4 − cEn+1
R

)
+

S
ρcV
+

Q+

ρcV
· (B.5)

With our approximation for the temperature (Eq. (B.3)) we find

T n+1 = η1 + η2En+1
R , (B.6)

where

η1 =
T n + 12Δt κPcV

σ(T n)4 + ΔtS
ρcV
+
ΔtQ+

ρcV

1 + 16Δt κPcV
σ(T n)3

and (B.7)

η2 =
Δt κPcV

c

1 + 16Δt κPcV
σ(T n)3

· (B.8)

We can now plug this all into the radiation energy equation and
solve for En+1

R . We arrive at a matrix equation:

β1,i, j,kER,i+1, j,k + β2,i, j,kER,i−1, j,k + β3,i, j,kER,i, j+1,k + β4,i, j,kER,i, j−1,k

+β5,i, j,kER,i, j,k+1 + β6,i, j,kER,i, j,k−1 + Γi, j,kER,i, j,k = Ri, j,k,

where the superscript n + 1 has been omitted on the left hand
side. The matrix elements are given by:

β1,i, j,k = − Δt
Δx2

D̄x
i+1, j,k

β2,i, j,k = − Δt
Δx2

D̄x
i−1, j,k

β3,i, j,k = − Δt
Δy2

D̄yi, j+1,k

β4,i, j,k = − Δt
Δy2

D̄yi, j−1,k

β5,i, j,k = − Δt
Δz2

D̄z
i, j,k+1

β6,i, j,k = − Δt
Δz2

D̄z
i, j,k−1

β1−6 = −(β1 + β2 + β3 + β4 + β5 + β6)

Γi, j,k = (1 + ΔtρκPc − 16ΔtρκPσ(T n)3η2) + β1−6

Ri, j,k = 16ΔtρκPσ(T n)3η1 − 12ΔtρκPσ(T n)4 + En
R.

Written in matrix notation we have

MER
n+1 = R, (B.9)

which is a matrix that is very similar in nature to the one for
the one-temperature energy equation and can be solved with the
same matrix solver as in Kley et al. (2009). After the matrix
iteration, the new temperature of the system can be calculated
with Eq. (B.6), followed by the computation of ε = ρcvT .
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