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ABSTRACT

In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter
masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas
accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk
(CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional
isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the
vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion
rate. Even without a prescribed viscosity, Jupiter’s mass-doubling time is ∼104 yr, assuming the planet at 5.2 AU
and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent
numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and
an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD:
(1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii
and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms
would produce an accretion rate 40 times smaller than in the simulation.

Key words: accretion, accretion disks – hydrodynamics – methods: numerical – planets and satellites: formation –
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1. INTRODUCTION

How exactly giant planets form is still one of the most
puzzling questions in today’s planetary science. The most
popular giant planet formation theory is the core accretion model
by Bodenheimer & Pollack (1986). There are three main stages
of formation in this model. First, a planetary core is formed
and starts attracting the gas within its Bondi radius. When the
core reaches 12–16 M⊕, the gas envelope starts to contract quasi-
statically while the accretion rates increase (Pollack et al. 1996).
This second stage takes the longest time, of the order of a few
million years. The final, runaway gas accretion phase starts
when the envelope and core masses are approximately equal.
This phase should not stop until the planet has opened a deep
gap in the gas disk. However, this happens only when the planet
reaches a mass of 5–10 Jupiter masses (Kley 1999; Lubow &
D’Angelo 2006). Thus, Jovian-mass planets can double their
mass on an order of 104 yr.

Thus, one should expect to observe a dichotomy in the mass
distribution of planets; planets should be either smaller than ∼30
Earth masses, i.e., those that did not reach the phase of runaway
gas accretion, or larger than a few Jupiter masses, i.e., those that
entered and completed the fast runaway growth phase. Planets
in between these two mass categories should be extremely rare.
This is the converse of what is observed (e.g., Mayor et al. 2011).
Thus, there is a need to understand what sets the final mass of a
giant planet.

An obvious possibility to stop accretion is that the gas
disappears while the planet is still growing. However, the
lifetime of gaseous protoplanetary disks is of the order of a
few million years (Haisch et al. 2001), which is much longer
than the runaway growth timescale (104 yr). It is very unlikely
that the disappearance of the disk can happen at the right time

to stop the runaway growth of the planet. Another possibility
is that a planet cannot accrete more gas than what is delivered
to its orbit by viscous accretion, i.e., it cannot grow faster than
the star accretion rate. In general, the accretion rate observed in
protoplanetary disks is on the order of 10−8–10−7 M� yr−1. This
would allow the accretion of Jupiter’s atmosphere in 104–105 yr,
which is too short relative to the lifetime of the disk. If one
requires that Jupiter takes a million years to accrete its envelope,
then its runaway growth needs to be limited by a stellar accretion
rate of 10−9 M� yr−1. However, at this very low rate, the disk
photoevaporates rapidly (i.e., a few 105 yr, see, e.g., Koepferl
et al. 2013; Gorti et al. 2009; Szulágyi et al. 2012). Thus a
Jupiter mass of gas is unlikely to be accreted by the planet.
A very accurate tuning between the viscous accretion rate,
the photoevaporation rate, and the runaway growth seems to
be needed to allow a planet to grow to Jupiter mass but not
beyond this limit. Something must still be missing from the
picture.

What we need is a mechanism that slows down runaway
growth. So it occurs on a timescale comparable to the disk’s
lifetime. A possibility is that the circumplanetary disk (CPD)
acts as a regulator of gas accretion rate onto the planet. Before
the gas is accreted by the planet, it has to pass through the
CPD because of angular momentum conservation. The actual
accretion rate of the planet then depends on the timescale for
angular momentum transport within the CPD. If the CPD has
a very low viscosity, then the transport of angular momentum
through this disk is inefficient and gas accretes onto the planet
at a slow rate. In this situation, the observed mass spectrum of
the giant planets is set by the competition between gas accretion
and gas dissipation (Rivier et al. 2012).

There are good reasons to think that the viscosity is very low
in the CPD (although see Gressel et al. 2013 for an opposite
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view). First, the planets are thought to be formed in a dead zone
of the circumstellar disk, where the viscosity is low (Thommes
et al. 2008; Martin & Lubow 2011). Second, because the CPD
is shadowed by the circumstellar disk and by the remaining
gas in the gap, its irradiation geometry may be unfavorable for
ionization (Turner et al. 2010, 2013). Finally, the large orbital
frequencies in the CPD make the magnetic Reynolds number
too small to derive the magneto-rotational instability (MRI; Fujii
et al. 2011; Turner et al. 2013; Fujii et al. 2013).

Motivated by these considerations, in this paper we study the
dynamics of the CPD in detail.

Our simulations are similar to those in Machida et al. (2010)
and Tanigawa et al. (2012), with one main difference. Instead
of using a local shearing sheet approximation, we perform
global disk simulations. This better allows us to study the
connection between the circumstellar disk and the CPD, i.e.,
opening of a gap, gas flow through the gap, etc. Moreover, we
investigate in more detail the accretion rate of a Jovian-mass
planet in the limit of vanishing viscosity. To do this, it is not
enough to perform simulations with no prescribed viscosity as
in Tanigawa et al. (2012), because every numerical simulation is
affected by numerical viscosity. We need to identify the various
accretion mechanisms and distinguish between those dependent
on viscosity and those independent of viscosity (i.e., polar inflow
from the circumstellar disk, loss of angular momentum due to
shocks, stellar torque exerted on the CPD, etc.) and evaluate
their magnitude.

A well-known crucial issue for simulating gas accretion onto
a planet is the choice the equation of state (EOS). Several
works have stressed the need to use an adiabatic EOS—possibly
complemented by a recipe for radiative cooling—in order
to study planet accretion (D’Angelo et al. 2003; Klahr &
Kley 2006; Paardekooper & Mellema 2008; Ayliffe & Bate
2009). However, the differences with the isothermal EOS are
fundamental for small-mass planets (up to Saturn’s mass) but
less for Jupiter-mass planets. In the latter case, the flow of gas
is mostly dominated by the planet’s gravity. CPDs definitely
form around Jupiter-mass planets, and the differences between
isothermal and adiabatic simulations are mostly limited to the
mass of the CPD and its scale height (D’Angelo et al. 2003;
Ayliffe & Bate 2009; Gressel et al. 2013). Thus, we prefer to
use the isothermal EOS, with temperature dependence on stellar
distance (hereafter locally isothermal), for multiple reasons. The
first is that we wish to focus our paper on the role of numerical
viscosity and on viscosity-independent transport mechanisms
within the CPD, which have never been thoroughly discussed
before; these considerations should be independent of the EOS
assumed. Second, radiative simulations imply additional, badly
constrained parameters such as those in the prescription for
the opacity laws (e.g., Ayliffe & Bate 2009; Bitsch et al.
2013). We want to focus the discussion on the objectives
stated above without distraction. Third, we wish to make direct
comparisons particularly concerning the differences between
our global disk simulations and shearing-sheet studies (Machida
et al. 2010; Tanigawa et al. 2012), and the latter have been
done with isothermal EOS. Finally, this paper is the first in a
series of future studies; therefore, we wish to begin with the
most simple case and build on it incrementally. Nevertheless,
for each result that we present, we will state to what extent
we expect it to be valid or different in a non-isothermal
context.

The paper is structured as follows. In Section 2, we describe
the setup of our hydrodynamic simulations. This is followed

by the results on the structure of the CPD in Section 3. Then,
Section 4 discusses our findings on the accretion mechanism.
Section 5 reports discussions and perspectives. Finally, Section 6
summarizes the conclusions of our work.

2. SETUP OF THE SIMULATIONS

2.1. Physical Model

We performed hydrodynamic simulations of an embedded
Jupiter-mass planet in a circumstellar disk. The coordinate
system was spherical and centered on the star. The planet was on
a fixed circular orbit. The units of the code were the following:
the unit mass was the mass of the star (M∗), the length unit
was the radius of the planetary orbit (a), and the unit of time
was the planet’s orbital period divided by 2π . Consequently, the
gravitational constant (G) and the planet’s angular momentum
and orbital (angular) velocity Ω =

√
GM∗/a3 are of unity.

The frame was corotating with the planet. Our planet was
placed at the following coordinates: 0, 1, π/2 (azimuth, radius,
colatitude, respectively). In our simulation, we used an azimuth
range of −π < θ < π , a radius range of 0.41 < r/a < 2.49,
and a colatitude range of three times the pressure scaleheight:
[1.42 < φ < (π/2)]. We assumed symmetry relative to the
midplane; therefore, only half of the circumstellar disk was
simulated.

The initial surface density is Σ = Σ0(r/a)−1.5, where Σ0 =
6 × 10−4 (in code units). Since our Σ0 is small, the indirect
term is negligible, so that our results scale linearly with Σ0.
We chose Σ0 such that with M∗ = M� (the solar mass) and
a = 5.2 AU, our initial surface density profile is very close to
that of Hayashi (1981) Minimum Mass Solar Nebula (MMSN).
Because MMSN is proportional to r−3/2 and our Σ0 dimension
is M∗/a2, the general relationship between Σ0 and ΣMMSN is
Σ0 = ΣMMSN

√
ajup/a(M∗/M�); therefore, we are using this

scaling in the followings.
In our “nominal” simulation, the gas was set to be inviscid,

i.e., there is no prescribed viscosity in the fluid equations.
We stress, however, that the fluid is nevertheless affected by
the numerical viscosity, whose effects will be quantified by
changing the resolution of the numerical grids (see below).
For comparison purposes, we also ran a simulation with an
α-prescribed viscosity (Shakura & Sunyaev 1973) adopting
α = 0.004. Hereafter, we will refer to this as our “viscous
simulation.” Note that α sets a viscosity that is a function
of heliocentric distance (radius). However, since the CPD
size is small, the viscosity in the CPD can be considered
uniform.

As discussed in the introduction, the equation of state (here-
after, EOS) is locally isothermal: p = c2

s ρ with disk aspect-ratio
H/r = 0.05, where H = cs/Ω (here cs is the speed of sound,
Ω indicates the angular velocity, p stands for the pressure, and
ρ is the volume density). No magnetic field was included in the
computations.

The planetary mass in the simulations was set to 10−3 stellar
masses in order to study planet accretion at a Jupiter mass.
However, we did not introduce the planet with its full mass from
the beginning. Instead, we prescribed a smooth mass growth of
the planet as sin(t/t0), where t0 was 5 planetary orbital periods.
This was done for numerical reasons, so that the gas had the
time to adapt to the presence of a progressively more massive
planet. The simulations overall have been ran for 238 planetary
orbits.
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Table 1
Number of Cells on Different Grid Levels

Level No. of Cells in No. of Cells in No. of Cells in Boundaries of the Boundaries of the Boundaries of the
Azimuth Radius Colatitude Levels in Azimuth (rad) Levels in Radius (a) Levels in Colatitude (rad)

0 628 208 15 [−π , π ] [0.41, 2.49] [1.42, π/2]
1 112 112 24 [−0.27735, 0.27735] [0.72264, 1.27735] [1.451041, π/2]
2 112 112 40 [−0.138675, 0.138675] [0.861325, 1.138675] [1.47137, π/2]
3 112 110 56 [−0.0693375, 0.0693375] [0.9306625, 1.0693375] [1.5014588, π/2]
4 112 110 56 [−0.03466875, 0.03466875] [0.96533125,1.03468875] [1.5361276, π/2]
5 112 112 56 [−0.017334375, 0.017334375] [0.98266562, 1.017334375] [1.553462, π/2]
6 112 112 56 [−0.0086671875, 0.00866719] [0.99133281, 1.0086671875] [1.5621291, π/2]
7 112 110 56 [−0.0043335938, 0.00433359] [0.99566641, 1.0043335938] [1.566462737, π/2]

2.2. Numerical Model

For the simulations, we used a three-dimensional (3D) nested-
grid code, called Jupiter. The Jupiter code solves the Riemann
problem at every cell boundary (Toro 2009) to ensure the
conservation of mass and the three components of momentum:

ρt + ∇ · (pv) = 0 (1)

(ρv)t + ∇ · (ρv ⊗ v + pI) = 0, (2)

where ρ is the density, p is the pressure, v is the velocity vector,
and I indicates the identity matrix. The use of a Riemann-solver
makes Jupiter particularly suited to treat shocks, contrary
to the van Leer method (van Leer 1977). The Riemann-
solvers implemented in the Jupiter code are approximated
solvers based on the exact solution: a Two-Shock solver and a
Two-Rarefaction solver (de Val-Borro et al. 2006).

The timestep in the simulation is adapted by the code in order
to satisfy the Courant–Friedrichs–Lewy condition for all levels
of mesh resolution:

C = Δt

3∑
i=1

vxi

Δxi

� 1.0, (3)

where C is the Courant number, i represents the number of
dimensions, xi means the spatial variables, and v indicates the
velocity. The timestep at a given level can be the same as the
timestep on the higher resolution level, or it can be twice that
timestep, in which case two iterations are performed on the finer
level while one iteration is done on the coarser level. This latter
technique is called timestep subcycling. We use an adaptive
subcycling procedure, which will be described in a forthcoming
publication, in order to obtain the maximum speed up of the
code (the highest possible ratio of physical time over wall clock
time).

The full viscous stress tensor is implemented in the code
in three geometries: Cartesian, cylindrical, and spherical. The
spherical implementation, which we use in this work, has been
tested thoroughly in a prior work (Fromang et al. 2011).

We employed a system of 8 nested grids, where at level 0 (i.e.,
in the coarsest grid) the resolution was 628 × 208 × 15 cells for
the directions of azimuth, radius, and colatitude, respectively.
Each additional grid was added after the gas reached a stationary
configuration, and each of them was centered on the planet. The
size of the cells in a grid at a given level was 1/2 in each spatial
direction of the cell size of the next larger grid. Table 1 contains
the number of cells on each level and the grid boundaries. In the
finest level, the cell length was 7.82 × 10−5a, which is 0.113%

of the Hill radius of the planet and 87% of the radius of the
present day Jupiter, assuming the planet orbits 5 AU away from
the star. The cells had the same length in every directions (i.e.,
they were cubes), and the radial spacing in between them was
arithmetic.

On level 0, we used reflecting boundary conditions except in
the azimuthal direction where we used periodic conditions. The
communication between the grids at level i and i + 1 (where
i = 0, . . . , 7) were done through ghost cells with multi-linear
interpolation.

To test the effects of numerical viscosity, we also ran a sim-
ulation with a twice finer resolution (1256 × 416 × 30), which
we call hereafter the “high-resolution simulation.” Because the
simulation is extremely slow at this resolution, we did not start
it from time zero but rather from the output of the nominal res-
olution at 238 orbits; we rebinned the gas on the new grids and
then ran the code for an additional 10 orbits.

The planet was not modeled but was treated as a point mass
placed in the corner of four cells on the midplane. In order to
avoid a singularity, the planetary potential was smoothed as

Up = − GMp√
x2

d + y2
d + z2

d + rs
2
, (4)

where xd = x−xp, yd = y−yp, and zd = z−zp are the distance-
vector components from the planet in Cartesian coordinates.
The smoothing length rs was set equal to the cell size in levels
0–4. From level 5 on, we used 2 cell sizes. Moreover, when
introducing levels 6 and 7, we progressively decreased rs from
the value used in the previous level to its desired final value. For
example, when introducing level 7, first the same smoothing
length was applied as on level 6 (which is equal to 4 cell sizes
on level 7), but then it was decreased in time with a sinusoidal
function until it reached rs = 2 cells. This technique was done
to allow the gas to adapt to a gradual change of the gravitational
potential.

Because of the isothermal character of our fluid equations, a
huge amount of mass tends to pile up in the few cells neighboring
the point-mass planet. This causes numerical instability. Thus,
we applied a density cut: if the volume density reached 1.42 ×
105 (in the code’s units), then the volume density of that cell
was limited to this value (hereafter we refer to this as the “mass
cut”). We keep track of the mass removed in this operation,
from which we compute the planet accretion rate. However, the
mass of the planet that enters in the gravitational potential was
not changed. This is because we are interested in the accretion
rate of a Jupiter-mass planet and not in the growth of the planet
itself.
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Figure 1. Volume density map of our inviscid, low-resolution simulation on the
midplane using data from levels 2–7. The planet is in the middle of the figure.
The planet clearly opened a gap, and the spiral density wave launched by the
planet connects the circumstellar disk with the CPD. Here and in the following
figures, with “Azimuth” and “Radius” we mean the distance from the planet in
the azimuthal and radial direction.

(A color version of this figure is available in the online journal.)

3. STRUCTURE OF THE CIRCUMPLANETARY DISK

In this section, we describe our results about the CPD
structure: its vertical structure, its radial structure, and the radial
flow in the midplane. All the results that we present are from
our nominal simulation unless we specify otherwise.

Because the grid at level 0 covers the circumstellar disk
globally, the planet can open a gap around its orbit (see Figure 1).
This was not the case in the simulations of Machida et al.
(2010) and Tanigawa et al. (2012) because of the shearing-
sheet approximation they adopted. Figure 1 also shows that the
density wave launched by the planet in the circumstellar disk
smoothly joins the CPD and spirals into it down to the planet
(see also Figure 10).

3.1. The Vertical Structure of the Circumplanetary Disk

We start by discussing the vertical structure of the CPD. For
this purpose, it is convenient to characterize the CPD based
on the z-component (in Cartesian coordinates) of the specific
angular momentum with respect to the planet, normalized to the
Keplerian value:

Lz = xdvy − ydvx + (x2
d + y2

d )Ω√
GMP

√
x2

d + y2
d

, (5)

where vx and vy are the velocity-components transformed to
Cartesian coordinates in the corotating frame.

Figure 2 represents a vertical slice at azimuth = 0.0 of the
Lz distribution in the neighborhood of the planet, which is
located at the center of the upper axis. We see that Lz rapidly
drops from ∼1 to ∼0.5 at a location where the density shows
a clear discontinuity (see Figure 3). Therefore, hereafter we
define the CPD as the region where Lz is larger than 0.65
(see the corresponding contour line in Figure 2). Even this value
is arbitrary; however, given the steep gradient of Lz near the
surface of the disk, changing this threshold would not change
significantly the results presented below.

Figure 2 shows that the gas in the midplane and near the
midplane is sub-Keplerian (similarly to Tanigawa et al. 2012;

Figure 2. Vertical slice of disk passing through the planet’s location, showing
in colors the values of the normalized specific angular momentum Lz of our
inviscid, low-resolution simulation. A value of Lz ≈ 0.65 separates the CPD
(see the corresponding contour line) from the environment. One can see that the
gas near the midplane is sub-Keplerian (yellow), while on the surface layer of
the disk it is slightly super-Keplerian (white region bounded by the contour line
1.0). The blue-violet colors correspond to gas that is falling almost vertically
toward the CPD. The blue circle around the planet symbolizes the 1/10 of the
Hill radius.

(A color version of this figure is available in the online journal.)

Figure 3. Same as Figure 2, but showing in colors the volume density of the
gas of our nominal simulation; a few velocity vectors schematize the directions
of the flow. Note the vertical inflow as well as the accreting flow in the CPD
midplane. Again, the orange circle around the planet symbolizes the 1/10 of the
Hill radius.

(A color version of this figure is available in the online journal.)

Uribe et al. 2013). However, note that near the upper layer
of the disk the flow is slightly super-Keplerian, i.e., in the
region bounded by the contour line Lz = 1. This is due to
the fact that the disk is very flared, so that the radial pressure
gradient near its surface is positive. In the viscous simulation,
however, this super-Keplerian near-surface layer does not exist.
This is due to the higher viscosity that limits the vertical shear in
the CPD.

The gas located below the CPD is falling toward the CPD with
a large vertical velocity, as indicated by the arrows on Figure 3
(see also Ayliffe & Bate 2009 and Tanigawa et al. 2012). As
pointed out in Tanigawa et al. (2012), the sharp vertical boundary
of the CPD clearly visible in the Lz and density maps is due to
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Figure 4. Color map showing the aspect ratio zCPD/d as a function of azimuth
and radius of our inviscid, low-resolution simulation. The planet is placed at
the center of the plot. At any given distance from the planet, the aspect ratio
changes considerably with the planetocentric azimuths. Thus, the CPD has a
“wavy” surface structure.

(A color version of this figure is available in the online journal.)

a shock front generated by the vertical influx. As in Tanigawa
et al. (2012), we also note from Figure 2 that the vertical inflow
hits the CPD with a value of Lz that is much smaller than that
characterizing the CPD at the same location. Thus, the vertical
inflow slows down the rotation of the CPD, promoting radial
infall at the surface of the CPD.

We find that the vertical influx has also a strong influence
on the aspect ratio of the CPD. First of all, as a reminder, the
pressure scale height of the CPD at hydrostatic equilibrium is
HCPD ≡ cs/ω, where ω = √

GMp/d3 is the angular velocity

around the planet, and d =
√

x2
d + y2

d indicates the distance from
the planet. The sound speed (cs = 0.05 r−1/2) is almost constant
in the CPD in our locally isothermal simulation. So, we expect
the aspect ratio of the CPD to be HCPD/d = (cs/

√
GMp) d1/2 ≈

1.6(d/a)1/2 = 0.16 (d/0.01a)1/2, which is very thick and flared.
As we show in Figure 4, the surface of the CPD defined by zCPD
(i.e., the uppermost z-coordinate where Lz ≈ 0.65) is indeed
strongly flared, but its aspect ratio has also a strong dependence
on the azimuth relative to the planet. In fact, zCPD/d is changing
from ∼20% to >100%. To our knowledge, this wavy surface has
not been described yet in the literature. The wavy surface pattern
is due to the dynamical pressure of the vertical mass inflow,
which is not uniform in planetocentric azimuth (see Figure 5); it
is maximal along an axis close to the axis of the spiral arm. Now
we take a Lagrangian approach and consider fluid elements in
the CPD orbiting on circles centered on the planet; because the
pressure due to the vertical inflow has two maxima, they will
feel a maximum of pressure twice per orbit. However, it takes
a time tdelay ≈ HCPD/cs for the gas in the CPD to react to the
pressure pulse. In this time, the fluid elements rotate by an angle
θdelay = ω × tdelay, which is the angle between the axis marking
the minimum height of the CPD and that marking the maximum
pressure. Because ω × tdelay = ω/HCPD/cs = 1, this angle is
independent of the distance from the planet d. The comparison
of Figures 4 and 5 clearly shows an angle of the order of unity
(in radians) between the maximum pressure and the minimum
CPD height. A toy model is presented in the Appendix about

Figure 5. Same as Figure 4, but showing in colors the value of ρv2
z , representing

the ram pressure exerted by the polar inflow on the CPD surface. It can be
seen that the pressure of the inflow is higher along a diagonal line oriented from
the top left of the figure to the bottom right. Thus, the CPD is compressed along
this line and has a minimum aspect ratio (see Figure 4) along a line rotated by
θdelay relative to the highest pressure line (see text).

(A color version of this figure is available in the online journal.)

Figure 6. Volume density vs. the z coordinate at d ≈ 0.058 Hill radii, for various
azimuths relative to the planet. The vertical structure of the CPD changes with
azimuth, with fixed knots as a stationary wave. The data are from our inviscid,
low-resolution simulation.

(A color version of this figure is available in the online journal.)

how the pressure of the vertical influx leads to the observed
structure of the CPD.

Figure 6 shows the vertical density distribution in the CPD
from z = 0 to z = zCPD at a given radius for various values
of the azimuth. The mass is conserved along an orbital period,
so the integral of each density curve is the same. On top of the
expected equilibrium Gaussian shape, one can note oscillations
with two knot points where the density does not change with
azimuth. This is reminiscent of stationary waves.

Simulations implementing an adiabatic EOS (e.g., Ayliffe &
Bate 2009, 2012; Gressel et al. 2013) also find that the vertical
inflow is the main feeding mechanism for the CPD. The CPD,
however, has a larger scale height as it is hotter and the boundary
between the disk and the vertical flow is less sharp than in our
isothermal simulations. We will come back to this last, important
issue in Section 5.
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Figure 7. Orbital apocenter as a function of planetocentric radius for the cells
on the midplane in the vicinity of the planet. As long as the points lie on a line
of slope 1, the streamlines in the disk are circular. One can read from the figure
that the CPD of our inviscid, low-resolution simulation is quite circular up until
∼0.48 Hill radii.

3.2. Radial Structure of the Circumplanetary Disk

We now move to discuss the orbital motion inside the CPD
and the location of its outer radial boundary.

The specific normalized angular momentum Lz on the mid-
plane declines with the distance from the planet (Ayliffe & Bate
2009; Tanigawa et al. 2012), but it does not show a steep gra-
dient like the one in the vertical direction near the surface of
the disk. Therefore, previous authors assumed arbitrary limits
in Lz, obtaining different radial extensions for the CPD.

We think that it is more meaningful to look at the orbital
motion of the fluid elements, defining the CPD as the region
where the orbits are basically circular. Quasi-circular orbits may
have a small value of Lz if the CPD is strongly sub-Keplerian
due to a steep radial pressure gradient, but they are clearly part
of a disk.

In order to visualize easily where the orbits of the disk are
quasi-circular, we proceeded as follows. First, we calculated the
semi-major axis a and the eccentricity e in every cell from the
cell’s coordinates, the recorded velocities, and the planetary po-
tential; then we plotted the apocenter of the orbit Q = a(1 + e)
versus the planetocentric radius d of the cell. If at a given ra-
dius every cell, whatever its planetocentric azimuth, appears to
be at the apocenter (Q = d), it obviously means the stream-
line in the disk is circular, although sub-Keplerian. We can see
on Figure 7 that this is the case up to ∼0.48 Hill radii. If we
use this definition for the radial extent of the CPD, then the
disk is a bit wider than the previously recorded radial exten-
sions of ∼0.1–0.3 Hill radii (Tanigawa et al. 2012; Ayliffe &
Bate 2009).

We remark, however, that the eccentricity of the streamlines
in the disk depends on the viscosity. In fact, as we will
see in Section 3.3, the streamlines are eccentric if they are
shocked at the passage through the wave generated by the
stellar tide. The smaller is the effective viscosity—prescribed
or numeric—in the CPD, the closer to the planet the wave
propagates and shocks. Thus, defining the CPD as the region
where streamlines are circular may lead to the uncomfortable
situation that the disk may become vanishingly small in the

Figure 8. Column density profile of the CPD with respect to the distance from
the planet. Each curve refers to a different simulation, as labeled.

(A color version of this figure is available in the online journal.)

ideal limit of zero viscosity. In fact, in our viscous simulation,
circular orbits extend up to ∼0.55 Hill radii, and in the high
resolution simulation, which halves the numerical viscosity,
they extend only up to ∼0.28 Hill radii. This is an important
point that should be kept in mind when analyzing the results
of simulations, regardless if conducted with an isothermal or
adiabatic EOS.

Alternatively, we may define the radial extent of the CPD as
the largest circle from which streamlines wrap around the planet
at least once before becoming unbound, in either the forward or
backward integration. If we adopt this definition, the radius of
our CPD is approximately 1/2 to 3/4 of the Hill radius.

On Figure 8, our CPD’s column density (
∫
ρdz) profile can

be seen. We have less massive CPD than Tanigawa et al.
(2012), probably because our global disk simulation contained a
planetary gap in contrary to the sheering sheet box simulations.
Instead, the column density at 0.1 Hill radius in our CPD
(∼100 g cm−2 for Jupiter at 5 AU in a MMSN) is comparable to
that in the radiative simulations with reduced opacity of (Ayliffe
& Bate 2009) and with the most viscous simulation in D’Angelo
et al. (2003).

3.3. Flow in the Midplane of the Circumplanetary Disk

There is a debate in the literature about the direction of the
radial flow on the midplane of the CPD. Ayliffe & Bate (2009)
found inflow in their simulations, while Tanigawa et al. (2012),
Klahr & Kley (2006), and Ayliffe & Bate (2012) found outflow.

We find that the direction of the radial flow on the midplane
of the CPD depends strongly on viscosity. In our viscous
simulation, the flow is outward, as shown by the streamlines
plotted in Figure 9. The outflow near the midplane—together
with inflow in the upper layers—is indeed typical of a 3D
viscous-accretion disk (see Urpin 1984; Siemiginowska 1988;
Kley & Lin 1992; Rozyczka et al. 1994; Regev & Gitelman
2002; Takeuchi & Lin 2002).

In our nominal simulation, instead, the net flow is inward. This
is due to two reasons: (1) the effective viscosity is smaller and
(2) the flow suffers more pronounced shocks when crossing the
spiral density wave. The latter issue is well visible in Figure 10.
The shocks correspond to the points where the streamlines
change abruptly direction. Look in particular at the accreting
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Figure 9. Volume density map on the midplane in the vicinity of a Jupiter-mass
planet for our viscous, low-resolution simulation. A few streamlines are also
shown with arrows that indicate the direction of the flow.

(A color version of this figure is available in the online journal.)

streamline on the figure. When it encounters the wave for the first
time, the streamline changes abruptly direction relative to the
position of the planet. The streamline now makes a hyperbolic
arc around the planet. If unperturbed, it would leave the planet’s
sphere of influence, but it is shocked again when crossing the
outer branch of the density wave at the apex of its trajectory. The
shock deviates the motion once again and reduces its angular
momentum relative to the planet. The streamline now makes a
downward arc around the planet with a large eccentricity, but
then it is shocked again and again, every half orbit. Each shock
causes a loss in angular momentum, so that the streamline spirals
toward the planet.

The shocks were also visible in Figure 9, but they were
less pronounced. The net flow is the result of the competition
between the viscous stress, which pushes the flow outward,
and the shocks, which cause angular momentum losses. In the
viscous simulation, the former wins; in our nominal simulation,
the latter win. The same competition should occur also for CPDs
with adiabatic EOS. Shocks are weaker in that case (D’Angelo
et al. 2003), but in the limit of zero viscosity they should
dominate nevertheless.

It is unclear to us why Tanigawa et al. (2012) found outflow
in their simulation, which had no prescribed viscosity as in
our nominal case. Possibly, the numerical viscosity in their
simulation was higher than in ours, or alternatively, the fact
that no gap opened in their simulation changed substantially the
local dynamics.

We stress, however, that the discussion about the direction
of the midplane flow in the CPD is mostly academic. In fact,
even in the case of inflow on the midplane, the midplane flow
accounts for only 10% of the total delivered material to the CPD.
We derived this percentage through the following procedure.
First, we plotted the azimuthally averaged mass flux on circles
at different planetocentric radii. The mass flux is increasing
with decreasing distance because mass is continuously added to
the CPD from the vertical direction. Considering a distance of
0.58 Hill radii from the planet, which corresponds to the largest
radius at which all streamlines are accreting (see Figure 10), the
mass flux is 10% of the planet’s accretion rate (see “mass cut”
accretion rate in Section 4 for details). Thus, the remaining 90%
of the accretion has to come from the vertical direction.

Figure 10. Same as Figure 9, but for the nominal (i.e., inviscid) simulation. One
of the streamlines shows clear shocks when crossing the spiral density wave, thus
the gas flow loses angular momentum and spirals down to the planet. The planet
accretes all the gas flowing between the first and the third streamlines from the
bottom left of the figure and between the first and the second streamlines from
the top right of the figure.

(A color version of this figure is available in the online journal.)

4. PLANETARY ACCRETION

After having analyzed in detail the dynamics in the vicinity
of the planet, we are now ready to discuss the planet’s accretion
rate.

First, we checked whether we reached a stationary state at
the end of the simulation by comparing the radial mass fluxes
(averaged over azimuth and integrated vertically) obtained at
different output times throughout the circumstellar disk and the
CPD. Having concluded positively that a quasi stationary state
was reached, we then checked whether the flux of mass onto
the planet was a simple consequence of the mass flux toward
the star in the circumstellar disk. We found, as discussed more
in details in (Morbidelli et al. 2013), that the flux of gas toward
the planet is due to the flux of gas into the gap from both of
its sides. Thus, the planet accretion rate would not be zero even
in an equilibrium disk without any net mass flux to the star.
Our disk is indeed very close to an equilibrium disk for α = 0;
the flux of gas toward the star in our disk is not significant and
therefore not correlated to the accretion of the planet.

In order to measure the accretion rate in the simulation, we
measured how much mass was removed through the mass cut.
In our nominal simulation, after reaching a stationary state, we
found a large accretion rate, namely Ṁ = 2×10−7 M∗Ω. Again,
the results scale linearly with Σ0 and the relationship derived
in Section 2 is Σ0 = ΣMMSN

√
ajup/a(M∗/M�). Moreover,

Ω =
√

GM∗/a3 =
√

M∗/M�(GM�/(1 AU)3)((1 AU)3/a3).
Plugging in these will lead to Ṁ = 5.51 × 10−7 M� yr−1 ×
(M∗/M�)1/2 × (Σ0/ΣMMSN) × (a/1 AU)−1. If the planet is at
5.2 AU, this corresponds to ∼10−4 Jupiter masses per year. We
argue that this high accretion rate is due to numerical viscosity.
In fact, in the high resolution simulation, where the numerical
viscosity is halved, the accretion rate is reduced by a factor of
two.

Interestingly, in the high resolution simulation, the mass in
the CPD is basically the same as in the nominal simulation (see
Figure 8). This is because the polar inflow is also reduced by a
factor of two. This is at first surprising because in 2D disks at low
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viscosity the width and depth of a gap is independent of viscosity
(Crida et al. 2006). However, 3D gaps behave differently. The
detailed analysis of the gas dynamics in a 3D gap will be the
object of another paper (Morbidelli et al. 2013). However, in
brief, the dynamics of a gap in a 3D disk is characterized by
an interesting circulation: the gas flows into the gap from the
surface of the circumstellar disk, then precipitates toward the
midplane. In doing this, it falls either to the CPD or gets kicked
out by the planet and goes back into the circumstellar disk.
The flow into the gap at the disk’s surface is dominated by the
numerical viscosity and therefore changes by a factor of two
from the nominal to the high resolution simulation.

This result shows that it is not possible to assess the accre-
tion rate of a planet in the low-viscosity limit just by using
simulations with no prescribed viscosity. This has to be kept in
mind regardless of the EOS used in the simulations. Instead,
we need to identify and quantify the accretion mechanisms that
are independent of viscosity. However, as a reminder, our anal-
ysis is based on isothermal simulations; if a more realistic EOS
is used, the quantitative relevance of each mechanisms may
change. The analysis below, therefore, should be regarded as a
proof of concept, useful also for future radiative studies and not
for its quantitative results (see also Section 5).

Here we envision a scenario in which the circumstellar disk
has a layered structure, with a dead zone near the midplane and
an active viscous layer near the surface, in agreement with MRI
studies (Gammie 1996). We envision also that the CPD is mostly
MRI-inactive, in agreement with (Fujii et al. 2011; Turner et al.
2013; Fujii et al. 2013), so we investigate the planet accretion
rate in the limit of vanishing viscosity in the CPD.

A first mechanism of accretion, independent of the viscosity
in the CPD, is the vertical inflow. We stress that the vertical
inflow is sustained by the flux of gas in the active layer of the
circumstellar disk (Morbidelli et al. 2013), so that it should
exist also if the planet forms in a dead zone and the CPD is
inviscid. We have seen in Section 3.1 that the vertical inflow
has a specific angular momentum significantly smaller than the
CPD. Because the contact of the inflow and the CPD happens
through a shock, the inflow subtracts angular momentum from
the CPD even in the limit of zero viscosity. Nevertheless,
if the specific angular momentum of the incoming gas is larger
than that corresponding to an orbit at the surface of the planet,
the inflow cannot promote accretion onto the planet. Therefore,
the mass accreted by the planet cannot be larger than the mass
carried by the inflow of gas with a specific angular momentum
smaller than (j <

√
GMpRp) (Tanigawa et al. 2012). We call

this subset of the vertical inflow a “polar inflow”.
To estimate the accretion rate due to the polar inflow, we

proceed as follows. We set the radius of the planet to be equal
to twice the current radius of Jupiter. This is because the planet
at the accretion time was much hotter and therefore its radius
was inflated by more or less a factor of two (Guillot et al.
2004). Also, we refer to the viscous simulation. The reason
is that, as we said above, the vertical infall is fed by the
gas entering into the gap at the surface of the circumstellar
disk, and the latter should be MRI active. With these settings,
we find an accretion rate of 4 × 10−9 × M∗Ω = 11.02 ×
10−9 M� yr−1 × (M∗/M�)1/2 × (Σ0/ΣMMSN)× (a/1 AU)−1, i.e.,
2 × 10−6 Jupiter masses yr−1 with the usual scalings, and it
should scale linearly with α. This estimate is one order of
magnitude smaller than in Tanigawa et al. (2012), presumably
because of the fact that in our simulations the planet opened a
gap.

The second accretion process that does not depend on the
viscosity in the CPD is the loss of angular momentum in the
CPD due to the torque exerted by the star through the spiral
density wave (Martin & Lubow 2011; Rivier et al. 2012). This
torque was already considered in Rivier et al. (2012) in their 2D
simulations. The authors there assumed that in the inviscid case
the torque is deposited only in the very inner part of the CPD.
However, as we have seen in Section 3.3, the wave shocks and
removes angular momentum also in the outer part of the CPD.
The fact that the wave does not seem to shock in the inner part
of the CPD is probably an artifact of numerical viscosity, which
increases approaching the planet and smears out the density
contrasts, consequently erasing the wave and its shock front.
Because the simulation does not allow us to resolve where in
the CPD the torque is deposited, in order to provide an upper
bound of the planet’s accretion rate promoted by the stellar
torque we adopt the following simple recipe. We integrate the
stellar torque from the planet to the radius where it becomes
positive, which is basically at the edge of the CPD; then, we
estimate the fraction of the CPD mass accreted per unit time as
the fraction between the integrated stellar torque and the total
angular momentum in the disk.

For both the nominal and the high resolution simulation, we
derive that the stellar torque promotes the accretion of 3 × 10−3

of the mass of the CPD per planet’s orbital period, i.e., 2.5×10−4

of the CPD mass per year, if the planet is at 5.2 AU around a
solar-mass star. Because of the fact that this result is independent
of the numerical resolution, we are confident of its robustness.

The mass of the CPD in our simulation is only 4 × 10−4 MJ.
However, if the disk could not accrete onto the planet as fast
as in our simulation because of the lack of viscosity, the gas
would pile up into the disk, increasing the CPD mass. How
massive the disk can become cannot be studied using isothermal
simulations and will be the object of a future study. In Rivier
et al. (2012), it was estimated analytically that the maximum
mass of the CPD is ∼10−3 MJ; at this mass, its vertical pressure
gradient becomes large enough to stop the vertical inflow, so
that the mass of the CPD cannot grow further. This estimate is
probably valid only at the order of magnitude level. However,
even assuming a CPD mass of 0.01 MJ, the stellar torque would
imply an accretion rate of only 2.5 × 10−6 MJ yr−1, i.e., a mass
doubling time of 400,000 yr. This timescale is comparable to
that of the photoevaporation of the circumstellar disk. If this
result is confirmed in future, more realistic studies, it implies
that if giant planets form toward the end of the disk’s lifetime,
the competition between the planet’s accretion timescale and the
disk removal timescale might explain the wide range of masses
observed for giant planets.

5. DISCUSSION AND PERSPECTIVE

In this paper, the simulations were all isothermal. Previous
studies showed that for small planets (∼10 M⊕) the flow near
the planet strongly depends on the EOS (Paardekooper &
Mellema 2008, Ayliffe & Bate 2009, Nelson & Ruffert 2013),
but for Jupiter-mass planets the accretion rate in non-isothermal
simulations is close to that in isothermal calculations (Machida
et al. 2010).

However, we suspect that the Machida et al. (2010) result is
due to the large planet’s accretion rate, which is a consequence
of the numerical viscosity. At the level of detail at which we
explored the local dynamics in this paper, we expect that the EOS
would strongly influence the results at a quantitative level. In
particular, in the limit of vanishing viscosity, the gas should pile
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up in the CPD, and an adiabatic EOS with flux limited energy
transfer is expected to change significantly the final equilibrium
structure of the CPD relative to the isothermal EOS.

The issue of the pileup of material in the CPD is crucial
to estimate the planet’s accretion rate in the inviscid limit.
If the mass of the CPD becomes large, the stellar torque
can be sufficient to promote a fast accretion onto the planet.
Martin & Lubow (2012) suggested that the disk may become
gravitationally unstable, which would cause FU Orionis-like
accretion bursts onto the planet. In fact, works comparing
the results in isothermal and adiabatic simulations, such as
D’Angelo et al. (2003) or Gressel et al. (2013), show that the
CPD tends to be less massive if heating and cooling effects are
taken into account. However, these works are affected by a large
viscosity—prescribed or numeric—which prevents the pileup of
mass in the CPD. It should be investigated as to what actually
happens in the ideal inviscid limit.

Nevertheless, it may be possible that the CPD becomes so
hot and vertically extended that it does not allow the accretion
of new material from the vertical inflow. The velocity of the
vertical inflow could become sub-sonic; there would be no shock
at the surface of the CPD, and the flow could be diverted by the
pressure gradient. Indeed, adiabatic simulations like Ayliffe &
Bate (2009) and Gressel et al. (2013) show that the boundary
between the CPD and the vertical flow is less sharp than in our
study, suggesting a weakening of the shock front. If the vertical
inflow is diverted before that, the CPD becomes gravitationally
unstable, and then a steady state equilibrium can be reached. As
in Section 4, the accretion rate onto the planet will depend on
the mass of this steady state CPD and the stellar torque, but the
quantitative estimate will presumably be different from the one
achieved in this paper. We also note that adiabatic simulations
(e.g., Gressel et al. 2013) show that the spiral wave launched by
the star in the CPD is much less prominent than in the isothermal
case, which would reduce the stellar torque.

In the future, it will be necessary to investigate how the results
change from the quantitative point of view if a more realistic
EOS is used. To study the pileup in the CPD, however, one
will still have the problem of numerical viscosity. If the latter
promotes the accretion of material from the CPD to the planet,
the final mass distribution in the CPD will not be the same as in
the ideal inviscid case. Particular care will be needed to address
this issue.

6. CONCLUSIONS

In this paper, we studied the dynamics of gas in the vicin-
ity of a Jupiter-mass planet and the properties of the CPD. For
this purpose we used the Jupiter code, a 3D nested-grid hydro-
dynamical code. We performed locally isothermal simulations
with two prescribed α viscosities (α = 0.004 and α = 0) and,
for α = 0, with two different resolutions.

Our results confirm those of Ayliffe & Bate (2009), Machida
et al. (2010), and Tanigawa et al. (2012) concerning the vertical
inflow and the CPD vertical structure. We have pointed out,
however, that the CPD upper layer is wavy, i.e., the aspect
ratio of the CPD changes with planetocentric azimuth, because
of the pressure of the inhomogeneous vertical inflow. In a
reference frame rotating with the gas around the planet (at
a given radius), this pressure exerts a periodic perturbation,
leading to the formation of a stationary wave in the CPD vertical
structure. We also were able to reduce the viscosity more than
previous local box simulations; in our inviscid simulation, the
shocks were more pronounced.

We found that CPD is mostly sub-Keplerian, similar to
Tanigawa et al. (2012), and Uribe et al. (2013), except in its
upper layer, where it can be slightly super-Keplerian because of
the significant flaring of the disk. The radial extent of the disk
where the streamlines are quasi-circular depends on viscosity
and, if α = 0, also on numerical resolution. The smaller the
effective viscosity is, the smaller the circular portion of the
disk is.

We found that the flow in the CPD midplane is inward if
α = 0, in contrast with Tanigawa et al. (2012) and Ayliffe &
Bate (2012). In this case, the gas flow in the CPD is crossing
the spiral density wave twice in every orbit, and each crossing
leads to the loss of angular momentum due to a shock. Thus, the
flow spirals down to the planet. Nevertheless, we showed that
the radial inflow of mass through the outer boundary of the CPD
is only 10% of the gas influx coming from the vertical direction.
Instead, in the case of the viscous simulation with α = 0.004,
the flow is spiraling outward in the midplane. Therefore, one
can conclude that the viscosity determines the directions of the
flow in the CPD.

Our simulation resulted in a high planetary accretion rate,
namely Ṁ = 1×10−4 Jupiter masses per year for a Jupiter-mass
planet at 5.2 AU in a MMSN; however, we showed that this high
rate is due to numerical viscosity. We identified that the main
accretion mechanisms, independent of viscosity, is the torque
exerted by the star onto the CPD. We found that the stellar torque
promotes the accretion of 2.5×10−4 of the mass of the CPD per
year, assuming a planet’s orbital period of 12 yr. However, we
cannot provide a reliable estimate of the mass of the CPD with
our isothermal simulations, particularly in the limit of vanishing
viscosity, which could lead to a significant pileup of material
in the CPD. An order of magnitude analytic estimate in Rivier
et al. (2012) reported a CPD mass of ∼10−3 MJ. Even assuming
a CPD mass of 0.01 MJ, the stellar torque would lead to an
accretion rate of only 2.5 × 10−6 MJ yr−1. In other words, a
Jupiter would build up in 400,000 yr with this accretion rate.
This timescale is comparable to the removal timescale of the
circumstellar disk gas (e.g., Koepferl et al. 2013; Gorti et al.
2009; Szulágyi et al. 2012).

Although future simulations implementing a realistic, non-
isothermal EOS are needed to achieve a reliable quantitative es-
timate of the planet’s accretion rate in the limit of vanishing vis-
cosity, many conceptual results of this paper, particularly those
on the role of numerical viscosity and viscosity-independent
transport mechanisms in the CPD, should be valid also in a
more realistic context.

The main result presented in this paper is encouraging. The
similarity between planet accretion and disk removal timescales
suggests that if the giant planets form toward the end of the
disk’s lifetime, the competition between the planet’s accretion
process and disk’s photoevaporation could explain the observed,
wide range of giant planet masses.
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port through its Planetary Evolution and Life program. F. Mas-
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IA101113.
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APPENDIX

MATERIAL

Here we present a toy model for the wavy structure of the
CPD. Our goal is to schematize with some basic physical
considerations the CPD’s reaction to the pressure of the vertical
inflow, which is leading to this wavy disk surface. This toy
model might help one to better understand the process without
giving an exact (i.e., complex) physical model, since this is not
the goal of this paper.

In the reference frame rotating with the fluid elements in the
CPD, the periodic excitation by the vertical inflow’s pressure
creates a stationary wave in the vertical structure of the CPD.
The solution for the acoustic wave equation

1

c2
s

∂2p

∂t2
= ∂2p

∂z2
(A1)

for a stationary wave can be written in the following form:

p(z, t) = 2p0e
iνt cos(kz), (A2)

where t stands for the time, z represents the vertical coordinate,
ν indicates the wave frequency, and k means the wavenumber.
The term cos(kz) does not involve a phase because the CPD
is supposed to be symmetric with respect to the midplane, so
that we have ∂p/∂z = 0 at z = 0. Putting this equation back
into the wave equation, we get k = ν/cs = 2π/λ, where cs
indicates the sound speed and λ is the wavelength. Because
the pressure exerted by the vertical inflow has a frequency
that is twice the planetocentric orbital frequency (ν = 2ω),
then at zmax the equation can be written as p(zmax, t) =
pzmaxe

i2ωt . If we set this equal to Equation (A2), then we get
λ = πcs/ω = πHCPD.

This is precisely what is seen in Figure 6. The figure shows
the vertical profile of the volume density in the CPD for
various values of the azimuth, at a distance of d ≈ 0.058
Hill radii from the planet, where HCPD/d ≈ 0.1. The z
coordinate is normalized by HCPD. The profiles oscillate around
the well-known Gaussian hydrostatic equilibrium profile. One
can see two knots, where all curves intersect, corresponding
to the locations in z where the amplitude of the wave is zero,
namely corresponding to cos(kz) = 0: z = (π/4)HCPD and
z = (3π/4)HCPD. The distance between the two knots is
λ/2 = π/2HCPD. The computation of the cumulated mass along
the curves shown in Figure 6 reveals that >97% of the disk mass
is below the knot at (3/4)λ = (3/4)πHCPD ≈ 2.4HCPD. Thus,
the extreme “waviness” of the surface of the disk observed in

Figure 4 concerns solely an “atmosphere” of the disk accounting
only for <3% of the disk mass.
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