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The basic structure of the Solar System is set by the presence of low-mass terrestrial planets in its inner
part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos
with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer
disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this
dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of
runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the
original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles
by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose
that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is
approximately ten times smaller within the snowline than beyond the snowline (respectively at
heliocentric distance r < rice and r > rice , where rice is the snowline heliocentric distance), due to ice
sublimation and the splitting of icy pebbles into a collection of chondrule-size silicate grains. In this case,
objects of original sub-lunar mass would grow at drastically different rates in the two regions of the disk.
Within the snowline these bodies would reach approximately the mass of Mars while beyond the
snowline they would grow to � 20 Earth masses. The results may change quantitatively with changes
to the assumed parameters, but the establishment of a clear dichotomy in the mass distribution of
protoplanets appears robust provided that there is enough turbulence in the disk to prevent the
sedimentation of the silicate grains into a very thin layer.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The Solar System has a characteristic structure, with low-mass
rocky planets in its inner part, often called terrestrial planets, and
giant planets (gas-dominated or ice-dominated) in the outer part.

A census of protoplanetary disks in clusters with known ages
shows that the dust emission (usually assumed to trace the abun-
dance of gas) disappears in a few My (Haisch et al., 2001); this is
also the timescale on which the emission lines diagnostic of gas
accretion onto the central star fade away (Hartmann et al., 1998).
The fact that no primitive chondrite parent bodies seem to have
accreted beyond 3–4 My (Kleine et al., 2005) suggests that the
proto-Solar-System disk was not of exceptional longevity.

Clearly, the giant planets had to form within the lifetime of the
gas-disk because they accreted substantial amounts of hydrogen
and helium (this is true also for Uranus and Neptune). Thus giant
planets should have formed within a few My only. The commonly
accepted scenario for giant-planet formation is the core-accretion
model (Pollack et al., 1996). In short, a massive solid core accretes
first and then it captures a massive atmosphere of H and He from
the protoplanetary disk. The mass of all giant planet cores but
Jupiter is around 10 Earth masses (M�) (Guillot, 2005). Jupiter
might have no core today (Nettelmann et al., 2008). However, there
are several tens of Earth masses of ‘‘metals’’ (molecules heavier
than H and He) in Jupiter (Guillot, 2005) and it is possible that part
or even most of its primordial core has been eroded and dissolved
into the atmosphere (Guillot et al., 2004; Wilson and Militzer,
2012).

An estimate of the mass of the core needed for the accretion of a
massive atmosphere is also provided by models. It is generally con-
sidered, since the work of Pollack et al., that the core needs to
exceed � 10 M�. More precisely, the critical mass for the runaway
accretion of the atmosphere depends on the rate at which the core
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accretes solids, on the molecular weight of the atmosphere (Ikoma
et al., 2000; Hori and Ikoma, 2011) and the dust opacity in the
envelope (Mizuno, 1980; Stevenson, 1982), which remains poorly
known despite modern attempts to estimate the dust opacity
self-consistently by modeling the aggregation of infalling grains
(Movshovitz and Podolak, 2008; Ormel, 2014). The solid accretion
rate could not be arbitrarily small, otherwise the core would not
have formed in first place within the lifetime of the disk. This gives
a constraint on the minimal mass of the core. Lambrechts et al.
(2014, see their Fig. 7) showed that the core should have had a
mass of at least 10 M�, if the ratio H2O/H2 in the atmosphere
was less than 0.6. Uranus and Neptune provide an indirect confir-
mation of this estimate as a lower-bound for the core mass. In fact,
they have a core of about 10–15 M� (Guillot, 2005) and only a few
Earth masses of H and He, which means that they either did not
start runaway accretion of gas, or did so only at the very end of
the lifetime of the disk.

The situation for the terrestrial planets is completely different.
There is a general consensus that the terrestrial planets formed
from a system of planetary embryos and planetesimals (see
Morbidelli et al., 2012, for a review), although the details of how
this happened can differ from one model to the other (Chambers
and Wetherill, 1998; Chambers, 2001; Agnor et al., 1999;
Raymond et al., 2004, 2006a,b; O’Brien et al., 2006; Hansen,
2009; Walsh et al., 2011; Jacobson and Morbidelli, 2014).
According to these models and to the interpretation of isotopic
chronometers for terrestrial and lunar samples (Yin et al., 2002;
Jacobsen, 2005; Touboul et al., 2007; Allegre et al., 2008;
Halliday, 2008; Taylor et al., 2009) the Earth took several tens of
My to complete its formation, with a preferred timing for the
Moon forming event around 100 My (Jacobson et al., 2014). The
minimum time in which the Earth acquired 63% of its mass is
11 My (Yin et al., 2002; Jacobsen, 2005). Thus, most of the assem-
blage of the Earth clearly took place after the removal of the gas
from the protoplanetary disk.

Mars, instead, formed very quickly, i.e. in a few My (Halliday
and Kleine, 2006; Dauphas and Pourmand, 2011), basically on
the same timescale of chondritic parent bodies. This suggests that
Mars is a stranded embryo (Jacobson and Morbidelli, 2014). The
fact that the Moon-forming projectile also had a mass of the order
of a Mars-mass (Canup and Asphaug, 2001; Cuk and Stewart, 2012)
and that Mercury, if it had originally the same iron content as the
other terrestrial planets, was also approximately Mars-mass (Benz
et al., 1988) suggests that the mass of Mars was the typical mass of
planetary embryos in the inner Solar System at the time the gas
was removed from the protoplanetary disk.

In summary, it appears compelling that, by the time gas was
removed from the system, the process of formation of the solid
component of planets had produced a great dichotomy in the mass
distribution of protoplanets: in the inner system, the largest
objects were approximately Mars-mass; in the outer Solar
System they were � 10 M�. Thus, there was a contrast of two
orders of magnitude between the masses of the solid planets
formed in the inner and outer systems respectively. This happened
despite the accretion timescale, which can be reasonably approxi-
mated by the orbital timescale, is 10 times faster at 1 AU than
5 AU!

How could this be possible? The generic (and hand-waving)
explanation is that the cores of the giant planets formed beyond
the ice line, so that the density of solids was comparatively larger
than in the inner Solar System, where only refractory material
could be in solid form. However, this cannot be the explanation.
According to Lodders (2003), for the solar abundance the
H2O-ice/rock ratio is approximately one-to-one. That means that
the amount of solid mass available for planet formation beyond
the snowline increases by just a factor of 2. This is confirmed by
the ice/rock ratio inferred for comets, trans-Neptunian objects,
and irregular satellites of giant planets (McDonnell et al., 1987;
Stern et al., 1997; Johnson and Lunine, 2005). An enhancement of
the solid mass by more than a factor of 2 might have been
produced by the so-called ‘‘cold-finger effect’’ (Morfill and Voelk,
1984; Ros and Johansen, 2013), but this would have happened only
locally at the snowline and therefore could explain at most the for-
mation of one giant-planet core, not several.

The purpose of this paper is to investigate which process of pla-
net formation is more likely to have led to the dichotomy discussed
above. In Section 2 we consider the classical process of formation
of embryos/cores by runaway/oligarchic accretion of planetesimals
(Greenberg et al., 1978; Kokubo and Ida, 1998; Wetherill and
Stewart, 1993; Weidenschilling et al., 1997). We show that this
process clearly cannot explain the dichotomy. Next, in Section 3,
we consider the process of pebble accretion. This is a new process
for planet growth, introduced in Lambrechts and Johansen (2012;
see also the precursor work by Ormel and Klahr (2010), Johansen
and Lacerda (2010), Murray-Clay et al. (2011), and Bromley and
Kenyon (2011)), which is rapidly gaining attention (Morbidelli
and Nesvorny, 2012; Chambers, 2014; Lambrechts and Johansen,
2014; Lambrechts et al., 2014; Guillot et al., 2014; Kretke and
Levison, 2014a,b). We will show that, provided some assumptions
hold true, the pebble accretion process can explain the two orders
of magnitude mass-contrast between inner Solar System objects
and outer Solar System objects. The conclusions and perspectives
are discussed in Section 4.

2. Growth of embryos and cores by planetesimal accretion

The growth of embryos and cores from a disk of planetesimals
proceeds in two phases.

The first phase is that of runaway growth (Greenberg et al.,
1978). Here most of the mass of the disk is in ‘‘small’’ planetesi-
mals. The velocity dispersion of the planetesimals is set by the
equilibrium between the self-excitation of their orbits, also called
self-stirring, and gas drag. We neglect here collisional damping
because it is important only for very small objects, which we will
call pebbles in the next section, and in the absence of gas drag
(Goldreich et al., 2004; Levison and Morbidelli, 2007). The velocity
dispersion of the planetesimals is therefore comparable or smaller
(because of the drag) to the escape velocity from the surface of the
planetesimals carrying the bulk of the population mass (Greenberg
et al., 1978). In this situation, the accretion cross section r of an
individual planetesimal is:

r ¼ pR2 1þ V2
esc

V2
rel

 !
; ð1Þ

where R is the planetesimal radius, Vesc is the escape velocity from
the planetesimal surface, Vrel is the dispersion velocity in the plan-
etesimal disk and the term in parenthesis is called the ‘‘gravitational
focusing factor’’ (Greenberg et al., 1978; Greenzweig and Lissauer,
1990, 1992). Thus, the most massive planetesimals have a
comparative advantage. If their Vesc is significantly larger than Vrel,
their gravitational focusing factor can be approximated by
V2

esc=V2
rel / M2=3=V2

rel, where M is their mass. Because the accretion

rate is proportional to r and R / M1=3, from (1) the relative mass
accretion rate of the massive bodies is:

1
M

dM
dt
/ M1=3: ð2Þ

Eq. (2) means that the most massive bodies grow the fastest and
their mass ratio with the rest of the planetesimal population
increases exponentially with time. Hence the name ‘‘runaway
growth’’.
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The second phase is that of oligarchic growth (Kokubo and Ida,
1998). It occurs when the runaway bodies become massive enough
to stir-up the velocity dispersion of the planetesimals to a value
comparable to the escape speed of the runaway bodies. In this case
the gravitational focusing factor becomes of order unity and there-
fore Eq. (1) becomes:

1
M

dM
dt
/ M�1=3: ð3Þ

This equation means that the more massive a body is, the slower (in
relative terms) it grows. The difference in mass between bodies
becomes smaller and smaller as time passes. In principle, the
planetesimals could reduce the mass difference with the former
runaway bodies. But in general, when (3) holds, the relative
velocities are so large that collisions among the planetesimals
become disruptive. Thus, only the massive bodies keep growing,
forming a population of oligarchs that dominate the dynamical
evolution in the disk. Hence the name ‘‘oligarchic growth’’.
Numerical simulations (Kokubo and Ida, 2000) show that the
oligarchs accommodate their orbits (possibly by merging with each
other) so that their separation in semi major axis is 5–10 mutual
Hill radii. Oligarchic growth stops when an oligarch has accreted
most of the mass available in the annulus around its orbit that
extends up to half-way to the neighboring oligarch.

In order to compare the masses of protoplanets growing in
different parts of the protoplanetary disk, below we first compare
the initial runaway growth rates, then the final masses at the end
of the oligarchic growth phase.

2.1. Radial dependence of the runaway growth rate

Here we assume that, at the beginning of the growth phase,
both the planetesimals and the runaway bodies have the same
mass in all parts of the disk. This is in line with the classic assump-
tions that planetesimals are km-size everywhere in the disk and
the runaway bodies are initially barely bigger than the characteris-
tic planetesimal size (e.g. Kokubo and Ida, 1996; Greenberg et al.,
1984). Under this assumption, on which we will return at the
end of this section, the radial dependence of the growth rate of
the runaway bodies is set by the radial dependencies of the spatial
density of the planetesimal population and of the orbital properties
(i.e. velocity dispersion).

First, let us analyze how the spatial density of the planetesimal
population qp depends on r. For this purpose we start from the
radial profile of the gas density.

Whatever its initial distribution, the inner part of a protoplane-
tary disk of gas should rapidly evolve, under the action of viscosity,
towards a distribution such that the mass-flow towards the star is
independent of r (Lynden-Bell and Pringle, 1974). This is called an
‘‘accretion disk’’. In this situation, and assuming the usual
a-prescription for the viscosity (Shakura and Sunyaev, 1973), the
exponent a of the power-law describing the density profile of the

disk Rg / 1=ra is: a ¼ 2 d log Hg

d log r � 3=2 (Bitsch et al., 2014a). Here Hg

is the pressure scale height of the gas. Bitsch et al. (2014a, 2015)
showed that the outer part of the disk is usually flared under the

effect of stellar irradiation, so that d log Hg

d log r ¼ 9=7 and a ¼ 15=14.

However, the inner part of the disk, dominated by viscous heating,

is not flared. Thus d log Hg

d log r � 1 (apart from some oscillations due to

opacity transitions, which we neglect here). For an early disk, with
a mass flow to the star of 10�7M�=y (where M� is the mass of the
Sun), the transition between these two regimes occurs at � 6 AU.
Thus, for our purposes we consider that the disk is not flared, so
that a � 1=2. The volume density of the gas qg / Rg=Hg is therefore

proportional to 1=r3=2.
This disk’s density profile is much shallower than that in the
usual Minimum Mass Solar Nebula (MMSN) model
(Weidenschilling, 1977; Hayashi, 1981), in which Rg / 1=r3=2 and
qg / 1=r5=2. The fundamental assumptions of the MMSN model
(the planets formed in situ, exclusively from local material),
however, are not considered valid any more (e.g. Crida, 2009) given
what we now today know about planet migration; thus we think
that the shallow disk profile with a ¼ 1=2 has a stronger theoretical
motivation. It is also important to realize that if the disk’s density
profile is shallower, then the chances to form massive planets
further out increases (e.g. Lissauer, 1987). Thus, using a shallower
disk is more favorable for explaining the Solar System dichotomy.

At the beginning of the accretion phase, it is commonly
assumed that the surface density of solids Rp is proportional to that
of the gas: Rp ¼ mRg , where m is the metallicity factor. As we said
in the introduction m should increase by a factor of � 2 at the
snowline because of the presence of water ice (Lodders, 2003).
The volume density of planetesimals on the disk’s midplane, qp,
is proportional to Rp=r sinðiÞ, where i is the inclination dispersion
of the planetesimals. It is well-known that for a disk undergoing
self-stirring, i / e=2 (Stewart and Ida, 2000). Thus we have:

qp /
mqg

e
/ m

r3=2e
: ð4Þ

We now analyze the velocity dispersion of the planetesimal
disk, namely its eccentricity excitation.

As we said above, the eccentricity excitation is set by the equi-
librium between self-stirring of the planetesimal population and
gas drag. For a disk of equal mass particles, the growth rate of
the eccentricity dispersion is (Stewart and Ida, 2000; Morbidelli
et al., 2009 – supplementary material):

de2

dt
/

qpM

V3
K e

; ð5Þ

where M is the individual mass of the planetesimals and VK is the
Keplerian velocity.

For the gas drag, the evolution of the eccentricity excitation is
(Wetherill and Stewart, 1989; Morbidelli et al., 2009 – supplemen-
tary material):

�de2

dt
/

eqgV2
g R2

VK M
ð6Þ

where R is the radius of the planetesimals and Vg is the orbital
velocity of the gas which, for eccentric planetesimal orbits, can be
safely approximated by VK .

Thus, by equating (5) and (6) and using the relationship (4) and
keeping only the terms which have a radial dependence, we find
that the velocity dispersion is:

Vrel � eVK /
1

V1=3
K

/ r1=6; ð7Þ

so that e / r2=3.
We can now use these results in the accretion formula:

_M ¼ qprVrel; ð8Þ

with r given in (1). We find:

_M /
mqg

eVrel
/ mr�7=3: ð9Þ

This accretion rate is the same as that found in Eq. (2) of
Thommes et al. (2003), if one remembers that Rm=em in that paper
is the same as rqp here and one plugs in the radial dependences of
qp and e given above.

The conclusion is that accretion is much faster in the inner disk
than in the outer disk, even in a disk with the shallowest possible



Fig. 1. The mass distribution of embryos predicted by (10), for parameters such that
the embryo at 1 AU has a 0.1 M� . The snowline is set here at 3.5 AU.

1 Notice that this definition of the Bondi radius, given in Lambrechts and Johansen
(2012) is different from the classic definition of Bondi radius given in studies of bound
planetary atmospheres, namely the distance from the planet at which the escape
speed is equal to the sound speed.
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density radial profile like the one we considered. With the radial
dependence given in (9), even taking into account that m is twice
larger beyond the snowline, the accretion rate at 1 AU is 20 times
faster than at 5 AU! Because in runaway growth the relative accre-
tion rate _M=M / M1=3, absorbing this factor of 20 between the
accretion rates at the two locations would require that the run-
away body at 5 AU is initially 8000 times more massive than at
1 AU. We do not see any justification of why it should be so.

2.2. Radial dependence of the final mass of the oligarchs

The completion of oligarchic growth is quite an idealized
concept. Oligarchic growth is rather slow and therefore it takes
time to bring the process to completion, easily exceeding the
lifetime of the gas in the protoplanetary disk. The simulations of
Levison et al. (2012), the most realistic to date as they combine
embryos growth with planetesimal grinding and account for a full
size-distribution of objects, show that oligarchic growth
approaches completion only in the very inner part of the disk.
This result is in agreement with the strong radial dependence of
the runaway growth rate found in the previous section.

Nevertheless, it is instructive to compute which kind of radial
mass distribution of objects oligarchic growth would predict, if it
reached completion. By definition of ‘‘completion’’, the mass of
the body is of the order of that originally available in an annulus
around the orbit with a width equal to n times the Hill radius RH

of the body itself, with n � 10, independent of heliocentric distance
(Kokubo and Ida, 2000). Thus we can write

Moli ¼ 2prnRHRp: ð10Þ

With the shallow Rp / m=
ffiffiffi
r
p

defined above and remembering that

RH ¼ rðM=3M�Þ1=3, Eq. (10) gives Moli / mr9=4.
This is a strong growing function of r. If one accounts for an

increase of m by � 2 beyond the snowline, Moli predicts a ratio of
almost 100 between the oligarchic masses at 5 AU and 1 AU! Is this
the sign that oligarchic growth reached completion throughout the
Solar System?

We doubt that this is the answer for two reasons. First, look at
Fig. 1, which shows the mass distribution of the oligarchs predicted
by the formula above. Here, the snowline effect has been assumed
at 3.5 AU. The formula does not predict Mars-mass embryos
through the inner Solar System and massive cores beyond the
snowline. It predicts a mass distribution smoothly growing with
distance up to the snowline, with Earth mass bodies in the asteroid
belt. We do not see how this distribution of bodies could be recon-
ciled with the current structure of the Solar System, given current
models of terrestrial planet formation, planet migration, etc.
Second, Levison et al. (2010) showed that when bodies achieve a
few Earth masses in the outer part of the disk their growth slows
down enormously, because they start to scatter away the planetes-
imals from their feeding zone, rather than accreting them. Thus, all
masses predicted in Fig. 1 beyond 3 AU are most likely overesti-
mated and � 10 M� cores are unable to form.

In summary, we conclude that the classical scheme of
runaway/oligarchic growth of protoplanets from a disk of planetes-
imals cannot explain the great dichotomy of the Solar System and
hence its current structure. In the next section we turn to a new
paradigm for planetary growth, that of pebble accretion
(Lambrechts and Johansen, 2012).

3. Growth of embryos and cores by pebble accretion

In a series of recent papers (Lambrechts and Johansen, 2012,
2014; Ormel and Klahr, 2010; Johansen and Lacerda, 2010;
Murray-Clay et al., 2011; Morbidelli and Nesvorny, 2012; Kretke
and Levison, 2014b), a new model has been proposed in which
massive planetesimals accrete pebbles (particles cm to dm in size)
very efficiently, thanks to the combination of gravitational deflec-
tion and gas drag. If most of the solid mass of the disk is in pebbles,
the largest planetesimals can rapidly grow to several Earth masses.

The process of pebble accretion can be illustrated and quanti-
fied as follows. First, it is convenient to define the Bondi radius RB

as the distance at which a planetesimal of mass M, assumed to
be on a circular orbit, exerts a deflection of one radian on a particle
approaching with a speed Dv equal to the relative speed of the
gas.1 Because the gas is pressure supported, its orbital velocity is
sub-Keplerian, and therefore it approaches the planetesimal with a
speed Dv ¼ gVK with:

g ¼ �1
2

H
r

� �2 d log P
d log r

; ð11Þ

where P is the gas pressure. Denoting by G the gravitational con-
stant, one has:

RB ¼
GM

ðDvÞ2
: ð12Þ

Due to three-body effects, however, the deflection cannot be effec-

tive beyond the Hill radius RH � r½M=ð3M�Þ�1=3 of the planetesimal.
Thus, we define:

RGP ¼ minðRB;RHÞ;

as the distance from the planetesimal within which its gravitational
pull is effective. Because the Bondi radius is proportional to M while
the Hill radius is proportional to M1=3, for small bodies RGP ¼ RB,
while for more massive bodies RGP ¼ RH . For a typical value of g of
0.0027–0.0032, one has RB ¼ RH for M � 2—3� 10�3 M�. Here we
will consider for simplicity only bodies more massive than this
threshold, so we detail the process of pebble accretion only in the
case RGP ¼ RH .

Lambrechts and Johansen (2012) find analytically and numeri-
cally that for pebbles with Stokes number s (the product between
the friction time – the timescale on which a particle looses by fric-
tion its velocity relative to the gas – and the orbital frequency) the
effective radius for accretion onto the planetesimal is:

reff ¼ ðs=0:1Þ1=3RGP; ð13Þ
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which is valid for s 6 0:1. Notice also that the formula above has
been derived for accreting bodies on circular orbits, for which the
velocity difference with the pebbles is due to the Keplerian shear.
If the body is eccentric, its velocity relative to the circular orbit
has to be considered in the calculation of the relative velocity of
the pebbles and, when the relative velocity increases, the value of
reff drops. In Section 3.5.2 we will confirm that the eccentricity exci-
tation of accreting embryos can be neglected.

To compute the growth rate on a body, one needs to distinguish
between 2D and 3D accretion, depending on the pebbles scale
height Hpb relative to reff . Below we review the basic formulæ for
2D and 3D accretion, then decide what is the threshold for Hpb to
pass from one regime to the other one.

2D accretion
Let us consider that Hpb is small relative to reff . The accretion

rate of the body is then:

_M2D ¼ 2reff v relRpb

where Rpb is the surface density of the disk of pebbles and v rel is the
relative velocity between the pebble and the body, namely

v rel ¼maxðDv ;v shearÞ ð14Þ

and vshear ¼ reff X; X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�=r3

p
. Because pebbles undergo inward

radial drift due to gas drag, there is a continuous mass flux _MF of
pebbles through any orbital radius. Thus, the steady-state surface
density of pebbles is related to this mass radial flux via the
relationship:

Rpb ¼ _MF=ð2prv rÞ

where v r is the radial drift velocity of pebbles, which can be approx-
imated for small s as v r ¼ 2sDv .

Thus we have:

_M2D ¼
2reff v rel

_MF

4prsDv : ð15Þ

3D accretion
In this case we have:

_M3D ¼ pr2
eff v relqpb; ð16Þ

where qpb is the volume density of pebbles on the midplane, which
is related to the surface density Rpb by the relationship:

qpb ¼ Rpb=ð
ffiffiffiffiffiffiffi
2p
p

HpbÞ:

Regrouping terms we find:

_M3D ¼ _M2D
preff

2
ffiffiffiffiffiffiffi
2p
p

Hpb

 !
: ð17Þ

Transition from the 2D to the 3D regime
From the last formula, it is obvious that the transition occurs

when:

preff

2
ffiffiffiffiffiffiffi
2p
p

Hpb

< 1:

This sets a condition on Hpb. The latter is related to the disk scale
height Hg by the relationship:

Hpb ¼ Hg

ffiffiffiffiffiffiffiffi
a=s

p
; ð18Þ

(Youdin and Lithwick, 2007), where a is the turbulence parameter
of the disk of gas in the Shakura and Sunyaev (1973) prescription.
Thus, 2D accretion will occur only for large planets (i.e. large
reff ) in disks with thin particle layers (i.e. small Hpb). This is the case
if turbulence is weak (i.e. small a) and particles large (i.e. large s).
For small planets and thick particle disks, accretion is 3D.

Dependence of the accretion rate on s
We now develop the dependence on the particles’ Stokes num-

ber s of the accretion rates reported in Eqs. (15) and (17). For this
purpose, we consider first the most likely case where v rel ¼ v shear

(see Eq. (14)). For the case of 2D accretion, because reff / s1=3

(Eq. (13)) and vshear / reff (Eq. (14)), formula (15) gives:

_M2D / s�1=3 _MF : ð19Þ

For the case of 3D accretion, because Hpb / s�1=2 (Eq. (18)), formula
(17) gives:

_M3D / s1=2 _MF : ð20Þ

If instead v rel ¼ Dv (this happens only when reff is very small), it is

easy to see that the expressions for _M2D and _M3D become propor-
tional to s�2=3 and s1=6, respectively.

Thus, it is important to realize that in 3D accretion, the smaller
is the value of s (i.e. smaller particles or higher gas density) the less
efficient is the accretion. In 2D accretion, it is the opposite.

With these formulæ in hand, we can now design a scenario
which may explain the great Solar System dichotomy and test it
with simulations.

3.1. Model scenario and simulations

Planetary embryos and cores grow from the pebbles that flow
through their orbits. The basic assumption of the model we pro-
pose is that the pebble flux is quite different within and beyond
the snowline (respectively for r < rice and r > rice where rice is the
location of the snowline). Beyond the snowline there is a flow of
icy pebbles. Lambrechts and Johansen (2014) have developed a
pebble coagulation and drift model based on the work of
Birnstiel et al. (2012). They found that, at t ¼ 105—106 y of the
disk’s evolution, icy pebbles at � 4 AU are a few cm in radius with
s � 10�1:5. They carry a mass flux of _MF � 10�4ME=y. Here we will
assume that the snowline is at 3.5 AU, consistent with the Grand
Tack model of evolution of the giant planets and formation of the
terrestrial planets (Walsh et al., 2011; Jacobson and Morbidelli,
2014), but the exact location of this line does not have practical
importance in what follows.

When the pebbles come to the snowline, it is unlikely that they
stop drifting towards the Sun. The drift of particles can stop only in
presence of a pressure trap, where the radial pressure gradient of
the gas is positive, so that the gas is locally super-Keplerian. It
has been proposed (Kretke and Lin, 2007) that the snowline can
create a pressure bump because the condensation of icy grain
could strongly reduce the viscosity of the gas, thus increasing the
gas surface density at the snowline location. However, improved
3D simulations of the disk structure in presence of viscosity tran-
sitions (Bitsch et al., 2014b) show that this is true only in presence

of extreme viscosity transitions, with d logðmÞ
d logðrÞ < �28 where m is the

viscosity. It is very unlikely that the condensation of icy grains
can have such a dramatic effect on the viscosity.

Thus, we assume that the icy pebbles drift past the snowline.
When they penetrate into the warm part of the disk, the ice subli-
mates away. This decreases the muss flux by a factor of � 2
(Lodders, 2003). Moreover, we assume that the icy pebbles are a
mixture of ice and numerous silicate grains, hold together by the
ice; thus, by sublimation, the icy pebbles release silicate grains
which are much smaller than the original icy pebbles; these grains



Fig. 2. Mass growth due to a flux of pebbles of two embryos located on opposite
sides of the snowline, here assumed to be at 3.5 AU. The parameter g is assumed to
be 0:0027. The red curve is for an embryo beyond the snowline, with a flux of
2� 10�4ME=y in icy pebbles with s ¼ 10�1:5. The green curve is for the inner
embryo, for which the mass flux is reduced to 1=2ð1� FÞ relative to the outer
embryo, and the pebbles’ Stokes number is s ¼ 10�2:5. Here F is the fraction of the
pebble flux which is intercepted by the outer embryo. When the outer embryo
reaches 20 M� the flux of pebbles towards the inner embryo stops (Lambrechts
et al., 2014). Thus, the inner embryo stops growing, and the simulation is stopped at
this point. According to Lambrechts et al. (2014), the outer embryo then starts
accreting gas efficiently, to become eventually a giant planet. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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have a significantly smaller Stokes number and are much more
coupled to the gas.

It is unclear a priori what the typical size of the silicate grains
could be. However, observations can give us some hints.
Ordinary chondrites are made mostly of chondrules, which are
mm-sized particles (Friedrich et al., 2014). We do not know
whether the sublimation of the icy pebbles released chondrules,
or just the precursor grains of chondrules, but in terms of size
the two are probably very similar. Moreover, coagulation experi-
ments show the effectiveness of a mm-bouncing barrier for silicate
particles (Güttler et al., 2009), so it is likely that silicate particles
could grow to mm-size relatively easily but not beyond (unlike
icy particles which can easily grow to larger sizes; Wada et al.,
2009; Ros and Johansen, 2013). For all these reasons, we assume
that the silicate particles released by the sublimation of the icy
pebbles are millimeter in size. These particles would have a
Stokes number s � 10�2:5 at 3.5 AU. For simplicity we assume a
unique size (i.e. value of s) for the icy pebbles and the silicate
grains, rather than a distribution peaked around the considered
values.

We consider the mass growths of two embryos on either side of
the snowline, at 3.5 AU.2 Both bodies have initially the same mass,
which we set to half lunar masses (0.005 M�),or about to 2.5 Pluto
masses. This choice of the initial mass is rather arbitrary, but moti-
vated by a few considerations: (a) we wish the masses of the two
bodies to be the same, so that the observed differences in the growth
rate are due solely to the snowline effects and not to a difference in
the initial masses; (b) we wish a mass significantly smaller than the
target masses for the embryo and the core of the giant planet (0.1
and � 10 M�, respectively); and (c) but at the same time we wish
the bodies to be massive enough to be from the beginning in the
Hill regime, to avoid the complication of the transition from the
Bondi regime (for the typical value of g ¼ 0:0027 that we assume
here, the transition between the two regimes occurs at
M ¼ 0:0037 M�). An additional motivation will be given in
Section 3.4. Modeling the formation of these bodies is beyond the
scope of this paper. However, a recent work (Johansen et al., 2015)
showed that they can be produced by a combination of streaming
instability and pebble accretion. Our paper focuses on how subse-
quent pebble accretion, with different mass fluxes and pebble sizes,
can lead to the great Solar System dichotomy between giant planet
cores and terrestrial planet embryos.

Because the dependence of the accretion rate on s is different in
the 2D and 3D accretion regimes, we consider separately two
cases: first that of a turbulent disk, for which the particle layer is
thick and most of the accretion occurs in 3D and then that of a
low-turbulent disk, for which the particle layer is thin and accre-
tion is 2D from the beginning.
3.2. Turbulent disk

Embryos with M ¼ 0:005 M� at 3.5 AU have a Hill radius
RH ¼ 0:006 AU. We assume an aspect ratio for the disk of gas of
0.05 and a turbulence parameter a ¼ 10�3. Thus, the scale-height
of the disk of icy pebbles is 0.03 AU (see Eq. (18)) and that of the
silicate grains is � 3 times larger. So, both embryos start growing
in the 3D regime.

The accretion history of the two embryos is shown in Fig. 2. The
accretion of the inner embryo is penalized relative to that of the
outer body for three reasons. First, the inner body sees roughly
mm-sized particles, which correspond to a value of s 10 times
2 Obviously it makes no sense that both bodies are at 3.5 AU. We do this
assumption to suppress all dependencies on heliocentric distance and highlight only
the consequences of the snowline effects on pebble size and mass flux.
smaller than of the pebbles beyond the snowline. Remember that
in 3D accretion _M3D / sb, with b ¼ 1=6 or 1=2 depending on the
scaling of v rel; so a smaller s implies a smaller accretion rate.
Second, the total mass flux of particles is assumed to be two times
smaller due to ice sublimation. Third, the flux of pebbles inside the
orbit of the outer embryo is ð1� FÞ times that going towards the
orbit of the outer embryo, where F is the filtering factor
(Morbidelli and Nesvorny, 2012), namely the fraction of the pebble
flux intercepted by the outer embryo, which is computed numeri-
cally from the embryo’s accretion rate.

Thus, it is no surprise to see in Fig. 2 that the outer embryo
grows much faster than the inner one. The ratio between the initial
growth rates is � 3. During their accretion histories, the outer
embryo passes into the 2D accretion regime at 1.5 My. The inner
one remains in the 3D regime all the time. The simulation is
stopped when the outer embryo reaches 20 M�. This is because
embryos this massive can open a partial gap in the gas distribution,
enough to reverse the pressure gradient at its outer border. This
reversal in the pressure gradient makes the disk locally
super-Keplerian and the inward radial drift of pebbles stops there
(Lambrechts et al., 2014). Consequently, the inward embryo has to
stop accreting, because the pebble flux is interrupted. Here, the
outer embryo reaches 20 M� at t ¼ 1:75 My, but this time can be
changed by changing the pebble mass flux (here assumed to be
constant over time for simplicity and equal to 2� 10�4ME=y). The
time scales linearly with the inverse of the assumed mass flux.
Thus, what is important is not the time at which the outer embryo
reaches 20 M� but the mass that the inner embryo has when this
happens. As one can see, the final mass of the inner embryo (green)
is of the order of a Mars mass. Thus, we have reproduced the great
dichotomy of the Solar System.

We have tested different simulation set-ups in order to under-
stand the role played by each of our assumptions. Without reduc-
ing the value of s by an order of magnitude for the pebbles inside of
the snowline, the inner embryo would have grown 3.5 times more
massive. Without reducing the overall pebble mass flux by a factor
of 2 at the snowline, the inner embryo would have grown five
times more massive (the final mass does not scale linearly with
the mass flux because a more massive object accretes more



Fig. 3. The same as Fig. 2 but for a much thinner particle disk. Here the height of the
layer of icy particles at 3.5 AU is 0.001 AU, and that of silicate particles is � 3 times
as much. This corresponds to a very low turbulence in the disk, with a ¼ 10�6. The
result fails to explain the great dichotomy of the Solar System.
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efficiently). Without both these reductions (the only difference
between the inner and outer embryos now being just the filtering
factor 1� F), the inner embryo would have grown 100 times more
massive (i.e. would have reached 10 M�). Restoring the nominal
set-up concerning the pebble flux, but reducing the initial masses
of the embryos by one order of magnitude,3 we find that the outer
embryo would have reached 20 M� in 2.35 My, but the inner embryo
would have grown only to 1:5� 10�2 M�. If the initial mass of the
embryos is this small, bringing the inner embryo to Mars-mass
requires no reduction in s inside of the snowline.

3.3. Quiescent disk

Let us now consider a disk with a very low turbulence, with
a ¼ 10�6. In this case, the height of the icy particle layer at
3.5 AU is 0.001 AU (see Eq. (18)) and that of the silicate grains is
� 3 times larger. In this case accretion is 2D for both the embryos
from the beginning of the simulation. In this case, the inner
embryo has a comparative advantage relative to the outer one,
because _M2D / sb with b ¼ �1=3 or �2=3 depending on the scaling
of v rel; thus smaller particles result in faster accretion. There is nev-
ertheless a factor of 2 reduction in the total mass flow of solids, due
to ice sublimation. The filtering factor ð1� FÞ is negligible at the
beginning of the simulation.

Fig. 3 shows the result in this case. The inner embryo starts to
accrete slightly faster than the outer one. It is only later, when
the outer embryo exceeds the mass of Mars, that the factor
ð1� FÞ starts to become non-negligible; this reduces the growth
rate of the inner embryo and the mass ratio between the outer
and the inner embryos starts to increase. At the end of the simula-
tion, when the outer embryo reaches 20 M�, both embryos are of
comparable mass. Clearly, this case does not reproduce the great
dichotomy of the Solar System.

Therefore, our explanation is valid only if the proto-solar disk
was not so quiet. A value of a ¼ 10�6 is very small, even for a
so-called dead zone where the Magneto-Rotational Instability is
not active (Stone et al., 2000). In fact, some turbulence can be sus-
tained in the dead zone due to a number of effects, e.g. diffusion of
the magnetic accretion stress (Turner et al., 2007), baroclynic insta-
bility (Klahr and Bodenheimer, 2003), vertical shear instability
(Nelson et al., 2013). In particular, Stoll and Kley (2014) estimated
that the vertical shear instability can sustain turbulence with a
strength equivalent to a parameter a of about few times 10�4.

Setting a ¼ 10�4, we find that the inner embryo grows only to
twice the mass of Mars, with an accretion history starting (and
remaining) in the 3D regime. For a smaller than this threshold, a
significant part of the accretion history of the inner embryo
becomes 2D and a clear difference in mass relative to the embryo
beyond the snowline disappears, as in Fig. 3. Thus, in the rest of
this paper we will assume a ¼ 10�3, with the understanding that
the results are quite similar for aJ 10�4.

3.4. Multiple embryos in the inner Solar System

The successful simulations of terrestrial planet accretion (e.g.
O’Brien et al., 2006; Walsh et al., 2011; Jacobson and Morbidelli,
2014) require that all embryos in the inner Solar System had a
mass of the order of the mass of Mars, not just the one that was
the closest to the snowline. Thus, in this section we examine the
radial dependence of the mass growth of a chain of embryos
located from 0.7 AU up to the snowline location at 3.5 AU.
3 Notice that these bodies initially would accrete in the Bondi regime, i.e. RGP ¼ RB .
Here, we still apply formula (13) even if accurate only for the Hill regime.
Here, there are again a number of assumptions to make. We
assume that initially there are 40 embryo ‘‘seeds’’ with a mass of
0.005 M�, equally spaced between the two distance limits
reported above. We chose the number 40 because this is approxi-
mately the number of embryos used in simulations of terrestrial
planet formation (e.g. Jacobson and Morbidelli, 2014). We chose
the mass of 0.005 M� because it is generally accepted that the
inner Solar System contained about 1000 Ceres size bodies
(Wetherill, 1992) with a mass � 2� 10�4 M� so that, assuming a
cumulative size distribution Nð> DÞ / 1=D3 like that of the largest
main belt asteroids, we expect 40 bodies with masses P 0:005 M�.
Obviously we do not expect that all embryo seeds had exactly the
same mass, but in this experiment it is important that all masses
are equal at the beginning of the simulation so that the observed
differences in growth rates are due solely to pebble accretion
effects and not to initial mass differences. Moreover, as the silicate
grains drift towards the Sun we assume that they do not evolve in
size by coagulation or fragmentation. This is because there is no
clear evidence for the dependence of the chondrule’s size with
the heliocentric distance of the chondritic parent bodies
(Friedrich et al., 2014). However, because the density of gas
changes, the Stokes number decreases as the particles decrease
their heliocentric distance. Given the shallow radial density profile
of the gas defined in Section 2 we assume that the Stokes number
of a particle is s /
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In a first step, in order to understand the role of each parameter,

we assume that g in (11) is independent of radius (g ¼ 0:0027 as in
the previous simulations). From formula (11), one can see that the
parameter g would indeed be constant if a disk had Hg / r and P
were a power-law function of r. The results are shown in Fig. 4,
which reports in red the growth of the giant planet core beyond
the snowline (same as in the previous figures), in green the growth
of the outermost embryo at 3.5 AU (same as in Fig. 2), in blue the
embryo in the middle of the chain (at 2.1 AU) and in magenta
the innermost embryo (at 0.7 AU). As one can see, the growth rate
decreases slightly approaching the Sun. This is due to the decrease
in s, but also because each embryo receives a flux of pebbles
reduced by the other embryos located upstream relative to its posi-
tion. In other words, counting the embryos from the innermost
one, the pebble flux across the orbit of embryo #i is

Fi ¼
Qj¼40

j¼iþ1ð1� FjÞ, where Fj is the filtering factor of embryo #j.
However, in a realistic disk, g is not fully independent of r,

because the aspect ratio of the disk of gas Hg=r has oscillations as
a consequence of the opacity changing with temperature (Bitsch
et al., 2014a, 2015). The same is true for the radial dependence



Fig. 4. Top: the same as Fig. 2 but now showing the evolution of 3 embryos in a
chain of 40. The red curve is for the giant planet core and the green curve is for the
embryo #40 (the outermost one at 3.5 AU), both already shown in Fig. 2. The blue
curve is for the embryo #20 at 2.1 AU, and the magenta curve is for the embryo #1
at 0.7 AU. Bottom: the final mass distribution of the embryos as a function of
heliocentric distance. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Top: the dots show the radial dependence of g according to Bitsch et al.
(2015) for a disk with _M ¼ 3:5� 10�8M�=y. The colored solid lines represent
analytic fits valid over specific intervals of heliocentric distance. Fit 1:
g ¼ 0:002487; Fit 2: g ¼ 0:002487

ffiffiffiffiffiffiffiffiffiffiffiffi
r=1:7

p
; Fit 3: g ¼ 0:00328=ðr=3:25Þ. Bottom:

the same but for the radial dependence of s. Here we assume a jump in pebble size
by a factor of 10 at 3.5 AU, as illustrated by the black curve connecting the dots.
Here the fits for r < 3:5 AU are: Fit 1: s ¼ 0:00133
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; Fit 2: s ¼ 0:00093 r. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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of s. Fig. 5 shows theses dependence for the disk studied in Bitsch
et al. (2015) corresponding to an accretion rate on the star of
3:5� 10�8M�=y. We chose this disk among those studied in that
work because it has the snowline at 3.5 AU, as we assumed above.
The figure also reports various analytic fits, valid in specific ranges
of heliocentric distances, that we will use below.

For g we assume Fit 1 for r < 1:7 AU, Fit 2 for 1:7 < r < 3:2 AU
and Fit 3 for 3:2 < r < 4 AU. For s we assume Fit 1 for r < 2 AU
and Fit 2 for 2 < r < 3:5 AU. The value of s for the core placed just
beyond the snowline remains equal to 10�1:5. With this set-up, the
results are shown in Fig. 6. The results are quite similar to those
shown in Fig. 4. The mass distribution of the embryos has a clear
kink at 3.15 AU, where the g function has a local maximum. In fact,
between 3.15 and 3.5 AU, g sharply decays with increasing helio-
centric distance r. Pebble accretion is strongly favored if g is small.
Thus, the mass distribution of embryos increases sharply with r.
Instead, for r < 3:15 AU, g increases with increasing r. In principle,
this would give a mass distribution of embryos decreasing with
increasing r. But remember that, as the outer embryos start to
grow, their filtering factors Fj grow as well and the inner embryos
receive a progressively reduced flux of pebbles. Thus, the final
mass distribution is still a moderately growing function of r, but
not as steep as beyond 3.15 AU.

3.5. Caveats and issues

We discuss here some aspects of the problem which have been
neglected so far: disk evolution, the effect of self-excitation of the
orbits of the embryos, the effect of radial migration and the mass
distribution of the giant planet cores.
3.5.1. Disk evolution
Over time the disk evolves and loses mass. The stellar accretion

rate decreases (Hartmann et al., 1998). Consequently, viscous heat-
ing drops and the transition between the inner region of the disk
with roughly constant aspect ratio and the outer flared region
dominated by stellar irradiation moves towards the star (Bitsch
et al., 2015). This effect changes the dependence of g as a function
of radius. The snowline location also moves towards the star.
Moreover, with decreasing gas density, s increases for a given
pebble size but on the other hand only smaller pebbles may
survive in the disk (Lambrechts and Johansen, 2014).

In this paper we have neglected all of this. The goal here was to
give a proof of principle that pebble accretion can explain the
dichotomy in the mass distribution of embryos and cores within
and beyond the snowline and for this reason we preferred to
remain simple, working in the framework of a snapshot of the
disk’s structure, taken more or less in the middle of its evolution.
A more quantitative modeling of planet accretion accounting for
disk’s evolution remains to be done and is left for a future work.

3.5.2. Embryos’ self-excitation
Kretke and Levison (2014b) pointed out that if the embryos

acquire orbits with significant eccentricities or inclinations they
stop accreting pebbles. In fact, the relative velocities between the
embryos and the pebbles become large, which drastically
decreases the Bondi radius (12). They proposed that this process



Fig. 6. The same as Fig. 4 but now assuming gðrÞ and sðrÞ as given by the fits shown
in Fig. 5.
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is the key to explain why only a handful of giant planets cores
formed. In their simulations a system of multiple proto-cores,
while growing, starts to self-excite their orbital distribution.
Because of dynamical friction, the most massive proto-cores
remain on the most circular and co-planar orbits, while the less
massive ones acquire larger eccentricities and inclinations. This
shuts down the accretion of the latter, allowing only a few cores
to grow to large masses.

Given the population of multiple embryos that we consider here
in the inner Solar System, it is necessary to verify whether their
mutual self-excitation of the orbits could change drastically their
accretion history. The simulations presented above are not dynam-
ical simulations. They just implement the analytic formulæ
described in Section 3. Thus, we address the issue of orbital
self-excitation with a separate N-body simulation.

We assume a system of 40 Mars-mass embryos, from 0.7 to
3.5 AU, thus separated by 6.75 mutual Hill radii (the mutual Hill

radius being defined as ðaþ a0Þ=2½ðM þM0Þ=ð3M�Þ�
1=3 where a;M,

and a0;M0 are the semi major axes and masses of two adjacent
embryos). Their initial orbits are circular, inclined by 10�4 radians
and with random orientations (to avoid that the problem is planar).
We do not include Jupiter in this simulation because at the stage
we are interested in Jupiter was just a core of less than 20 Earth
masses.

We simulate the evolution of this system of embryos for 2 My
with a version of the Symba integrator (Duncan et al., 1998)
modified to account for the tidal damping of eccentricities and
inclinations exerted by the embryos’ gravitational interaction with
the disk of gas. For massive bodies like the embryos, this is the
most important damping effect, whereas gas drag is negligible
(the opposite is true for planetesimals). The tidal damping formulæ
are those issued in Cresswell et al. (2007) and Cresswell and Nelson
(2008) from hydrodynamical simulations. For this simulation, we
assume that disk of gas has a density of 2400 g/cm3 at 1 AU, corre-
sponding to the MMSN, but with a radial profile of 1=
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expected
for an accretion disk (see Section 2.1). We neglect the disk torque
inducing radial migration (migration being discussed in
Section 3.5.3), although there is some radial migration associated
with the eccentricity damping (for instance the innermost embryo
is at the end of the simulation at 0.69 AU and the outermost one at
3.36 AU).

The system of embryos remains on stable orbits. No merger
events have been recorded. At the end of the simulation the
embryo with the largest eccentricity has e ¼ 0:0018. The median
value of the eccentricities of the embryos is 0.0006. All inclinations
are below 10�4 degrees. Thus, the orbital excitation in terms of
deviation from the Keplerian velocity (eVK ) is smaller (in most
cases much smaller) than the differential velocity of the gas rela-
tive to the embryos (gVK ), with g given in Fig. 5a. Keep in mind that
this simulation likely overestimates the real orbital excitation of
the embryos. In fact, during most of their growth, the embryos
are less massive than one Mars-mass and, even at the end of the
simulation illustrated in Fig. 6, not all embryos have reached this
value. Thus we conclude that self-excitation of the embryo’s orbits
is not an important issue affecting their growth. Self-excitation
would have become important if the embryos had grown well
beyond the mass of Mars, as it is the case beyond the snowline.
Thus our results do not contradict those of Kretke and Levison
(2014b). It is because growth by pebble accretion is strongly
reduced within the snowline that the inner Solar System ended
up with numerous small-mass embryos, while the outer Solar
System, where pebble-accretion is more vigorous, produced large
cores but only in small number.
3.5.3. Migration
In all the calculations presented in this paper, as well as in the

N-body simulation, we have neglected planet migration. Planet
migration is due to the tidal interaction with the disk of gas. In first
approximation, the migration speed is proportional to the planet’s
mass (Tanaka et al., 2002). For the gas disk considered to build
Fig. 5, a Mars-mass object would migrate from 1.8 AU down to
1.3 AU in � 3 Myr. A migration range of 0.5 AU looks large com-
pared to the typical embryo-embryo distance of � 0:1 AU.
However, remember that: (i) all embryos would migrate at a com-
parable rate, so their mutual distances would change much more
slowly and (ii) embryos are much smaller than Mars-mass for most
of the lifetime of the disk, thus they would migrate much less then
reported above. In conclusion, we think we can safely neglect their
migration during the growth process at the stage of a proof of con-
cept paper as this one.

The situation for the giant planet core is different. According to
the classical Type-I migration model (Goldreich and Tremaine,
1980; Tanaka et al., 2002) the core should migrate into the inner
Solar System very quickly. But a new result by Benitez-Llambay
et al. (2015) shows that a fast-accreting body receives a positive
torque from the disk, due to the fact that it is very hot and it heats
the surrounding gas in an asymmetric way (given that the disk is
sub-Keplerian). Thus it is possible that the core refrains from
migrating inwards. Once the core becomes more massive than a
few Earth masses, this ‘‘accretional torque’’ should lose relative
importance. But at this stage, the thermal structure of the disk
becomes relevant, as it can excite an entropy-driven corotation tor-
que on the core (Paardekooper and Mellema, 2006; Paardekooper
et al., 2010, 2011; Masset and Casoli, 2009, 2010). Bitsch et al.
(2014a, 2015) showed that the core should position itself a few
AUs beyond the snowline (approximately where g reaches the
minimum value; see Fig. 5a), at a location where all the different
torques that it suffers from the disk cancel each other out.
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As the disk evolves and cools, the mass range of cores for which
the torques cancel out shrinks (Bitsch et al., 2015) so that, eventu-
ally, a core is released to Type-I migration. Thus, the assumption
that the core grows to 20 M� without migrating is, by no doubt,
simplistic. We have done it because migration is complicated
(and not fully understood, hence the appearance of new effects as
the ‘‘accretional torque’’) and we wanted to keep the model simple,
as a proof of concept. The issue of core migration will be the object
of a future work. Nevertheless, we cannot resist to make a few spec-
ulations about the effect of migration at the very end of this paper.

3.5.4. Cores mass distribution
In the present paper we have considered only one core beyond

the snowline. But at least 4 cores formed in the outer Solar System.
For the goal of investigating the mass contrast between the
embryos within the snowline and the first core outside of the
snowline it was enough to fix the mass flow of pebbles across
the orbit of the considered core, regardless of how that flow had
been reduced by the presence of additional cores further out. We
stress that the mass flow is related to the time at which a certain
mass is achieved by a given body. Thus, reducing the mass flow
over time (for instance because the cores outside of Jupiter inter-
cept an increasing fraction of the overall flow) is just equivalent
to stretching the x-axis of Figs. 4 and 6 in a non linear way. The
masses of the inner Solar System embryos as a function of the mass
of the core of Jupiter would not change.

However, one might wonder what would be the relative mass
growth among the cores beyond the snowline. As we have seen,
in the inner Solar System the accretion rate of embryos grows with
heliocentric distance. But the architecture of the Solar System, with
Jupiter having accreted a more massive atmosphere than Saturn
and Saturn having accreted more gas than Uranus and Neptune,
suggests that the core of Jupiter grew the fastest, then Saturn’s,
then those of the ice-giant planets. The growth of these cores has
been already modeled in Lambrechts and Johansen (2014). They
found indeed that the innermost core grows the fastest. The reason
for this is twofold. The most important factor is that beyond the
snowline the disk is flared, so that g grows rapidly with distance
(see Fig. 5a). The second factor is that icy pebbles grow as they
drift, so that their value of s increases with decreasing distance
(see Lambrechts and Johansen, 2014, Fig. 2) which, in a moderately
turbulent disk in which most of the accretion proceeds in a 3D
mode, leads to more efficient accretion. Instead, within the snow-
line g is almost constant and s decreases with decreasing r. Our
calculations, assuming the g-function illustrated in Fig. 5a and
the s-function of Lambrechts and Johansen (2014) indeed confirm
that, beyond 5 AU cores formed by pebble accretion have a growth
rate decreasing with increasing heliocentric distance.

4. Conclusions

In this paper we have investigated which mode of planet
growth can best explain the great dichotomy of the Solar System.
This dichotomy stems from the realization that, in order to form
the giant planets, solid cores of approximately 10–20 Earth masses
had to form in the outer Solar System within the lifetime of the
gaseous protoplanetary disk, whereas in the inner Solar System
planetary embryos had a mass only of the order of that of Mars
(as deduced from the short timescale of Mars accretion and from
the mass of the embryo that was involved in the Moon-forming
collision with our planet). How to get a ratio of � 100 between
the masses of the protoplanets in the outer and the inner Solar
System respectively is not obvious.

We have first considered the classic mode of protoplanet
growth, that is ordered accretion of planetesimals aided by the
so-called gravitational focusing factor. This leads to the process
of runaway growth (Greenberg et al., 1978), followed by that of oli-
garchic growth (Kokubo and Ida, 1998). We have shown in
Section 2 that the runaway growth process is much faster in the
inner disk than in the outer disk, in sharp contrast with the great
dichotomy. Only if the process of oligarchic growth is brought to
completion, with each embryo accreting basically all the solid
material in its annulus of influence, one can expect more massive
bodies further out. This is unlikely to happen, particularly in the
giant planet region (Levison et al., 2010, 2012). Nevertheless we
find that, if oligarchic growth had reached completion everywhere,
the mass of the embryos would have increased progressively with
heliocentric distance. Thus, in order to have a body approaching
10 M� beyond the snowline, Earth-mass embryos should have
formed in the asteroid belt. Consequently, the resulting mass dis-
tribution in the Solar System would not have looked like anything
that has been considered so far in successful models of giant planet
or terrestrial planet formation.

A second process for the formation of giant planet cores and
planetary embryos is pebble-accretion (Lambrechts and Johansen,
2012). In that process, the most massive planetesimals accrete
small objects (pebble-sized) as the latter drift through their orbits.
Accretion of pebbles is very effective due to a combination of grav-
itational deflection and gas-drag. We have shown that the process
of pebble-accretion can explain the great dichotomy, provided that
a number of assumptions hold true. We have assumed that icy
pebbles are a few cm in size, according to the pebble-growth model
of Lambrechts and Johansen (2014). When icy pebbles drift
through the snowline the ice sublimates and we have assumed that
this causes a drop of a factor of 2 in the total mass flux and the
release of a large number of silicate grains whose sizes are approx-
imately 1 mm (i.e. about chondrule-size). With these assumptions
we have been able to show that, starting from bodies of equal
masses everywhere in the protoplanetary disk (specifically, we
have assumed a mass of 0.5 Lunar-masses), the embryos within
the snowline grow to approximately Mars-mass in the time when
the first core beyond the snowline grows to 20 M�. The major
condition for this to happen is that there is enough turbulence in
the disk so that the thickness of the layer of silicate grains is larger
than the effective accretion radius for Mars-mass bodies. This
happens if the parameter a characterizing the turbulence strength
in the Shakura and Sunyaev (1973) prescription is J 10�4.
According to Stoll and Kley (2014) this condition is fulfilled due
to the vertical shear disk instability.

If this condition holds, the final mass distribution of the
planetary embryos within the snowline moderately grows with
heliocentric distance. Interestingly, this is the kind of distribution
that reproduces best the final mass distribution of the terrestrial
planets, including a small Mercury (Jacobson and Morbidelli, 2014).

We kept the model simple on purpose, as a proof of concept. In
particular, we have assumed that all the seeds of the future
embryos and cores had initially the same masses; we have
neglected the disk’s evolution; we have considered only one size
for the pebbles in each region of the disk. Obviously, the results
could easily change at a quantitative level by changing the
assumptions. Thus, at this stage, in absence of more precise infor-
mation on the original distribution of the largest planetesimals
throughout the disk and the sizes of pebbles and grains, we cannot
be firmly predictive of what kind of protoplanets formed through
the Solar System within the lifetime of the disk of gas.
Nevertheless, we find interesting and intriguing that the
pebble-accretion process, with a set of reasonable values for the
parameters of the problem, allowed us to reproduce the great
dichotomy of the Solar System, with Mars-mass embryos through-
out the inner Solar System and giant planet cores of 10–20 M�
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beyond the snowline. Given that the classical process of
planetesimal-accretion did not allow us to come even close to
the desired result, we conclude that the pebble-accretion process
is more likely to explain correctly the formation of protoplanets
throughout the Solar System.

The processes of pebble growth and drift through a disk, as well
as the pebble sublimation and splitting when passing through the
snowline, should be universal. Thus we expect that any protoplan-
etary disk developed a sort of dichotomy between the masses of
the protoplanets formed within and beyond the snowline, like
the one we see (or, better, deduce) in our Solar System.4 If this is
true, the great diversity observed among planetary systems would
have to stem from the subsequent evolutions of these protoplanets.
We believe that this is likely. For instance, if the cores beyond the
snowline do not become giant planets, they would eventually
migrate towards the star as the disk loses mass (Bitsch et al.,
2015). In this migration process the cores would scramble, disperse
and deplete the system of planetary embryos, preventing the accre-
tion of real terrestrial planets (Izidoro et al., 2014); on the other hand
the cores, moving into the inner system, would qualify for
‘‘super-Earths’’ or ‘‘hot-Neptunes’’ (probably low-density ones given
their icy nature and their potential hability to accrete some primitive
atmosphere), which are the most abundant planets observed around
stars (Mayor et al., 2011). If instead the cores become giant planets,
their migration history becomes sensitive to their mutual interac-
tions (Masset and Snellgrove, 2001). If only one core becomes giant
planet then it should migrate inwards and this should strongly affect
the evolution of the inner system of planetary embryos (Fogg and
Nelson, 2005; Raymond et al., 2006b). The key aspect of the Solar
System evolution was that Jupiter avoided to migrate inwards of a
few AU, probably due to the presence of Saturn (Masset and
Snellgrove, 2001; Morbidelli and Crida, 2007; Walsh et al., 2011).
Thus, Jupiter and Saturn blocked the way to Uranus and Neptune,
preventing these cores to migrate into the inner Solar System as
the disk cooled (Izidoro et al., 2015). This way, the giant planets
remained in the outer Solar System, while the embryos survived in
the inner Solar System, eventually leading to the formation of a
few terrestrial planets. This specific evolution preserved the vestige
of the original dichotomy of protoplanetary masses, set in the pri-
mary pebble-accretion process.
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