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ABSTRACT

We evaluate the effects of a distant planet, commonly known as planet 9, on the dynamics of the giant planets of
the solar system. We find that the dynamics of the giant planets can be decomposed into a classic Lagrange—
Laplace dynamics relative to their own invariant plane and a slow precession of said plane relative to the total
angular momentum vector of the solar system, including planet 9. Under specific configurations for planet 9, this
precession can explain the current tilt of ~6° between the invariant plane of the giant planets and the solar equator.
An analytical model is developed to map the evolution of the inclination of the inner giant planets’ invariant plane
as a function of the planet 9’s mass and orbital elements, and numerical simulations of the equations of motion are
performed to validate our analytical approach. The longitude of the ascending node of planet 9 is found to be
linked to the longitude of the ascending node of the giant planets’ invariant plane, which also constrains the
longitude of the node of planet 9 on the ecliptic. Some of the planet 9 configurations that allow the explanation
of the current solar tilt are compatible with those proposed to explain the orbital confinement of distant Kuiper Belt
objects. This work gives an elegant explanation for the current tilt between the invariant plane of the inner giant

doi:10.3847/1538-3881/153/1/27

CrossMark

planets and the solar equator and also adds new constraints to the orbital elements of planet 9.
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1. INTRODUCTION

The gradual discovery of increasingly distant trans-Neptu-
nian objects (TNOs) has allowed new tests for the existence of
a yet undiscovered distant planet in the solar system. Gomes
et al. (2015) analyzed the large semimajor axis centaurs and
concluded that they are produced continually by the decrease of
perihelia of scattered disk objects, induced by the perturbation
of a distant planet. Trujillo & Sheppard (2014), as they
announced the discovery of the distant TNO 2012 VP113, also
noted that distant TNOs not perturbed by close encounters with
Neptune show a remarkable alignment of their arguments of
perihelia and proposed that a distant planet is responsible for
this alignment. Madigan & McCourt (2016) argued that
gravitational forces in a disk of objects in eccentric orbits can
lead to clustering in their pericenters, with no need to invoke a
planetary perturber. Their model requires a mass of about
1-10Mg, for the disk, which is beyond the best estimates for the
scattered disk and inner Oort cloud. Moreover they do not
account for the perturbation of the major planets that should
induce a spread of the longitudes of perihelia and nodes.

More recently, Batygin & Brown (2016) studied more
deeply the orbital alignment of those distant TNOs, showing
that the six most distant objects also exhibit a clustering in their
longitudes of node; they estimated a probability of 0.007% that
this double alignment in argument of perihelion and longitude
of the node is just fortuitous. Moreover, they showed that a
planet 9 (hereafter named just pl9) could account for said
alignment if it had a mass of about 10M, and an orbit with
a semimajor axis between 300 and 900au, a perihelion
distance between 200 and 350 au, and an orbital inclination
of about 30° to the ecliptic plane. The Batygin—Brown
approach based on secular dynamics is able to determine an
approximate orbit for the distant planet that could explain the

said alignment, but not the planet’s position on that orbit.
Fienga et al. (2016) use a typical orbit among those proposed
by Batygin & Brown (2016) and determined the range in true
longitude of pl9 on that orbit that decreases the residuals in
the INPOP ephemerids of Saturn, relative to the Cassini data.
Holman & Payne (2016) obtained a similar result using JPL
ephemerids. Brown & Batygin (2016) refined their previous
results by further constraining the mass and orbital elements of
pl9 that are compatible with the observed TNOs orbital
alignment. They now argue for pl9’s semimajor axis in the
range of 380-980 au, perihelion distance in the range
of 150-350 au, and a mass between 5 and 20M,,, for an orbital
inclination of 30°. Malhotra et al. (2016) looked for extra
constraints on the pl9 orbit by analyzing the orbital periods of
the four longest period TNOs. Their approach is based on the
supposition that pl9 is in mean motion resonances with those
TNOs. Beust (2016), on the other hand, showed that a mean
motion resonant configuration may not be necessary to explain
the orbital confinement.

Here we study the precession of the plane orthogonal to the
total angular momentum of the four giant planets due to the
perturbation of pl9. We find that, given the large distance of
pl9, the dynamics of the giant planets can be decomposed into a
classic Lagrange-Laplace dynamics relative to their own
invariant plane (the plane orthogonal to their total angular
momentum vector, hereafter, named iv4) and a slow precession
of said plane relative to the total angular momentum vector of
the solar system, including pl9. Planetary system formation
predicts that planets are formed from a disk of gas and dust and
this disk rotates on the same plane as the star’s equator. The
final planetary orbits, if no mutual close encounters take place,
must be approximately coplanar and coincident with the star’s
equator. We thus suppose that the giant planets and the solar
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equator were initially on the same plane. We assume that pl9
was scattered away from the region of the other giant planets
when the disk was still present and the solar system was still
embedded in a stellar cluster (Izidoro et al. 2015). The stellar
cluster is needed, so that the perihelion of the orbit of pl9 can
be lifted and pl9 can decouple from the other planets (Brasser
et al. 2008). Because most of the angular momentum is in the
protoplanetary disk, it is likely that the ejection of pl9 onto an
inclined orbit did not significantly change the inclination of the
disk and of the other giant planets. For instance, considering a
primordial solar disk of 0.005 M, with surface density varying
as 1/r up to 40 au, we find a total angular momentum for the
disk of 0.16 M au? yr~!. PI19’s just-scattered orbit (before
perihelion raising by an external force) with semimajor axis at
700 au and perihelion distance at ~10au implies an angular
momentum of 0.0008 M., au® yr~! in absolute value but tilted
30° with respect to the disk. Conservation of angular
momentum implies that the old disk angular momentum must
equal the vectorial sum of pl9’s angular momentum at its just-
scattered position and the new disk angular momentum.
Triangle geometry allows the computation of the tilt between
the old and the new disk of just ~0?14. Notice also that the
inclination of pl9 might have been increased by the action of
the cluster, while lifting the perihelion in a Lidov—Kozai-like
dynamics (Brasser et al. 2008). In this case, the increase in pl9
inclination would have no consequences on the inclination of
the disk. If instead the ejection of planet 9 from the inner
planetary region occurred when the disk of gas had been
already substantially removed, the comparison with the total
angular momentum of the Jupiter—Neptune system
(~0.02 M, au? yr=') suggests that these planets would also
have been perturbed off-plane significantly, implying a tilt of
~122 for the giant planets if they are tilted together, but the
main effect would go to the planet mostly responsible for
scattering pl9, possibly Jupiter. However, we consider this case
less likely because we expect that, by the time most of the gas
disk was removed, the stellar cluster in which the Sun formed
would also have dispersed significantly (see, however, Adams
et al. 2006). In this case, pl9 could not have been trapped on an
orbit with a ~ 1000 au; it could have been trapped only on an
Oort cloud-like orbit with an ~10 times larger semimajor axis.
Thus, we assume that, at the removal of the protoplanetary disk
and of the birth cluster of the Sun, the four major giant planets
were on orbits near the solar equator, while pl9’s orbit was off-
plane. At this point, a slow precession of iv4 started to take
place relative to the total angular momentum vector of the solar
system, including pl9, keeping, however, the orientation of the
solar equator plane unchanged. Thus the current angle between
the solar equator and iv4 (about 6°—see below) must be a
signature of pl9 perturbation and we aim to find ranges of
orbital elements and mass for pl9 that can explain quantita-
tively the present tilt of iv4 relative to the solar equator.

The solar equator with respect to the ecliptic is identified by
an inclination of Iy = 7?2 and a longitude of the ascending
node 25 = 75°8 (Beck & Giles 2005). The invariant plane
with respect to the ecliptic is defined by an inclination
[ =1°58 and a longitude of the ascending node
Q; = 107258 (Souami & Souchay 2012). Employing two
rotations, we can find the invariant plane angles with respect to
the solar equator to be I, = 579 and 0, = 171°9. We will use
these parameters throughout the rest of the paper. We also
consider that iv4, as above defined, is equivalent to the
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Figure 1. Inclination of iv4 relative to the initial plane (the solar equator) after
4.5 Gy due to the presence of pl9 with eg = 0.7, as a function of pl9’s
semimajor axis. The dashed curve shows the prediction from the secular theory
described in Section 2.1 and the solid curve from the analytic theory described
in Section 2.2. The dots show the results of six numerical simulations that
contain no approximations.
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Figure 2. Same as Figure 1 but for the longitude of the node of iv4 relative to
the solar equator. Here the two analytic approaches look indistinguishable.

invariant plane of the solar system mentioned in the works
above, which also take into account the inner planets.

In Section 2, we develop two analytical approaches aimed at
determining the tilt experienced by iv4 due to the perturbation
of pl9. We also perform some numerical integrations of the full
equations of motion to validate our analytical approaches. In
Section 3, we apply our analytical method to determine the
range of masses and orbital elements of pl9 that can account for
the observed tilt of iv4 to the solar equator plane. In Section 4,
we draw our conclusions.

2. METHODS

We first apply the classical Laplace-Lagrange formalism up
to second order in the inclination to evaluate the variation of
the inclination experienced by iv4 due to pl9. Since a second-
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Figure 3. Inclination gained by iv4 with respect to the initial reference frame
believed to coincide with the current solar equator for different semimajor axes
and initial inclinations of pl9, assuming a mass of 3 x 107M; and an
eccentricity of 0.7. The horizontal line stands for the current inclination of iv4
with respect to the solar equator.
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Figure 4. Same as Figure 3, but for different eccentricities and semimajor axes
of pl9, assuming an inclination of 30°.

order approach may not be sufficient for large inclinations of
pl9, we develop another approach based on the angular
momenta of pl9 and the four giant planets. In this case, we
make no approximation on the inclinations but just a first-order
approximation in the ratio of the known planets’ semimajor
axes to that of pl9.

2.1. First Approach: Secular Perturbations
to Second Order

Following Batygin et al. (2011), we derive a secular theory
of the evolution of the inclination of iv4 based on the classical
Laplace—Lagrange theory up to the second order in the
inclinations. From Murray & Dermott (1999), we have the
following form for the classical Hamiltonian:

1 N N
H=— Z ZBjkIjIk cos(§; — ) (1)

j=1k=1
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where j and k indicate the perturbed and the perturbing bodies
respectively. The Nth index refers to pl9. All inclinations are
expressed with respect to the solar equator, believed to be the
initial fixed reference frame. The coefficients B;; and B}, assume
the form

nj U )
Bj=—- Y T _ayaub{lam
Ji kD3 2
4 ke Me + my
njoomy e
By =~ —aab{)) (a0 2
j jk ik D3 o\ O
4M(;\, m]

where M is the mass of the Sun, m; and my are the masses of
the interacting bodies, and #; is the mean motion of the planet ;.
ajx = a;/ax and &y = oy for a; < a. For a; > a;, we have
ay = ag/aj and & = 1. b{)) () is the Laplace coefficient of
the first kind (Murray & Dermott 1999, Ch. 7).

In the context of the Laplace—Lagrange secular theory, valid
for small values of the inclination and eccentricity, if we want
to account for large values of the inclination and eccentricity of
pl9, we need to add some new ingredients to the classical
theory. In this manner, the inclination of pl9 was accounted for
by reducing pl9°s mass by a factor of sin/, i.e,
MYy = M9y, COSIg. By doing this, we consider only the
projection of the mass of pl9 onto the planet’s reference frame
(iv4) (Batygin et al. 2011). As for the eccentricity of pl9,
assuming that one cannot derive a simple secular approach
(Murray & Dermott 1999), it becomes necessary to somehow
incorporate the averaged effect of an eccentric orbit upon the
motion of the perturbed planet. According to Gomes et al.
(2006), the averaged effect can be computed assuming that the
perturber is on a circular orbit of radius b, where
bg = ag+/1 — e§ is the semi-minor axis of the real perturber’s
orbit. Thus, in order to compute the possible large eccentricity
of pl9, we will assume by = ag+/1 — ed to be its circular
semimajor axis analog.

Therefore, with the implementations of myg,, = mo,, cosly

and bg = ag+/1 — e92, it is possible to rewrite the Hamiltonian
(1) in terms of the vertical and horizontal components of the
inclination (pj = I;sin€); and q = I; cos ), where the first-
order perturbation equations (p; = 0H /0q; and ¢; = —OH /Op;)
lead to an eigensystem that can be solved analytically (Murray &
Dermott 1999, Ch. 7)

N
P = > Lsin(fit + W)
=1

N
qj:ZIjkcos(fkt+ ) 3)
k=1

with f; being the set of N eigenvalues of matrix B
(Equation (2)), Ij; the associated eigenvector, and v, a phase
angle determined by the initial conditions. This leads to the

final solution of
L=\pr} +q;

p.
2; = arctan | 4)
9

Finally, starting with Jupiter, Saturn, Uranus, and Neptune in
the equatorial plane of the Sun, given the orbital parameters of
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Figure 5. Semimajor axis vs. eccentricity of pl9s that yield a tilt of 579 to iv4 with respect to the solar equator, for Iy = 30°.

eccentricity

eccentricity

0.3

0.3

0.3

900

{ my=4%10" Mg,

0 . 1 1

0.3

I;n9 = 5*10-5 MSun

300 600 900

semimajor axis (au)

0
300

600 900
semimajor axis (au)

Figure 6. Same as Figure 5, but for Iy = 45°.

pl9, one can verify that the eigenvectors (/js, j = 1...4) have
the same magnitude. In this way, the equations in (4) also
represent the evolution of the pair (I, €2) of iv4. Despite the
modifications we introduced to account for the large inclination
and eccentricity of pl9, our method has limitations, being less
accurate for large values of Iy and eq.

2.2. Second Approach: Angular Momentum

The equation of motion of a planet around a star perturbed
by a second planet in a reference frame centered in the star is

F=—-G(mg+ ]V[)L3 + Gm9{
r

)

no 2}
3 3
o )



THE ASTRONOMICAL JOURNAL, 153:27 (8pp), 2017 January

GOMES, DEIENNO, & MORBIDELLI

1 1
I,=30°
270 | 4 270 } .
E T
TN N 4 180 . -
<
90 - 1 9 .
my = 2.510" Mg, my =3*10" Mg,
1 1 1 1
300 600 900 300 600 900
1 1 1 1
270 | 270 | .
e
)
S 180 180
o] 3
<
90 90
my = 410 Mg, , my = 5107 Mg,
1 1 1 1
300 600 900 300 600 900

semimajor axis (au)

semimajor axis (au)

Figure 7. Semimajor axis vs. {2 of pl9s that yield 579 inclination tilt to iv4 with respect to the solar equator, for Iy = 30°.
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Figure 8. Semimajor axis vs.  of pl9s that yield 579 inclination tilt to iv4 with respect to the solar equator, for Iy = 45°.

where the subscript 9 refers to the perturbing planet and the
perturbed planet has no subscript. In this equation, r is the
radius vector and r is its absolute value, myg is the perturbing
planet mass, M is the star’s mass, G is the gravitational
constant, and r¢ is the distance between both planets. Let us
define the angular momentum per unit mass by h =r X r.

Using Equation (5), the time derivative of & can be found as

h— {Gmgr X9 _ Gmgl x3’9}. (6)

3
o ry

Since ng = rn — r and r X r = 0, we have to deal just with
the vectorial product r x ry in Equation (6). We now want to
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Figure 9. Frequency of possible longitudes of the ascending node on the ecliptic that pl9 must have to yield 579 tilt with respect to iv4, for four different inclinations
for pl9. Each panel includes masses of pl9 from 2 x 107°M, to 5 x 107°M,, with increments of 10~>M,,. The vertical lines depict the range of €2’s determined by

Batygin & Brown (2016; 113° + 13°).
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Figure 10. Semimajor axis vs. eccentricity of pl9s that yield a tilt of 5°9 to iv4
with respect to the solar equator, for Iy = 30°, and contrained by the range of
longitude of nodes predicted by Batygin & Brown (2016).

average the right hand of Equation (6) in the fast variables for
both planets. For that, we suppose two reference frames defined
on each of the planets’ orbits making an angle / between them.
The frames are defined by (i, j, k) and (io, j, ky), unitary
vectors, where the component j is common to both frames. j is
in the intersection of the orbital planes and lies on the invariant
plane defined by both planets; i and iy are orthogonal to j on
each of the orbital planes and k and kg completes the reference
frames through the right hand rule. It must be noted that these
frames are defined just to compute the derivative of & on those
components instantaneously. We now assume that the

perturbed planet has a small enough eccentricity so as to
consider its orbit as circular. On the other hand, the perturbing
planet will be considered eccentric. In this manner, we can
represent the radius vector of each of the planets as

r=(acosl)i+ (asinl)j 7
r9 = (rgcos g) ig + (r9 sinby) j, 8)

where a is the perturbed planet semimajor axis, [ is the
perturbed planet mean longitude, and 6y is the angle from the
intersection of the planes to the perturbing planet’s position,
which is the sum of pl9’s true anomaly fy and the longitude of
the ascending node with respect to the invariant plane.

We now put together Equations (6)—(8) and develop the
vectorial products remembering that i X ig = —sinjj,
ixXj=k, jXig=—k9g= —sinlk + cosli,and j x j = 0.
Developing the components in i and k, we notice that there is
always a trigonometric function in at least one of the fast angles
to an odd power, which results in a null average for these
components.

For the j component, after developing the vectorial product
to the first order in a/r9, we obtain

(r x r9)/r139 = —(a r9coslcosfysinl) r§3 T 9)
where,
3 a? a . ..
T =1—-—-—=+3— (sin/sinfy + coslcosfycosl).
Iy r9

The first-order approximation can be quite accurate when
a/rg is small, which is the case of a distant planet perturbing a
close-in one. Averaging in the fast angles / and fy, which
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appears in fy and ro, for one orbital period, we arrive at

P P
€L f f TIED g 3 @by 3 sin21 (10)
PPy Jo Jo Iio 8

where P and Py are the orbital periods of the perturbed and

perturbing planets, respectively, and by = agy/(1 — eg) is the

semi-minor axis of the perturbing planet. The term (r x 1y)/r;
averages to zero in all components. The variation of & becomes

h= %G mo a2by * sin 2Jj. (11)

Through the way the reference frames were constructed, we
have shown that k& has only, and always, a non-zero time
derivative in the direction of the intersections of the orbital
planes. Since the choice of the reference frames could be for
any time, we conclude that at any time the non-zero component
of the time derivative of & is orthogonal to / on the intersection
of the orbital planes. This is satisfied only if the projection of h
on the invariant plane is a circle around the origin. The radius
of the circle o (where sin @« = Ho/H, sin[) is the angle between
h and H, where H, = mh + H, is the total angular momentum
and Hy = mgry X Fy is pl9 angular momentum. The precession
frequency is the coefficient multiplying j in Equation (11)
divided by 2mah, where h is the absolute value
of h = \/GMa.

This approach to compute the variation of the inclination and
node of a planet perturbed by another one can be extrapolated
to the case of a distant planet perturbing several close-in
planets. We noticed by numerical integrations that this
approach is accurate enough for the solar system giant planets
perturbed by a distant planet, when we replace the four planets
by only one with a semimajor axis at 10.227 au and the same
angular momentum as the resultant angular momentum of the
giant planets.

2.3. Comparison of Both Approaches
with Numerical Integrations

We considered the current orbital elements of the four giant
planets and a pl9 and ran a numerical integration of the full
equations of motion for 4.5 Gy. We noticed that iv4 behaved
the same way as if all planets started on the same plane. Thus,
for simplification, we started new integrations with the current
giant planet’s orbital elements except for the inclinations,
which were started at zero, and these integrations were
used for the comparisons below. We ran a total of six
different numerical integrations with different semimajor axes
for pl9.> The planet’s mass and other orbital elements are
mg =3 X 10751‘4@, eo =07, Iy= 30°, Qg = 113°, W9 =
150° (Batygin & Brown 2016). Figures 1 and 2 show the
comparison of the two analytic approaches with the numerical
integrations. We notice good agreement, thus, from now on, we
will consider the angular momentum approach to make our
analysis.

> We also ran one numerical integration with all eight planets and confirmed

that the orbital plane of the inner ones just precessed around a common plane,
which, in this case, would be an iv8 very close to iv4.
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3. CONSTRAINING A PLANET 9
THAT YIELDS A 5°9 TILT

Figures 3 and 4 show how the inclination of iv4 after 4.5 Gy
depends on orbital elements of the perturbing planet. Here we
fixed the mass of pl9 at 3 x 107°M,. The largest value of Al
in each of these figures stands for the case where the angular
momenta of pl9 and iv4 turn 180° around one another. For
smaller semimajor axes of pl9, more than one cycle is
accomplished by the pair of angular momentum vectors.

The plots in Figures 3 and 4 allow us to compute pl9
parameters that yield an ~5°9 inclination between the solar
equator and iv4 after 4.5 Gy. for instance, Figure 3 reveals that
a planet with 3 x 1079M,, an eccentricity of 0.7, and a
semimajor axis of 600 au has to have an initial inclination of
30° relative to the solar equator to cause the observed tilt.
Figures 5 and 6 show the loci of pl9 semimajor axis and
eccentricity that yield a tilt of 5°9 of iv4 relative to the solar
equator for four possible masses for the distant planet and two
initial values of pl9 inclination. We notice that for a mass
2.5 x 10*5M@ and Iy = 30°, there are just a few choices of
planets that can yield a 599 tilt. A mass as small as
2 x 107M,, is unable to yield the right tilt for iv4 if
Iy = 30°. For higher inclinations of pl9, it is possible for iv4
to achieve a tilt of 5°9 for somewhat smaller masses of the
perturber. The constraints on pl9 orbit that we obtain here have
similarities with those obtained by Batygin & Brown (2016)
using considerations of the orbital alignment of TNOs; though,
we usually determine a higher eccentricity for a given
semimajor axis. For example, the standard pl9 in Batygin &
Brown (2016) with mg = 10My, and Iy = 30° has ag = 700 au
and eg = 0.6. In our case, for the same myg, Iy, and ag, the
eccentricity must be 0.8. In Brown & Batygin (2016), the best
pl9 for Iy=30° and m¢ = 10M; has a9 = 600 au and
e9 = 0.5. In our analysis, for the same Iy, mo, and ao, the
eccentricity must be 0.71. On the other hand, Malhotra et al.
(2016) determined eccentricities lower than 0.4 for
ag = 665 au; however, in this case, for a coplanar configura-
tion of pl9 with the TNOs.

As iv4 and pl9 orbital planes evolve, their intersections of
the solar equator plane define a difference of longitudes of
ascending nodes on that plane. Figures 7 and 8 show,
respectively, for Iy = 30° and Iy = 45°, pl9 semimajor axis
and longitude of the ascending node (2) that yield 5°9 for iv4,
on the solar equator plane, with respect to iv4 longitude of the
ascending node at 4.5 Gy. This is also shown for four possible
masses of the distant planet. We see that iv4 and pl9 are on
average opposed by 180° on the solar equator. This allows us
to compute possible directions for the longitude of the
ascending node of pl9 on the ecliptic plane.

Once we know the inclinations and longitudes of the
ascending node of pl9 and also the inclination and ascending
node of the solar equator with respect to the ecliptic, we can,
with a couple of rotations, compute the longitude of the
ascending node of pl9 on the ecliptic. Figures 7 and 8 already
suggest that pl9’s longitude of node will be constrained in a
180° range. On the ecliptic, Figure 9 shows the frequency of
possible 2’s of pl9 for four possible Io. All masses of pl9 from
2 x 107°M, to 5 x 107M,, are included in these plots. The
vertical lines depict the range of €2’s determined by Batygin &
Brown (2016; 113° £ 13°). Still, for Iy = 30°, Figure 10
shows the semimajor axis and eccentricity of pl9 whose €2
falls inside the range predicted by Batygin & Brown (2016).
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We see that our approach does not constrain very well the
longitude of the ascending node of pl9, but our determination
usually includes Batygin & Brown’s (2016) prediction based
on the longitude of the ascending nodes of the distant TNO’s.
Interestingly, we have a better match for Iy > 45°. For Iy = 25°
and lower, we do not obtain any overlapping with the range of
node longitudes from Batygin & Brown’s (2016) work. For
Iy = 30°, we have compatibility with Batygin & Brown (2016)
only for mg > 4 x 107M(~13.3M,). This seems to indicate
that pl9’s inclination cannot be much smaller than 30°, and, if
so, it needs a mass of the order of 5 x 10*5M@(~17M$),
somewhat larger than the 10M; usually assumed. This result
does not match Malhotra et al. (2016), who give two choices
for the pair Iy and 9, which are (18°, 101°) and (48°, 355°).
The higher inclination is associated with a longitude of the
node that cannot explain the tilt of the giant planets relative to
the solar equator (see Figure 9).

It must be noted that when we refer to pl9’s inclination, we
mean its initial inclination with respect to the solar equator
plane, which coincided with iv4. The final pl9 inclination with
respect to the ecliptic, which should be compared with
the current pl9’s inclination, will vary a little from the initial
reference inclination. For instance, for the case where Iy = 30°,
the final pl9’s inclination with respect to the ecliptic will vary
in a range from 27°3 to 37°2. If we restrict to the Qs
constrained by Batygin & Brown (2016), this range shrinks to
29°7-33%2.

4. CONCLUSIONS

Some ideas had been put forward to possibly explain the
inclination of the invariant plane of the known planets relative
to the solar equatorial plane (Batygin et al. 2011), but in view
of the convincing case presented in Batygin & Brown (2016)
for the existence of pl9, it is quite natural to suppose that such a
tilt was caused by a slow precession of iv4 around the total
angular momentum vector of the solar system (including pl9).
In this paper, we constrained possible masses and orbital
elements for pl9 that can account for the present tilt of iv4 with
the solar equator. Our results are usually compatible with those
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of Batygin & Brown, (2016) and Brown & Batygin (2016)
though with somewhat larger eccentricities. We also determine
a range of possible longitudes of the ascending node for pl9
which often overlaps with the range given in Batygin & Brown
(2016) except for smaller masses and inclinations of pl9. For
instance, for Iy =30°, we need a mass larger than
~4 x 107°M, ~ 13M,, to match the range of the longitudes
of the ascending node for pl9 proposed by Batygin &
Brown (2016).

R.D. acknowledges support provided by grants #2015/
18682-6 and #2014 /02013-5, Sdo Paulo Research Foundation
(FAPESP) and CAPES.

After the submission of this paper, we learned that Bailey
et al. (2016) and Lai (2016) had also submitted similar works
arriving at similar conclusions simultaneously. Thus, these
works, providing consistent conclusions, have been done in
parallel and independently.
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