


196 A. Morbidelli, A. Giorgilli/Physica D 102 (1997) 195-207

parts: A, containing only high order Fourier modes
which correspond to resonances inside the considered
domain, but not included in the resonance module,
and Aponres containing all the other terms. This will be
made clear by the examples discussed in Section 2.
The relevant information is that A.s dominates with
respect t0 Anonres- The size of A, at least for what
concerns the asymptotic dependence on the relevant
perturbation parameters, can be predicted by simple
considerations on the order of the resonances involved
and on the analyticity properties of the Hamiltonian.
As a consequence, this gives an a priori estimate on
the remainder of normal forms. Therefore, we con-
clude that the choice of the domain and, consequently,
the high order resonances that are present inside that
domain, tell us which terms are expected to be the
leading ones in the remainder.

A relevant question is whether or not these terms
do actually appear, with the predicted size. Simple
analytical considerations show that, in case this is not
true, a small change in the original Hamiltonian will
actually produce such terms. Thus, the normal form
above has to be considered, in some sense, generically
optimal. This will be discussed in Section 3.

In Section 4, we shall illustrate a possible applica-
tion of normal forms to estimate the size of chaotic
regions in case the Hamiltonian Anorm has homoclinic
or heteroclinic connections between hyperbolic mani-
folds (for instance, the rapidly forced pendulum). The
key point is that the size of the chaotic region close to
the stable and unstable manifolds is of the same mag-
nitude as /. We emphasize that this result is generi-
cally optimal, in the sense expressed above. Moreover,
it is in agreement with the rigorous estimates given in
particular cases by Poincaré-Melnikov methods.

In Section 5, we discuss possible applications to
some problems which are open in the framework of
classical Poincaré—Melnikov’s theory.

2. On the remainder of normal forms
We start this section by illustrating the process of

reduction of the Hamiltonian to normal form (1) in
a general case. Next, we shall apply our procedure

to five model examples, that can be considered as
typical.

2.1. Reduction to normal form

We consider the Hamiltonian

H(p,q,e) =h(p)+ef(p,q)

with g € T" and p € G C R", where G is an open
set. As usual, the Hamiltonian will be supposed to be
real analytic, and to admit an holomorphic extension
to a complex domain G, x T7, where g, o are positive
parameters, and

gg - U BQ(p)7

PESG
T ={q € C":|Imgq| <o},

B, (p) being the complex ball of center p and radius
0.

We basically work with the geometrical and ana-
lytical apparatus of Nekhoroshev’s theorem; see for
instance [1-4]. We recall the necessary definitions. A
resonance K-module M is defined as a submodule of
7" satistying (i) span(M) N Z" = M, and (ii) there
are s = dim M independent vectors ki, ..., ks in M
satisfying |k;j| < K. The domain G is assumed to be
a nonresonance domain of type (M, «, o, K), i.e., for
all p € G, one has |k -w(p)| > « forall k € 2"\ M
with |k| < K. Here, « is a positive parameter, and
w(p) = 0hy/dp are the unperturbed frequencies of
the system. We emphasize that determining the non-
resonance domain, i.e., all parameters M, K and « is
the crucial point of the whole procedure.

The first step is the determination of the effective
size of the perturbation. Here we sketch the general
scheme, but the procedure will be better illustrated for
the specific examples below. We consider two different
cases, namely the nonresonant case M = {0} and the
resonant one.

If M is nontrivial, we give the Hamiltonian the form

H(p,q) = ho(p) + hi(p,q) +h2p,q), (2)

where: (i) ho(p) represents an integrable system,
which does not necessarily coincide with A (p) above;
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(i1) A1 (p, g) contains only resonant modes in M and
has zero average (the average part being included in
ho); (iii) ha(p, q) is a remainder, the size of which
must not exceed the size of 4. To this end, we put the
Hamiltonian in Birkhoff’s normal form (i.e., remove
all dependencies on the angles) until condition (iii) is
satisfied. Then, we define e.i as the size of the field
generated by hj.

In the case M = {0}, with a sequence of transfor-
mations to Birkhoff’s normal form, we give the Hamil-
tonian the form

H(p,q) = ho(p) + ha(p, q) 3)

in such a way that the leading term in 4 is a resonant
Fourier mode, i.e., |k - w(p)| < « at some point p €
g; by the nonresonance hypothesis on the domain, we
evidently have [k| > K. Then we define Eeff as the
size of the field generated by hj.

The second step consists in putting the Hamiltonian
in the best normal form with respect to the resonance
module M, trying to minimize each term in h,. Pre-
cisely, we look for a form

H(p,q) = ho(p) + hnorm(p, ) + R(p, q),

where Aoy is in normal form with respect to the
resonance module M, i.e., it contains only Fourier
modes k € M, and the remainder R(p, q) is as small
as possible. This is the usual normalization proce-
dure. However, we look more closely at the remainder
R(p, q), splitting it as R = hpes + Pnonres, Where A
contains Fourier modes & which are resonant, namely
lk - w(p)| < o for some p € G, but with k| > K,
while Zyonres contains all nonresonant Fourier modes.
In order to clarify this point, we show how to perform
the first normalization step. We determine the gener-
ating function x by solving the equation

ax
w(p) — + Mnorm + Ares = hy,
ap

according to the following algorithm: let & be a Fourier
mode of h3; if |k-w(p)| > a forall p € G, then put the
mode in the generating function after dividing it by ik -
w(p); else put the mode in Ao, if k € M, orin Pres If
k & M. Recalling that G is a nonresonance domain of
type (M, a, o, K), one deduces that A, contains only

modes |k| > K. By performing the transformation
we reduce the Hamiltonian to the form (1) with a
remainder Ay,0,005. This step can be formally iterated an
arbitrary number of times, but quantitative estimates
show that we must stop at some point. Indeed, with
standard estimates one finds that after r steps the size
of the remainder is O(rlely/a"); choosing an optimal
order r ~ o /e one reduces the size of Hnonres tO
O(exp(—(a/eef))).

We now proceed by further reducing the size of
Mnonres- TO this end, we essentially repeat the proce-
dure of the second step above for increasing values of
a; more precisely, we try to remove from Anonres all
modes with |k - w(p)| > o > «. According to the
general estimates above, the optimal order r increases
with o', which makes our procedure consistent. It is
evident that this will affect only hnonres, giving it the
form of a Fourier expansion with coefficients decaying
exponentially with «’. That is, the weight of a Fourier
mode in Apopres decreases as exp(—1lk - wl|/eesr).

We turn now to estimating /iyes. It is enough to point
out two elementary properties. Firstly, the transforma-
tion to normal form can be proven to be convergent
in a domain, say, Go/2 TZ /20 where the transformed
Hamiltonian turns out to be holomorphic. Secondly,
the supremum norm of the Hamiltonian is not changed
by the transformation. Using the well-known property
of exponential decay of coefficients in the Fourier ex-
pansion of an analytic function we immediately con-
clude that the resonant Fourier mode k in hres has a
coefficient bounded by O(exp(—1[k|o)).

The problem now is how to compare the size of /g
with that of A,opres. In particular, the interesting case
is when /.. dominates Bnonres. With a proper choice
of « this can be achieved, as will be illustrated in the
examples below.

2.2. The periodically forced pendulum

We consider the Hamiltonian
H(]),q):%[)2—~8(1+,8COSZ)COSC[ 4)

with p € R, g € T, ¢ a small parameter and S
a real parameter, not necessarily small. With a stan-
dard procedure, we extend the phase space introducing
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canonically conjugated variables A, A, with A = 1,
and write the Hamiltonian as

H=A+%p2—8(l+ﬁcos)\)cosq, (5)

where A € R.Itis interesting to study the local domain
in the neighbourhood of p = 0, where ¢ is a slow
angle. Thus, we look for a normal form which does
not depend on the fast angle A. Formally, ordering the
angle variables as (¢, A) the resonance module M is
generafed by the basis (1, 0). ‘

The first step of Section 2.1 is performed as follows.
If B < 1 wejustput hg = A+ %‘pz, h) = —ecosq
and hy = —eB cosicosqg, so that geff = €. If1l <
B < 1/e, write

H=A+ %pz - %8,3[(305()» +q) + cos(h —q)]
— £€08q '

and transform it with the generating function

ep [sin(kJrq) sin(A “6])}
il 4+ - )
Y —p

X1 =

This gives the transformed Hamiltonian exp(Ly,)H
the form (2) with
2 212 2
p” e p (1+p)
ho = - T3 A
0 A+2+ 81— p2)?
e2p*(1 + p*)

hy=—
‘ 8(1 — p?)?

cos(2g) — ecosq

and with /1, containing nonresonant leading terms with
coefficients £282. Now, if B < 1/4/¢ then the domi-
nant coefficient in A is &, so that gegr = ¢; if instead
B > 1//¢ then éeff = g2 B2.

We now determine the domain and the parameter K.
The natural choice for the domain G is |p| < O(/eff),
namely the region containing the separatrices of the
unperturbed pendulum Ao + h1. We also choose K as
the lowest order of a mode which is resonant in G but
does not belong to the module M. Considering the
resonance relation |21 /et —m| < @ for some positive
« (that can be chosen independent of ¢), we see that the
lowest order resonance is given by m = land [ ~ (1—
«)/(2./€efr). Thus, we have K ~ 1/./ect, provided
o < 1. A straightforward application of the argument
of Section 2.1 gives Hres = O(exp(—1//€etf)) and

Honres = O(exp(—a/gefr)), S0 that A is expected to
dominate with respect to Aponres. Thus the estimate of
the remainder of the normal form is dominated by

hres = O(exp(—1/4/efr))-

We point out that the well-known model of the
rapidly forced pendulum is actually reduced to a model
similar to the perturbed rotator above, via a canonical
transformation. Indeed, it is known that the usually
studied equation |

g + sing = Bsin(t/¢) (6)

can be derived from the Hamiltonian

H(p, A,q.\) = A+ 1p* —e*cosq

- sz,.ﬂq cos A
with a trivial scaling of the action variables p, A and
of the time. In order to remove the unpleasant nonpe-

riodic dependence on the angle g we change the vari-
ables via the canonical transformation "

A=A +&*Bg' cos), A=N,

p=p +&Bsin), g=4q

so that, omitting primes and forgetting an unessential
constant, the transformed Hamiltonian reads

H=A+ %pz — ezcbsq +82,3psink

- %84,32 cos(2X).
This is the Hamiltonian of a perturbed pendulum. We
now apply the procedure of Section 2.1. Assuming the
condition B < 1/&2, we try to remove all A dependent

terms via a canonical transformation with generating
function

x = &*Bpcosh+ te B sin(20).

The transformation is

A=A —&2Bp'sind + Letpeos@@), A=2",
g=q —&*Bcosr', p=p.

The transformed Hamiltonian has now an infinite ex-
pansion; so, still omitting primes and forgetting an
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unessential constant, we write only the leading terms.
We get the required form (2) with

ho= A+ % P,
hy = —g? cosq + ﬁeéﬁz cosg,
hy = —1eBlsin(g + 1) + sin(g — )]

+ 3£%B%[cos(g + 21) + cos(g — 21)]

+ O B%);
more precisely, the rest of the expansion has coef-
ficients of the form 82(82[3)5. Thus, for 8 < 1/82
this Hamiltonian satisfies condition (iii) of Section 2.1
with eeff = £2. With the same consideration of the
previous example we conclude that the size of /i is

O(exp(—1/¢)) and th‘at of Mjonres 18 O(exp(——a/ez)),
i.e., smaller than A.

2.3. The quasi-periodically forced pendulum

The Hamiltonian has the form

H(I,¢,p.q)=w- 1+ 1p* —scosq
+ef(p,q) (7

with (/,¢) e R" x T", (p,q) € R x T and w a dio-
phantine n-vector. We consider the domain G defined
by [p] < O(/e), so that g is a slow angle, and the
resonance module M has basis (1,0, ..., 0). Due to
our special choice, this Hamiltonian has already the
form 2, with ge¢r = . We now define K looking at the
lowest order resonance not belonging to M. To this
end, write the resonance relation as |lp + k - w| < «.
It is evident that the lowest order resonance will be
given by / = 1 and p ~ /e. Recalling that a diophan-
tine frequency w satisfies |k - w| > y/|k|* for some
positive y and t, we readily get the relation

vIKT = Ve <a.

This leads to the natural choice
a~ e,

As a consequence

K~ 1/V@0).

hres ~ exp(—1/e!/2%)),
172

Nnonres ~ exp(—a/e) ~ exp(—1/e

and, recalling that t > n — 1, the dominating part is
hres, provided n > 1. The case n = | requires the
construction of Section 2.2.

The case of the whiskered torus can be reduced to
the present one with simple considerations.

2.4. The model of Hénon and Heiles

The Hamiltonian is

H(x,y, px, py) = %(xz,ﬂ- pf) + %()’2 + p_%)
+xty = 1y3, ()

defined in an open ball around the origin. The carte-
sian variables x, y, p,, py are suitable for analytical
estimates. However, formal considerations are eas-
ier if one introduces action-angle variables via the
canonical transformation x = /21| cos¢, p, =
V2Iy singt, y = V21 cosga, py, = /21 sin g

This gives the Hamiltonian the form
H=1+5L+ f(, L e, e),

where f is a homogeneous polynomial of degree 3 in
VT, /I, and a trigonometric polynomial of degree
3 in the angles. v

Since the harmonic frequencies are (1, 1), the reso-
nance module M is generated by the basis (1, —1). In
order to give the Hamiltonian the form (2) we perform,
a Birkhoff normalization. The explicit computation
can be found, e.g., in [6]. The normal form starts with
a homogeneous polynomial of degree 4 in /T, /To
and a trigonometric polynomial of degree 4 in the an-
gles. Precisely, the normal form up to order 4 has the
form I1 + L+a(h + L)+ 1, I (b+ccosRy; —2¢7))
with suitable coefficients a, b and ¢. Via the canoni-
cal transformation 11 + I, = Jy, [, = J2, o1 = Yy,
¢2 — @1 = Yrp the Hamiltonian writes

H=J +al}
+ (J1 — J2)J2(a + bcos(2yr)) . 9)

From this, one immediately sees that J; is a first in-
tegral for the truncated Hamiltonian. Looking at the
phase portrait in J, ¢ one sees that there are orbits
which cover the whole interval 0 < J, < J;. Thus,
the natural choice of G is J; = ¢ and J, < o for some
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known, x| contains the same Fourier modes as f, and
so it is represented by the same diagram as f. Now
we determine the transformed Hamiltonian, say,

HY = p® +.92f2(1) + 53f3“) + ..
by computing

H(”:exp(LgX])H
=H +{ex1, H}
+ 3 e, HY A+

notice that H" is already expanded in series of ¢. In
order to investigate which Fourier modes will appear in
f,_,m, ) 3(1), ... it is enough to remark that, in a Poisson
bracket between two functions, the Fourier modes add
algebraically together in pairs. Thus, for instance, the
mode (1, 1) in f combined with each mode in x; will
produce all coefficients represented by boxes in the
diagram

ki

foul
=

J_-
tT

L
foul
=5

k>

a1
=23
h
5]

=
1

The complete result of {x;, f} is represented by the
boxes in the diagram

ki
£ 3 B 5 a5}
tH i} ) 1) a5
4 i iy ko
@

which represents the transformed function fz(l). Simi-

larly, f;l) = {x1, “2(])} is represented by the diagram

ki
M M A r r1
| — 5 R 5 o 1t
e
) e} el ) k2
1T Hr 152

and so on for the next orders. Concerning the size
of the coefficients, it is immediate to remark that,
unless it happens that some terms cancel out alge-
braically, £, £, ... ..

e &3, .., €*, ..., and contain Fourier modes of order
at most 4, 6, ..., 2s, ... (here, the order of the mode
k is |k| = |ki| + |k2]). Thus, the coefficients decay ac-
cording to the Fourier estimate exp(—|k|o) with o ~
|Inel. Itis an easy matter to check that the same prop-

are multiplied by

agation mechanism works at every step of Birkhoff’s
normalization procedure.

This shows that all terms of high order are actually
generated. In particular, we can expect that resonant
terms are generated, with coefficient as big as expected
according to Fourier’s exponential decay.

Being unable to support this heuristic argument with
rigorous proofs, we look for numerical evidence. With
the aid of a suitably designed algebraic manipulator we
perform a number of Birkhoff’s normalization steps
on a Hamiltonian similar to (11), precisely

H(p.q)=wipi +wapz + L (p? + p3)
+ 15 P1P2C0Sq1 + 1 p3 cos(2q2)
+ %p% cos(q1 + g2)

with
w= (1, 5(~/5 - 1).

The computation is performed considering the linear
part wy py + wy p2 as the unperturbed Hamiltonian, so
that we only deal with functions that can be repre-
sented as Fourier series in the angles with polynomial
coefficients in the actions. All the expansions are trun-
cated at degree 20 in the actions and at |k| < 30 in
the Fourier modes. We proceed by removing angle-
depending terms at increasing orders in p, starting
with order 2, and in particular removing only Fourier
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Fig. 1. The size of Fourier coefficients as a function of the Fourier order |k|. The label c|x| denotes the norm of ¢;x(p) (evaluated
over the ball |p| < 0.1), j being the polynomial order and k the Fourier order. Here we consider only terms corresponding to
frequencies |kjw; + kpawp| < 1, which are never eliminated by the normal form algorithm. The bold dot marks the maximum of ¢
for each |k|. We remark that the distribution of the coefficients follows very well the exponential decay predicted by Fourier law.

The line is the least square fit of the bold dots.

modes with |k - w| > 0.99. The latter condition en-
sures that all modes in the original perturbation are
actually removed at first step. Thus, no contribution
to hires comes from the original Hamiltonian. Smaller
thresholds on 1k - w| would remove too many terms
and would generate terms in /e only at orders incom-
patible with a practical computation. After some nor-
malization steps we have a series with a general term
of the form ¢; x pl exp(ik - g), namely a monomial in
p and a trigonometric monomial in g with a complex
coefficient ¢;j . We plot the quantity IC_,"/(|QU1 vs. |k|,
with the particular choice ¢ = 1% This means that we
estimate the supremum norm of the coefficient ¢; x p’
in the domain |p| < o.

Figure 1 shows the result after seven normaliza-
tion steps; that is, after removing all angle dependent
terms with |k - w| > 0.99 and polynomial degree in p
smaller than 10. Actually, performing the next steps
does not significantly change the figure. A rough eval-
uation of the convergence radius in p at this step gives

o ~ T]ﬁ’ which motivates the choice above for the
computation of norms. Since we are interested in the
structure of A5, in Fig. 1 we plot only the norms
of the coefficients of the modes with |k - w| < 0.99.
This makes well evident that resonant modes appear
at every order in |k| and that the biggest terms fol-
low very accurately the exponential decay predicted
by Fourier’s law. In order to underline this fact, we
have plotted as a bold dot the maximum of ¢, with
fixed |k| and computed the least-squares fit of their
distribution.

Our computation shows that the scheme of genera-
tion of modes illustrated above works effectively, and
creates resonant terms according to Fourier’s law. It is
always possible, of course, that cancellations do oc-
cur in particular models (for instance, the Hamilto-
nian could reveal to be integrable), but in this case a
small change in the original Hamiltonian will restore
the wanted resonant terms. Let us show how we can
easily do it.
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Assume that we are considering a given Hamilto-
nian # in a domain where a given Fourier mode k is
resonant, and suppose that, having performed the con-
struction of the normal form, we discover that there
is no such mode in the normal form. Let us consider
another Hamiltonian H” = H + aexp(ik - ¢), with
la| ~ e %7; that is, Just change the original Hamil-
tonian by adding the wanted term. Perform on H’ the
construction of the normal form, up to the same order
as for H. We claim that the normal form of H’ differs
from that of H by exactly that term, plus a quantity
smaller by a factor ¢.

This is easily seen from the process of construc-
tion. Indeed, consider the first normalization step, and
denote by x; and x| the generating functions which
put in normal form H and H’, respectively. Since the
difference H' — H is a resonant term, it does not con-
tribute to the generating function. Thus, X; = x;- On
the other hand, by linearity, we have eXp(Lsx, YH' =
EXP(L*«‘XI ) H+exp(L€X‘ )a exp(ik-q). Thus, still denot-
ing (with a little abuse) by H and H’ the normal form
after the first step, the difference is now H' — H —
aexp(ik - g) + O(ee~%1%) as claimed. The next nor-
malization steps can introduce only terms smaller than
ge k19 o that they cannot cancel the resonant term.
Indeed, in the second step we determine two generat-
ing functions x, and x5 Since the leading part of the
difference between the normal forms is the resonant
term a exp(ik - ¢), which does not contribute to X2
one has that 52()(5 — Xy) = O(gelkloy, Then, using
the trivial identity '

exp(ngXQ/)H’ — exp(LEQX YH
: / 2
= exp(ngxz)(H — H)
t(exp(Leay,) — exp(ngxz))H/ ,
one immediately gets
/
(exp(ngXZ/) — cxp(ngxz))H

=L )H’+--.:0(5e*"<’0).

On the other hand, exp(LFQX Y(H' — H) = aexp(ik -
A2

q)+ 0(526"“"), as claimed above. The same is true
also for the subsequent normalization steps.

In order to produce a more formal statement, let us
associate to a function f(p, q) = ck(p) exp(ik -g) its
Fourier norm || || = Zk lck|, where |c | is some norm
on the coefficient ¢ (p) (e.g., the supremum norm over
a domain). If f is analytic, then the norm is well
defined. Then, by the argument above, we can make
the following statement: for any given Hamiltonian H
we can find another Hamiltonian H', with |H' —H| <
e I such that the normal Jorm of H' contains the
wanted resonant Fourier mode k with a coefficient of
size e Iklo, : -

In this sense we speak of “generic optimality of
normal forms”.

4. On the size of the chaotic region around a
separatrix

A possible application -of the results of the previ-
ous sections concerns the estimate of the size of the
chaotic region around a separatrix of an unperturbed
resonance. Indeed, one immediately remarks that there
is a striking (and puzzling) agreement between the ex-
ponentially small estimates of the remainder of normal
forms in Section 2.2 and the estimates of the splitting
of separatrices commonly found using the method of
Poincaré-Melnikov integral (e.g., in the problem of
the rapidly forced pendulum). In this section we show
that this phenomenon can be understood on the basis
of the remainder of the normal form.

It is quite obvious, in view of the results of
Neishtadt [7], that the splitting of separatrices (and
therefore also the size of the chaotic region) cannot
exceed the size of the remainder of the normal form.
Indeed, in all resonant examples in Sections 2.2—
2.4 one ends up with an integrable (pendulum like)
system with an exponentially small perturbation.
Thus, introducing suitable action—angle variables, one
proves the existence of invariant tori bounding a strip
of exponentially small size around the unperturbed
separatrix.

The problem is to find an estimate from below for
the splitting, and this is usually done via Melnikov’s
theory. However, it is well known that computing
Melnikov’s integral for a generic system is a very
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difficult problem, perhaps not analytically solvable.
We emphasize that in the well-studied case of the
rapidly forced pendulum the “optimal” (in the sense of
the previous sections) size of the remainder is exactly
equal to the size of the splitting rigorously estimated
by the method of Poincaré-Melnikov. This suggests
that, as a general fact, the size of the chaotic region
is the same as the size of the resonant remainder,
namely Ares.

In order to support this point we study the model
Hamiltonian with 11 degree of freedom

H(p,q) = %pz —&e(1 + pcos(kqg —t))cosq
k~ 1/2/¢. (12)

The choice of this model is dictated by two consider-
ations. Firstly, in view of the estimates on the remain-
der of the previous sections, the lowest order resonant
term is the leading one; so, we discard all nonresonant
terms and all resonant terms of larger order. This is
reflected in our model, since the unperturbed pendu-
lum u = O contains the low order resonance p = 0,
and the term ¢/(24/€) — t is the lowest high order
resonance encountered in the region around the sepa-
ratrices of the pendulum. Secondly, any resonant cou-
pling can be typically given a form similar to 12 via
elementary trigonometric manipulations.

Avoiding the difficult computation of Melnikov’s
integral, we study this model with a method in-
spired by the theory of adiabatic invariants, as ex-
plained in the works of Neishtadt [8], Elskens and
Escande [9] and Henrard [10]. The idea is that
the pendulum of our model has a pulsating sepa-
ratrix which sweeps a region of size w. However,
the theory of adiabatic invariants can be applied
only if the separatrix is slowly pulsating, as in the
model H = %pz — (1 + pcos(et))cosq. Con-
versely, in our case the frequency of pulsation is
slow only when p is close to 2./¢, and becomes
fast when ¢ = p decreases to zero. The effect of
the fast pulsation could be possibly averaged out,
thus giving contributions of higher order in p. In
the following, we show that the time of slow pulsa-
tion is long enough to produce effects of adiabatic
capture.

—+ slow modulat ion

' fast modulation

Q

Fig. 2. Schematic representation of the dynamics of Hamiltonian
12. The separatrix of the pendulum can be considered to be
slowly pulsating only when p is close to 2./€; otherwise, the
pulsation is fast and can be averaged out up to higher order in
. The time spent in the band where the pulsation is small, is
long enough to allow capture of particles in a strip O(u). See
text for the obtention of formulas.

Referring to Fig. 2, we look for the domain in space
and time where the time derivative of ¢ := q/(2/€) —
¢ is smaller than ¢. The motion of g close to the separa-
trix apex p = 24/€, g = 0 is approximated by g (1) =
2/et — 0(&3/213), so that ¢ = 2/ — 0O(£3/%4%). Con-
sequently, ¢ = O(er?), and ¢ = O(et?). Therefore,
we have ¢ < ¢ forallt < O(1/¢'7%). During this time
the increment of both ¢ and g is O(¢!/%), and so the
change of the quantity wcosg is at least O(ue'’?).
This shows that all phase points closer to the unper-
turbed separatrix by less than the latter quantity can be
captured (expulsed) due to the slow pulsation of the
separatrix. We conclude that the size of the chaotic re-
gion is estimated to be at least O(sl/zu) close to the
apex of the separatrix, and at least (o ICHAIT 2y close
to the unstable equilibria.

For k > 1/(2+/¢) a similar argument applies, as the
reader can easily check. Conversely, for k < 1/ (2/¢€)
the mode kg — ¢t is no more resonant in the domain
characterized by the separatrix. Thus, the argument
above fails, and one expects that the effect of the per-
turbation is averaged out by the fast oscillations. In
this case, we can apply normal form theory, and so
we expect that the effect of the perturbation is es-
timated by the size of the first high order resonant
term generated during the construction of the normal
form. The first high order resonant term is g/ 2J/€) —
t, and the corresponding resonant term is produced
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Fig. 3. The determination of the splitting of separatrices: pj is
the first intersection of the unstable manifold with the vertical
axis passing through the unstable equilibrium; p; is the maxi-
mum of p along the last lobe. We take dp = max(py, p) as
a measure of the size of the separatrix splitting.

after 1/(2/€) — k steps. According to the estimates
of the previous section, its coefficient is expected to
be O(exp(k — 1/(2./¢))).

In conclusion, we expect to observe two differ-
ent regimes: for k > (2,/¢) the splitting is at least
O 0); for k < (2/%) the splitting is at least
Ofexp(k — 1/(24/€))). In the latter case, an upper
bound of roughly the same size can be predicted ac-
cording to Neishtadt’s estimates [7].

We look now for a numerical confirmation of our
estimates. To this end, for given values of ¢, ¢ and k,
we consider the Poincaré section at 1 = 2mrm (m =
0,1,...), and locate the unstable fixed point, g, p say,
of that mapping close to the unperturbed fixed point
q = —m, p = 0. We construct the unstable manifold
originating from g, p up to its first intersection with
the vertical axis ¢ = g. Referring to Fig. 3, we deter-
mine the ordinate p; of the intersection, and also the
ordinate p> of the maximum of the last encountered
lobe, Then we use the maximum d p between p; — p
and py — p as indicator of the size of the separatrix
splitting.

The results for ¢ = 107, k = 50 and M in the
range [10“]2, 10*3] are reported in Fig. 4, in log—log
scale. As one sees, the points are well aligned, and the
slope of the straight line computed by least-squares
fit is 0.4989628. This is in excellent agreement with
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Fig. 4. The size of the separatrix splitting for Hamiltonian (12)
as a function of . ¢ is fixed, equal to 10~% and £ is fixed equal
to 2./e. We remark the power decay of dp as a function of "
The line is the least-squares fit in log-log scale, and its slope
is very close to % which is the value predicted by the theory.

our predicted scaling ./, thus fully confirming our
estimate from below.

Concerning the dependence on k, we show in Fig. 5
the results for ¢ = u = 1074 It is immediately seen
that there is a maximum close to k — 50, with a
sharp asymptotically exponential decay for decreasing
k. Conversely, all k > 50 present a similar splitting,
in agreement with the prediction above. For values of
k less than 30 numerical errors appear to dominate.

5. Conclusions and discussion

We have pointed out that the estimates for the re-
mainder of normal forms can be easily understood and
predicted exploiting the fact that exponentially small
high order resonances are always present in any do-
main, and that these resonant terms cannot be elimi-
nated, and dominate all the rest. This picture appears
to be generically optimal, in the sense that any Hamil-
tonian can be forced to produce high order resonant
terms, eventually adding small corrections.
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Fig. 5. The size of the separatrix splitting for Hamiltonian (12)
as a function of k. The parameters ¢ and p are fixed. We
remark the sharp decay when k < 50; Conversely the size of
the splitting is constant (within one order of magnitude) when
k > 50.

As a natural application we have discussed some
problems related to separatrix splitting. The main ar-
gument is that high order resonant terms are effective
in producing a splitting which is proportional to their
actual size. Thus, the size of splitting must be at least
proportional to the size of the remainder A5 of the
normal form. Since this remainder does generically
exist (in the sense of Section 3), we expect that the
splitting does generically occur, with an exponentially
small size. We believe that our argument can be made
rigorous, so as to actually produce an estimate from
below of the splitting in the generic case.

We discuss now the relation of our results with the
known method of Melnikov’s integral. Firstly, it is ev-
ident that Melnikov’s method, being based on an ex-
plicit evaluation of relevant quantities, can produce
a definite result on a given problem; in contrast, our
method leads only to conclusions which generically
apply to a wide class of problems, but turns out to be
unable to give a precise information on a given specific
model. On the other hand we believe that our approach
is interesting in the framework of Hamiltonian dynam-
ical systems, inasmuch one is interested in a generic

behaviour. Secondly, the normal form method brings
some light on some hidden mechanisms of Melnikov’s
method. Indeed, one is confronted with the mysteri-
ous fact that big perturbations produce only exponen-
tially small effects. In the light of normal form theory,
we know that most of the effect of the perturbation is
a quasiperiodic oscillation which can be removed by
introducing suitable coordinates; according to the nor-
mal form above, chaotic effects are due to high order
resonances, so that they are exponentially small. This
fits perfectly with the remark, made a long time ago by
Contopoulos [11] and Chirikov [12], that chaotic be-
haviour arises in connection with interaction of reso-
nances. In this light, the method of Melnikov seems to
succeed in averaging out all quasiperiodic behaviour.
In this connection, it could be interesting to use the
method of Melnikov’s integral in order to compute the
splitting of separatrices for the Hamiltonian (12).

We believe that our approach can also provide in-
teresting indications on two problems which are still
open in the framework of Melnikov’s method.

The first problem concerns the computation of the
splitting when the perturbation is an infinite series.
The problem arises by the fact that the usual method
of evaluation of Melnikov’s integral by residues seems
to fail, due to essential singularities in the series (see
for instance [13]). Conversely, the argument discussed
in Section 3 on the generic size of the resonant terms
in the remainder of normal forms, is based only on
the analyticity properties of the original Hamiltonian,
so that it holds also for infinite series. As well, the
property that the size of the chaotic region is the same
as the size of the resonant remainder (Section 4), is
independent of the number of terms actually present
(the remainder is usually made of an infinite analytic
series). So, we conclude that even in the case where
the original Hamiltonian is an infinite series one has
to expect in general an exponentially small splitting
as in the truncated case.

The second problem concerns the special case of the
rapidly forced pendulum (6) in the case p = &'. Big
effort has been made in order to investigate the range
of s for which there is an exponentially small splitting.
For instance, Holmes et al. [13] showed the result for
s > 8, and more recently the condition was improved
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to s > 0 by Delshams and Seara [16]. Furthermore,
numerical computations by Benseny and Olivé [17]
show that one should be able to improve upto s > —1.
The question is whether one can improve up to s >
—2. Our consideration in Section 2.2 show that the
splitting 1s indeed expected to be O(exp(—1/¢)) for
s > —2 for the specific model (6); conversely, different
forms of the coupling term can produce different pow-
ers of ¢ inside the exponential formula for different
values of s; for instance, the model (4) gives a splitting
O(exp(—1/&!/?)) for s > —% and O(exp(—1/e!*))

for -1 <5 < w—,,l.
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